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Abstract: Malware in today’s business world has become a powerful tool used by cyber attackers.
It has become more advanced, spreading quickly and causing significant harm. Modern malware
is particularly dangerous because it can go undetected, making it difficult to investigate and stop
in real time. For businesses, it is vital to ensure that the computer systems are free from malware.
To effectively address this problem, the most responsive solution is to operate in real time at the
system’s edge. Although machine learning and deep learning have given promising performance
for malware detection, the significant challenge is the required processing power and resources for
implementation at the system’s edge. Therefore, it is important to prioritize a lightweight approach
at the system’s edge. Equally important, the robustness of the model against the concept drift at the
system’s edge is crucial to detecting the evolved zero-day malware attacks. Application programming
interface (API) calls emerge as the most promising candidate to provide such a solution. However,
it is quite challenging to create API call features to achieve a lightweight implementation, high
malware detection rate, robustness, and fast execution. This study seeks to investigate and analyze
the reuse rate of API calls in both malware and goodware, shedding light on the limitations of API
call dictionaries for each class using different datasets. By leveraging these dictionaries, a statistical
classifier (STC) is introduced to detect malware samples. Furthermore, the study delves into the
investigation of model drift in the STC model, employing entirely distinct datasets for training and
testing purposes. The results show the outstanding performance of the STC model in accurately
detecting malware, achieving a recall value of one, and exhibiting robustness against model drift.
Furthermore, the proposed STC model shows comparable performance to deep learning algorithms,
which makes it a strong competitor for performing real-time inference on edge devices.

Keywords: API call sequence; statistical classifier; model drift; malware detection

1. Introduction

The proliferation of communication networks and the Internet has created a paradigm
shift in how organizations manage their operations. This great influence of technology,
along with the rapid digitization of various spheres of life [1] and the emergence of cloud
and edge computing [2,3], has ushered in a new era of communication with a huge number
of interconnected devices [4]. Unfortunately, this interconnectedness has also given rise to
frightening and unprecedented levels of cyber attacker activity. The ongoing spread of new
and sophisticated cyber-attacks targeting critical infrastructure, government agencies, and
the financial sector poses significant challenges at both the individual and societal levels.
These sophisticated cyber attacks rely heavily on malicious software, commonly referred to
as malware [5]. Malware serves diverse purposes, including identity theft, financial theft,
disruptive activities, cyber espionage, and illegal extraction of sensitive data, driven by
various personal or political motives [6].
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Malware is classified into different categories based on harmful behavior such as
Trojan, virus, worm, and ransomware [7–9]. The behavior of each type is characterized by
the spreading method and the impact on the targeted machine; for instance, the worms
have the ability to independently spread into other networks without the need for file
attachment or user action. Contradictorily, the virus spreads by attaching itself to files on
the host, and user interaction is required to function. Malware harms the targeted system
in different ways to break the framework of IT security CIA (confidentiality, integrity, and
availability) [10]. Some malware, such as keyloggers, leads to the leakage of sensitive
information which compromises the confidentiality term, while worms can affect the
availability of the system. Also, some malware can be created to modify or delete data on
the system which compromises the integrity of data.

The fast development of cyber threats has witnessed the rise of more complicated and
harmful forms of malware such as metamorphic and polymorphic malicious code [11].
Polymorphic malware changes the binary form every time it targets a new system. The
change affects the code structure while keeping the same behavior. A common method
used to achieve such transformation is packing using encryption and compression to
transfer the binary. In the same context, metamorphic malware takes the same idea of
polymorphic malware a step further by transforming the binary and behavior with each
new infection. These techniques make the detection of traditional signature-based solutions
a challenging process.

According to a report by Cybercrime Magazine [12], only one malware type (ran-
somware) had a devastating impact in 2021, causing a global financial loss of USD 20 billion.
It is estimated that this number will grow exponentially, reaching US$265 billion by 2031.
Alongside cutting-edge strategies employed by attackers, the proliferation of malware is
also escalating rapidly. Kaspersky’s detection models identified an average of 400,000 new
attacks being distributed daily during 2022, which is an increase of 5 percent compared to
2021 [13]. This incessant generation of malware poses significant risks to enterprises, expos-
ing them to a wide range of sophisticated attacks. Consequently, integrating smart security
technologies into the network infrastructure becomes imperative for organizations in order
to effectively address the diverse range of malware attacks and ensure the protection of
data and systems.

Malware often exhibits signature characteristics that expose the malicious action; the
leading antivirus applications heavily rely on such signatures for detection. However, this
approach falls short in identifying newly emerged malware [14]. Attackers further under-
mine the reliability of such solutions by employing elusive methods such as encryption and
packing [15]. Despite the ingenious ideas employed by attackers, malware execution and
malicious activities still depend on the presence of a host’s operating system [16]. Therefore,
malware seeks to exploit the Windows API call service as a means to carry out malicious
actions. By taking advantage of the resources and functions provided by the operating
system, malware can manipulate and interact with critical system components, enabling
unauthorized operations and potentially compromising the security of the target system.
As a result of this interaction, harmful behaviors are exhibited that can be leveraged to
detect the presence of malware. As stated in [17], the use of the system API call cannot be
hidden by malware, allowing for effective identification and detection of malicious activity.
Despite the effective benefits of employing machine learning in detecting malware, particu-
larly zero-day malware, by using data extracted from the execution phase, such as API calls,
the process of gathering precise API call features to reliably differentiate between malware
and goodware continues to present a formidable challenge. The accuracy provided by API
call features has been emphasized in most research in this area [18], rather than prioritizing
the speed of solutions. Additionally, earlier studies have focused on complex feature sets or
the utilization of neural networks, while simpler techniques remain relatively unexplored.
Equally important, in a dynamic world, nothing remains static especially when talking
about malware as the characteristics evolved over time. This effect changes the distribution
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of data used to train the detection models. Such a significant effect makes the detection
models less effective in detecting zero-day malware.

Cybersecurity tools can be employed at different layers of the enterprise IT infras-
tructure. However, by implementing malware detection at the edge, it becomes possible
to implement malware protection technologies directly at the point where data is gener-
ated. While this method offers the advantage of real-time operation, its effectiveness is
restricted by resource availability, making execution time a critical factor to consider. To
develop edge systems that accurately identify potentially harmful situations within the
constraints of execution time and complexity, this study aims to investigate the following
research questions:

• What is a straightforward representation of API call features that can yield a highly
effective malware detection model with fast execution?

• How does model drift impact the accuracy of such a model?

The main contributions of this research can be summarized in the following way:

• An analysis of API call behavior to uncover the reuse rate trends in both malware
and goodware.

• Utilization of distinct datasets for training and testing purposes.
• Introduction of a straightforward feature representation method using API call

dictionaries.
• A recommendation that the statistical classifier (STC) serves as a simple yet robust

classifier that can effectively combat model drift. Furthermore, it offers a solution with
less complexity, rendering it highly suitable for edge environments.

The subsequent sections of this paper are structured as follows: Section 2 discusses
the malware analysis methods; Section 3 presents the related works; the used datasets are
elaborated in Section 4; API call dictionaries are described in Section 5; Section 6 explains
the STC model; the experimental results are presented in Section 7; Section 8 provides
the comparison and limitation of this work; and finally, conclusions and future works are
outlined in Section 9.

2. Static and Dynamic Methods for Malware Analysis

Cybersecurity techniques have witnessed many advances and developments to protect
the systems. Despite such evolution, malware constitutes the most challenging threads in
cyberspace [19]. Analysis of malware uses many techniques such as network and software
analysis in order to draw a comprehensive understanding of malware behavior and how
the harmful component has evolved over time. Malware can be analyzed statically or
dynamically. Static analysis is used to collect different static indicators such as the data
extracted from the header of the executable file [20]. Although this method does not
need a controlled environment to run the malware to extract precious insights into the
potential threat. However, the sophisticated malware can evade detection using various
obfuscating techniques.

Conversely, to overcome the limitations of static methods, malware is analyzed dy-
namically by executing the file in an isolated environment to observe the functionality,
behavior, and harmful actions. This is achieved by recording images of memory during the
run-time. Opcodes [21], API calls [22], network data, and registry [23] are some examples
of dynamic data that can be extracted and monitored. Since such a technique monitors the
interaction of malware with the operating system, many effective detection models have
been developed using dynamic analysis.

3. Related Works

Dynamic detection methods are impervious to obfuscation techniques of static detec-
tion like encryption and packing. This resistance has garnered significant attention from
the malware detection community, leading to a heightened interest in dynamic detection
approaches. In dynamic detection, the use of API calls is considered a valuable technique
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to represent malware behavior. The extraction process of API call sequences requires exe-
cuting the malware in an isolated environment in order to monitor and record the API calls
made by the malware [24]. The API call reveals the actions of malware such as changing
the system registry, downloading infected files, extracting sensitive information, and other
possible malicious activities. These API call sequences are used with different machine
learning techniques to detect malware. The study referenced in [25] used Cuckoo Sandbox
to capture several API calls generated by different types of malware and according to [26],
the order of API calls can be thought of as a collection of transaction data, where each API
call with the associated arguments constitutes a collection of elements. Consequently, iden-
tifying frequent itemsets within the sequence of API calls can unveil behavioral patterns.
In this context, API call sequences and their frequency were utilized by Hansen et al. [27]
to identify and classify malware. The use of a random forest (RF) classifier yielded en-
couraging predictive performance. The study presented in [22] introduced a process of
two stages. Extracting API call frequency features using the Markov model is the first step
followed by utilizing these features to train different machine learning models. The study
by Daeef et al. [28] used visualization methods and the Jaccard index to investigate which
groups of API calls are present in each malware family, with the goal of revealing hidden
patterns of malicious behavior. Then, the frequency of each API call is used as a feature with
RF providing the best results for malware family classification. Moreover, Daeef et al. [29]
focused on utilizing the API calls’ frequency within the initial 100 sequences. The outcomes
were highly encouraging, indicating that RF exhibited comparable performance to other
models such as long short-term memory (LSTM) and deep graph convolutional neural
networks (DGCNNs). The authors in [30] employed the provided dataset from [31] to
train a diverse range of deep learning and machine learning methods. The results indi-
cated that traditional machine learning classifiers demonstrated superior performance
while demanding less training time. Additionally, other investigations [32,33] focused on
converting API call sequences into term frequency-inverse document frequency (TF-IDF)
feature representation and subsequently evaluated multiple machine learning classifiers.
Despite the efficiency of the machine learning method on the tested set, these approaches
represent API calls as a bag of words, limiting their applicability to scenarios requiring
full-length analysis.

Deep learning has been shown to be very effective in processing sequence data over
time, especially in the field of natural language processing. In their paper [34], the authors
used the recurrent neural networks (RNN) model to classify different malware families.
They used long sequences of API calls to classify different types of malware. Further-
more, researchers in [35] utilize RNNs along with features extracted from API requests
to differentiate malware in binary detection scenarios. A deep neural network (DNN) is
presented in [36] to evaluate different malware datasets. Despite the promising analysis
made, however, the methodology is not sufficient in representing the API call dependen-
cies. The concept of transforming API calls into a graph structure was introduced by
Oliveira et al. [31]. To achieve this, a secure sandbox environment is used to execute the
malware and legitimate goodware to extract the sequences of API calls. These sequences
are subsequently utilized to generate a behavioral graph. For detection purposes, the
DGCNN is employed as the model. In a similar vein, researchers [37] have introduced
a technique to represent the behavior of malware by converting API calls into images,
by adhering to predefined criteria for color mapping. Then, these images’ features are
then classified using a convolutional neural network (CNN). Capturing the contextual
relationship among the API call sequences using word embedding is presented in [38]. API
calls are clustered according to the contextual similarity to generate a malware behavioral
graph and a Markov chain technique is used for the detection process. Zhang et al. [39]
propose a feature extraction process with a deep neural network. Feature representation
employs the trick of hashing to encode the API call’s category, parameters, and name.
Multiple gated CNNs are used to transform the features of API calls and the output is fed
into LSTM to learn the correlation relationship existing among the API calls.
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In summary, the accuracy provided by API call features has been emphasized in most
research in this area, rather than prioritizing the speed of solutions. Additionally, earlier
studies have focused on complex feature sets which include an abundance of unnecessary
information resulting in inefficient malware detection. The diversity of API call types,
high-dimension features, and long sequences of API calls constitute a big challenge to
creating lightweight detection models to be implemented in a real-time environment. Also,
the utilization of neural networks makes things worse in this context due to the resource
requirements. It is not logical to dive into complex solutions while simpler techniques
remain relatively unexplored. Equally important, in a dynamic world, nothing remains
static especially when talking about malware as the characteristics evolved over time. This
effect changes the distribution of data used to train the detection models. Such a significant
effect makes the detection models less effective in detecting zero-day malware. The concept
of drift is another important issue not tackled in previous studies.

4. Malware and Goodware Dataset

In order to test any classification model in terms of classification performance and
the effect of model decay, different datasets should be used. On this basis, this research
uses available public datasets for this purpose. The first dataset (dataset1) was taken
from [40] as this dataset aims to provide a foundation for continued development and
improvement within the scholarly community. This dataset contains 1079 goodware and
42,797 malicious samples. Each sample was executed using the Cuckoo Sandbox program
to generate the report of dynamic analysis. After this step, the API calls were extracted and
processed to generate the equivalent ordered values. Each record in the dataset consists
of the first one hundred consecutive, non-repeated API requests besides the MD5 hash of
that sample. Clearly, the sample rate of this dataset is imbalanced, with the malware being
97% of the entire samples in the dataset. Such an imbalance could impair performance
during the testing stage. To address this issue and to obtain more goodware samples,
another dataset (dataset2) is collected from Prateek Lalwani’s [41]. The dataset comprises
138,047 samples divided into two categories with 41,323 for goodware and 96,724 malware
files collected using virusshare.com. This dataset provides the MD5 hash of each record.
Model drift describes a change in the data’s underlying distribution on which the model
was originally trained resulting in a performance decline on novel unseen data. To test the
impact caused by model drift, the third dataset (dataset3) [16] is employed. The dataset
contains 7107 samples of different malware types with no goodware and each entry in the
dataset has an arbitrary-length API call extracted by executing the samples in a sandbox.
Figure 1 depicts the size of each dataset.

Figure 1. The datasets of malware and goodware samples.
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5. The Dictionary of API Calls

Attackers receive benefits from previous attacks to develop new samples of malware
with few changes. In this sense, we can infer that the API calls that exist in the malware
category are affiliated with a limited dictionary and are frequently utilized in other samples.
Investigating the dictionary of API calls used by malware and goodware could provide
an opportunity to build a reliable classifier based on API calls, once a sufficient number of
reliable and relevant examples are analyzed. Starting from this basis, initial statistics are
crucial to understanding the trend of API calls in each category. Python scripts are created
to automate the process of extracting the unique API calls for both malware and goodware.
The results show that the number of unique API calls in dataset1 is 264 distributed over
both categories with 252 and 200 API calls for malware and goodware, respectively, as
shown in Figure 2a. Although goodware constitutes a minority in dataset1, 200 API calls
were found, which means most of the API calls are shared by malware and goodware
in dataset1. This observation is very interesting and shows the limited number of API
calls found in both classes which supports our assumption that the malware dictionary
is limited, as attackers reuse the same tricks and techniques with few updates. This is
supported by an examination of dataset3, which includes 278 distinct API calls shared
by all malware families with rates that are extremely close to one another, as shown in
Figure 2b.

(a) Dataset1 (b) Dataset3

Figure 2. The distribution of API calls in dataset1 and dataset3.

The reusability of API calls reflects the trend of attackers’ thinking. Figure 3a clearly
depicts the higher reuse rate of API calls within the malware which can be understood as a
reuse of previous tricks, although the goodware reuses the API calls as shown in Figure 3b.
However, the reuse rate is low compared with the case of malware which again confirms
our assumption.

(a) Malware (b) Goodware

Figure 3. The reuse rate of API calls in dataset1.
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The small number of goodware samples in dataset1 might make the aforementioned
conclusions less strong. Also, this depends on the fact that only 100 sequences of API calls
can hide a lot of useful information. Therefore, 3135 malware samples were randomly
taken from dataset1, and the goodware samples of dataset1 were combined with goodware
samples taken from dataset2 to complete a total of 3135 samples to generate a balanced
dataset. In order to obtain the complete sequences of API calls, the MD5 hashes of the sam-
ples are provided to VirusTotal [42] through the API interface, resulting in the generation
of a JSON report. Following this process, the API calls are extracted and analyzed. Once
again, the analysis results are consistent with our previous assumption. The number of
unique API calls extracted from malware was 4567. This number is very limited compared
with the 34,945 API calls achieved from goodware. Furthermore, drawing the reuse rate
of the full API calls for both malware and goodware, it can be observed that the reuse
rate is still higher in malware as shown in Figure 4. This confirms the limitation API call
dictionary for malware class. This shows that our suggested API calls analysis could offer
superior discriminatory qualities to be a foundation for a reliable classification model. The
next section presents the construction process of a classification model that only depends
on an API calls dictionary.

(a) Malware (b) Goodware

Figure 4. The reuse rate of full-length API calls.

6. The Statistical Classifier STC

The classifier’s construction starts by supervising the learning process. In this process,
pre-classified samples of malware and goodware are fed for extracting the API calls and
recording the frequency of each one. At the end of this process, two dictionaries are created
one for malware and the other for goodware.

After completing the learning phase, the classifier can be used to process the unclas-
sified samples. It takes these samples as inputs and produces a binary classification of
either malware or goodware. To achieve this, the classifier extracts the API calls from the
samples and finds out the frequency of each API call with its associated class. A logarithm
of each API call frequency is aggregated and then normalized by the number of API calls
in that samplem as shown in Equation (1), to calculate the malicious rate. Ultimately, the
class of the sample under test is determined according to the maximum value. A visual
representation of workflow and the details of this process are depicted in Algorithm 1 and
Figure 5.

MaliciousRate =
N

∑
1

Log(
APICallFrequancy

N
) (1)

where N is the number of API calls in the sample under test.
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Algorithm 1: Creation of dictionaries and classifier testing
Input : Malware API calls X, goodware API calls Y

1 foreach x ∈ X do
2 foreach APIcall ∈ x do
3 APIcall f requencyM = (OccurrencesCount)
4 end
5 CreateMalwareDictinary
6 end
7 foreach y ∈ Y do
8 foreach APIcall ∈ x do
9 APIcall f requencyL = (OccurrencesCount)

10 end
11 CreateGoodwareDictinary
12 end
13 XTrain, XTest, YTrain, YTest ←−Split rate (X,Y) for training

Output : Binary classifier

Figure 5. Workflow of the proposed API calls analysis.

7. The Experimental Outcomes of the Statistical Model STC

The results of this section highlight the effectiveness of using API call-based techniques
to distinguish between malware and goodware. The goal of this research was to develop an
accurate method for identifying potential malware based on the sequence of API calls made
during its execution. To conduct the study, a diverse dataset comprising both malware and
goodware software samples was collected. There is an unbalanced number of samples in
dataset1 utilized in this study. When training the STC model with imbalanced datasets, it
can lead to misleading accuracy results. In this study, to mitigate accuracy-related concerns,
evaluation metrics such as F1 score, recall, and precision are utilized. Furthermore, the STC
model undergoes testing in two scenarios: the first test uses a balanced number of malware
and goodware, and an imbalanced number of samples is employed in the second test. The
following paragraphs provide a comprehensive overview of the findings and outcomes of
this study.
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7.1. Experiment 1: Imbalanced Class Distribution

In this experimental setting, the STC model was built and tested using an original
unbalanced dataset of 42,797 malware and 1079 goodware samples. However, promising
results were achieved in this experiment, as shown in Table 1, especially for recall value.
Despite this, the results clearly indicated that the presence of a class imbalance in the
dataset had a significant impact on the performance of STC. The accuracy of the model
was significantly affected by the class distribution, with a tendency to favor the majority
class because of its higher prevalence. Thus, the models showed high accuracy in correctly
predicting the majority class (all malware samples were classified correctly) but struggled
with the minority class (misclassified all goodware samples), resulting in imbalanced
classification results. Also, depending only on the first 100 sequences can hide important
API calls which differentiate the goodware from malware.

Table 1. STC performance results.

SCT

Precision 0.97

Recall 1.0

F1 score 0.98

Accuracy 0.97

7.2. Experiment 2: Balanced Class Distribution

In this test, a balanced dataset was created by ensuring an equal number of instances
(3135) for malware and goodware. As stated before, the full-length API call sequences
were extracted first, then the dictionaries of each class were built. For this test, 100 random
samples are taken for each class during the test process. The results in Table 2 demonstrate
that the performance of the STC model provides 0.97 recall as just three samples out of 100
are misclassified as goodware. Also, the detection of the goodware is improved in this test
as 62 samples are correctly classified with an FP rate of 38. These results indicate that the
STC model provides a high detection rate for malware in experiments 1 and 2.

Table 2. STC performance results.

SCT

Precision 0.72

Recall 0.97

F1 score 0.80

Accuracy 0.80

7.3. Experiment 3: Drift of STC Model

In the field of machine learning, the usual practice is to train models using a specific
dataset that represents the target problem domain. However, over time, the distribution
of data may change due to various factors such as new trends, behavior shifts, or novel
attack techniques in the case of security-related applications. These changes can lead to a
mismatch between the training data and the real-world data that the model encounters in
action, which leads to performance degradation. The STC model is exposed to the same
phenomenon because it depends entirely on the API calls which may change over time.

This test focuses on examining the effect of model drift by training the STC model
with dataset1 and evaluating its performance using dataset3, which consists exclusively of
malware without any samples of goodware. To the best of our knowledge, both datasets
were collected at different times in 2018 and 2019; therefore, the collection time of these
datasets provides reasonable information about the trend of attackers during these years.
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As dataset3 comprises malware only, evaluation scales of true positive (TP) and false
negative (FN) are used to accurately assess the ability of the model to detect malware.
Using dataset1, the full-length API call sequences are extracted to create the dictionaries of
goodware and malware.

The results of this analysis are particularly interesting. The STC shows an impressive
performance by achieving a TP rate of 7106, which indicates that almost all malware samples
were correctly classified. Only one sample was misclassified as goodware, resulting in an
impressively low FN rate. These findings highlight the model’s robustness and effectiveness
in detecting malware which is reinforced by the fact that attackers often rely on similar
techniques with minor modifications, resulting in a relatively limited dictionary of malware
characteristics. Overall, the results of this experiment show the substantial capability
of the model against the drift of the model. This knowledge enables the development
of robust and adaptive models that can accurately classify malware while limiting false
negatives. The results of the study contribute to enhancing cybersecurity strategies to create
time-independent, real-time models in the field of malware detection.

8. Comparisons and Limitations

To draw a comparative analysis with state-of-the-art works in the field, the traditional
classifier CatBoost [30] and deep learning classifiers (LSTM and DGCNN) [31] are selected
for the purpose. The selection is based on the success of these techniques in creating
malware detection models using the sequences of API calls. To make fair comparisons, the
same dataset and evaluation metrics are used. Hence, recall, F1 score, and precision are
used to discuss the comparison results.

As shown in Table 3, the proposed STC model performs very closely to deep learn-
ing algorithms. Deep learning model-based API calls could be built using thousands of
sequences. Such a large number of API call sequences can be limited to a specific number.
However, in both cases, it is important to note that these solutions often demand substan-
tial computational power and resources. The simple representation of API calls in STC
overcomes the curse of dimensionality problem that exists in representing API calls as a
bag of words such as those found in CatBoost.

The proposed STC model shows high performance for malware detection using the
training and testing datasets and successfully passed the testing of model drift. However,
the lack of testing of the model on a daily basis with evolved malware samples is considered
a limitation of this work.

Table 3. Comparison with cutting-edge approaches.

SCT CatBoost [30] Model 2 (DGCNN) [31] LSTM [31]

Precision 0.97 0.96 0.99 0.99

Recall 1.0 0.84 0.99 0.99

F1 score 0.98 0.89 0.99 0.99

9. Conclusions and Future Direction

The objective of this study was to detect malicious software by utilizing malware API
calls as classification features. First, the approach involved extracting the initial part of the
API calls of length 100. By adopting this method, the study aimed to identify malicious
behavior at the earliest possible stage. Nonetheless, this approach conceals a wealth of
valuable information, particularly for goodware. To uncover comprehensive insights into
both malware and goodware, extracting full-length sequences of API calls proves to be
highly beneficial. Furthermore, the reuse rate of API calls offers significant insights into
the utilization of identical combinations by malware, thereby uncovering trends followed
by malware creators. It is worth noting that the dictionary of API calls used by malware
is comparatively limited in comparison to goodware, as attackers frequently resort to
employing previously successful tactics.
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While there has been considerable success in utilizing time series data of API call
sequences with neural network models for malware detection, it is important to note that
these solutions often demand substantial computational power and resources.

STC demonstrates shorter training time and lower intrinsic complexity compared
to other approaches. The experimental results exhibited a superior performance of STC
in detecting malware, indicating its potential for real-time inference on edge devices.
Additionally, it has been demonstrated that STC exhibits robustness against model drift.

For future research, it would be intriguing to train STC using a dataset and assess its
performance on a daily basis with collected malware samples. Furthermore, as an extension
of this study, the STC results can be utilized as a feature in combination with other static or
dynamic features to minimize false positives, false negatives, and enhance overall detection
accuracy.
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