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Abstract: Consider a random network of static primary wireless sources and a co-located network
of secondary wireless devices. The channel coefficients between the two networks are assumed
to be known to the secondary users (SUs), e.g., using radio environment maps (REM). However,
the operational state of the sources is unknown due to intermittency. In this paper, we study the
performance of primary source detection by SUs using a message-passing algorithm. Additionally,
we employ methods from statistical mechanics, in particular, the Replica approach, to obtain analytic
results for the performance of such networks in the large system-size limit. We test the results through
a large-scale simulation analysis, obtaining good agreement. The proposed method provides a
simple way to evaluate the performance of the system and assess how it depends on the macroscopic
parameters that characterize it, such as the average density of SUs and sources and the signal-to-noise
ratio. The main contribution of this paper is the application of an algorithm that quantitatively
predicts the parameter value region for which accurate and reliable detection of the operational state
of the primary sources can be achieved in a fast and decentralized manner.

Keywords: statistical mechanics; belief propagation; multiple-source detection; random connectivity

1. Introduction

Dynamic spectrum sensing has emerged as an important approach to deal with
spectrum scarcity, which is caused by the deployment of many IoT-enabled devices [1],
where secondary users/devices monitor a given spectrum band to determine the presence
(or absence) of active (licensed) sources, whose state is dynamic and intermittent in time.
This method guarantees that subsequent usage of the spectrum by secondary opportunistic
users does not result in significant interference with the primary source communications
and vice versa. The above is a particular paradigm of a Cognitive Radio (CR)-enabled IoT
network [2], which injects high-level intelligence into IoT networks and assists sensor nodes
in using the available spectrum without interfering with the primary sources. In addition,
it improves the whole system throughput compared to traditional homogeneous network
topologies [3] (i.e., classical cellular, ad hoc), and as a promising enabler communication
technology for the IoT, it attains the levels of performance and efficiency required by future
wireless communications.

The identification of emitting sensors in the context of a Cognitive Radio-enabled
IoT network is of paramount importance. Apart from the enhanced spectrum efficiency,
where the identification of emitting sources can assist in efficiently utilizing the available
spectrum by avoiding interference and allocating frequency bands to different IoT de-
vices, it improves the coexistence and compatibility of various devices and systems in the
same environment, such as Wi-Fi, Bluetooth, Zigbee, and other wireless technologies [4].
Thus, identifying the emitting sources allows Cognitive Radio systems to determine which
devices are using which frequencies or channels, enabling them to select available and
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interference-free channels for their own communication. From a network security perspec-
tive, the identification of emitting sources also allows for the detection of unauthorized
or malicious devices in the network, revealing potential security threats or unauthorized
access points [5]. Last, by identifying the emitting sources, network operators can gain
insights into the utilization of the radio spectrum. This information can be used for net-
work planning, optimization, and resource management and assist network operators in
designing efficient IoT deployments, identifying areas of congestion, and improving the
overall network performance.

In a Cognitive Radio-enabled IoT network deployment in a smart home environment,
such as the one depicted in Figure 1 the primary sources can be the devices or systems
designed to send data or information within the network. These devices can be Wi-Fi
Access Points, which provide wireless connectivity within the smart home network and act
as primary sources of radio signals for data transmission. Zigbee or Z-Wave hubs are also
systems that are commonly used for smart home automation and control, communicating
with various Zigbee or Z-Wave devices such as smart lights, thermostats, door locks,
etc. Bluetooth-enabled devices, such as smartphones, smart speakers, wearables, etc.,
are also included in the long list of devices within a smart home network. On the other
hand, secondary sources can potentially include wireless security cameras or surveillance
systems, which may operate in frequency bands that overlap with Wi-Fi or other IoT
protocols, leading to interference.

Figure 1. A CR-enabled IoT network deployment in a smart home environment.

The detection and localization of primary sources can be accomplished by taking
advantage of radio environment maps (REM) [6]. REMs are integrated databases that
provide multi-domain environmental information regarding all devices that are capable of
transmitting and/or receiving radio signals. The location information and power levels
of primary sources are typical examples of stored information. However, since the state
of these sources is intermittent and typically changes without notice at different times of
the day, it is important to come up with algorithms that are able to periodically update the
transmission states of the sources. One of the simplest and most robust methods is the use
of non-coherent energy detection [7], which, compared to, e.g., time-of-arrival techniques,
has low complexity and does not heavily depend on the presence of multiple reflections
inside the propagation medium.
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A number of previous works have studied the detection problem. More specifically, [8]
focused on fixed architectures with feedback from a fusion center over limited bandwidth
channels, which undergo multiple scattering and noise, and [9] focused on finite-sized
networks with a specific graph structure. In both cases, a global fusion center is assumed,
to which each SU transmits a function of its observation over a noisy channel. The existence
of a fusion center becomes problematic when the network becomes large, especially when
it varies with time. In this case, SUs need to dynamically update their information in a
distributed fashion, indicating the necessity of distributed detection algorithms.

There are several algorithms that belong to the class of Bayesian inference algorithms and
are known as message-passing algorithms [10], which, along with their variations [11–13], have
been proven to be near-optimal in many optimization and inference problems. These algo-
rithms constitute an appealing distributed computational scheme, which takes advantage
of their local structure, by conveying iterative messages along the edges of a factor graph,
with each message being updated by the messages coming in from the adjacent nodes.
This message update process allows for parallelization and local updating [14,15] since it
decomposes the optimization problem into smaller parts that can then be solved indepen-
dently. However, the performance of the message-passing algorithms is network-specific
since they require knowledge of the graph’s connectivity structure. Convergence speed
is essentially sublinear with respect to the number of sources. Only two conditions are
necessary for successful convergence, i.e., the sparsity [16] of the connectivity matrix and
the presence of a local tree-like structure that prevents loops, where the algorithm typically
stalls. It has mostly seen applications using binary states, in this case, corresponding to
whether the sources are active emitters. For such systems, the convergence to the optimal
threshold is almost always guaranteed for both random fully connected [17,18] and sparse
(Erdős–Rényi-like) random graphical models. Such algorithms have also been applied to
more general alphabets [19] in the case of non-sparse, fully connected graphs in the context
of compressed sensing, where they have been shown to converge in the case of random
graphs represented by full matrices [20,21] with only a few further assumptions.

In this paper, we apply the idea of message passing to the detection of the operational
state of a network of primary sources in the presence of secondary users. In contrast to
other approaches that focus on situations with a few primary and secondary sources, we
are particularly interested in cases where these become large. Hence, our approach is not
limited by the size of the network. We assume that the locations of the primary sources
are known through radio neighborhood maps. Due to the multiple interferences that any
given SU receives from multiple primary sources in its vicinity, it is not at all obvious how
to robustly detect which primary sources present are operational. As demonstrated in this
paper in Section 7, myopic approaches using a single SU to detect the state of a source in
the presence of others fail spectacularly. Our main contribution in this paper is to analyze
and quantitatively predict, for a given environment, the appropriate system’s parameter
space, such as the node density and signal-to-noise ratio (SNR), where reliable detection of
emitting sources can be achieved.

To achieve the above goal, we apply ideas from the physics of random media, obtaining
self-consistent equations, which we then solve using the so-called population dynamics
methodology. This allows us to calculate the probability of detection of the operational state
of the primary sources in the presence of Rayleigh fading channels using a set of equations
that corresponds to the so-called replica symmetric ansatz [22]. While this approach
is known to work only in the case of random graphs without loops, we show that our
results, obtained in two-dimensional, loopy graphs, are in good agreement with those for
random Erdos–Renyi graphs [23]. This application of statistical mechanics in the context of
wireless networks represents an innovative approach to analyzing and understanding the
system’s behavior. The extensive simulations performed (described in Section 6) allow for
a comprehensive assessment of our method’s performance and provide valuable insights
into its effectiveness, verifying its accuracy, scalability, and computational complexity.
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The above-mentioned replica method from physics allows us to obtain results for
large-scale systems and estimate the theoretical limits for successful multi-source detection.
As a result, our proposed method does not depend on the specific network structure, and
one can easily obtain the error detection rate of an arbitrary network given the distributions
of the density connections between primary sources and secondary users. For completeness,
in Appendix A, we provide a concrete example of how this algorithm can be used in a
distributed fashion.

In Table 1, a brief comparison of the proposed framework with various state-of-the-
art methods is presented, accompanied by the relevant advantages and drawbacks of
each method. In conclusion, our method seems superior since it combines high levels of
accuracy, computational complexity, robustness to noise, and scalability. The utilization of
BP allows for efficient message passing and inference, enabling more reliable and precise
primary source detection compared to alternative techniques. Our method also offers
additional advantages such as adaptability to various network topologies and flexibility
in incorporating prior knowledge. These features set our proposed approach apart and
position it as a reliable and accurate solution for the detection of emitting sources in wireless
sensor networks.

Table 1. Comparison of belief propagation with state-of-the-art methods in the detection of a source
operational state.

Thresholding-based methods compare the received signal strength or other relevant
parameters with a predefined threshold to infer the emitting state of the primary
sources [24–26]. In summary, thresholding-based methods offer simplicity and speed
but they may lack adaptability and robustness to complex data distributions. Belief
propagation, on the other hand, provides adaptability, accuracy, and flexibility but has
higher computational complexity and potential convergence challenges.
Advantages Compared to the Belief Propagation Algorithm

• Lower complexity, since they are straightforward and easy to implement, thus they
are more computationally efficient.

• Rapid decision making, since they do not require extensive computations or itera-
tions.

• Robustness to noise and fluctuations that affect the emitting state detection by
setting appropriate thresholds.

Drawbacks Compared to the Belief Propagation Algorithm

• Lack of adaptability, since they rely on fixed thresholds, which may not capture the
full complexity of the data distribution and thus can lead to suboptimal results.

• Sensitivity to threshold selection, since they heavily rely on choosing appropriate
thresholds. Selecting thresholds that are too low or too high can lead to false
positives or false negatives, respectively, impacting the accuracy of the emitting
state detection.

• Lack of incorporation of prior knowledge, which in many cases, is crucial for the
improvement of the accuracy of the emitting state detection.

• Lack of iterative refinement, which hinders gradual improvement in the accuracy
of the emitting state detection.
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Statistical techniques, such as cumulative sum (CUSUM) or exponentially weighted
moving average (EWMA), monitor sensor measurements over time and detect significant
changes or deviations from the baseline [27–31]. In summary, statistical techniques
are straightforward to implement, provide quick responses to state changes, and are
computationally efficient. However, they may struggle to differentiate subtle changes,
are prone to false alarms, and lack adaptability to changing environments. On the
other hand, belief propagation offers more sophisticated modeling capabilities and can
capture contextual information, temporal dependencies, and inter-sensor relationships.
It provides higher discriminative power but has higher computational complexity. It
may require more computational resources, but it can provide more precise and reliable
emitting state detection, especially in complex scenarios.
Advantages Compared to the Belief Propagation Algorithm

• Simplicity, since they typically involve analyzing the deviations or changes in the
sensor measurements, making them easier to grasp and implement compared to
more complex algorithms.

• Real-time detection, since they respond fast to changes in sensor readings, making
them particularly effective in situations where immediate action is required.

• Minimal computational requirements, since they rely on simple statistical cal-
culations or thresholding, making them computationally efficient for real-time
applications or resource-constrained environments.

Drawbacks Compared to the Belief Propagation Algorithm

• Lack of contextual information, since they typically focus on identifying abrupt
changes in sensor readings without considering the underlying contextual informa-
tion or relationships between sensors. This limitation can lead to false positives or
false negatives, especially in complex scenarios where sensor data are interrelated.

• Limited discriminative power, since they may struggle to differentiate between
subtle changes in sensor readings or accurately distinguish between different states.
This limitation can result in less precise or less reliable sensor state detection.

• Sensitivity to noise and variability, since they are more susceptible to noise, outliers,
or variations in sensor readings. Slight fluctuations or noise in measurements may
trigger false alarms or affect the accuracy of state detection, especially when dealing
with noisy or unreliable sensor data.

• Lack of adaptability, since they often rely on predefined thresholds or statistical
models that assume stationary or known distributions. They may struggle to
adapt to changing environments or evolving sensor characteristics, limiting their
robustness and adaptability.

Hidden Markov Models (HMMs), which are widely employed for modeling and de-
tecting the state of sensors, are able to capture the temporal dependencies and transitions
between different sensor states. They can infer the most likely sequence of sensor states
by analyzing the sequence of observations [32–34]. In summary, HMMs excel in cap-
turing temporal dependencies and modeling sequential data, making them suitable for
time-series analysis. On the other hand, BP offers flexibility and can be applied to vari-
ous graphical models, enabling distributed computations and scalable inference. While
HMMs assume Markovian processes and have computationally intensive training, BP is
more adaptable, but it is sensitive to model structure and may require approximations
in loopy graphs.
Advantages Compared to the Belief Propagation Algorithm
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• Temporal modeling, since HMMs are well-suited for capturing temporal depen-
dencies and modeling sequential data, as they can effectively model the transitions
between different states over time, making them advantageous for applications
where temporal dynamics are crucial.

• Probabilistic inference, which provides a probabilistic framework for state estima-
tion. HMMs explicitly model the probability distributions of observations and state
transitions, enabling principled probabilistic inference and decision making.

• Handling partial observations, since HMMs can handle scenarios where only partial
observations are available. By using well-known algorithms, such as the forward-
backward algorithm, they can estimate the most likely sequence of hidden states,
even when some observations are missing or incomplete.

Drawbacks Compared to the Belief Propagation Algorithm

• Strong assumptions, since they assume that the system being modeled follows a
Markov process with discrete states and that observations are conditionally inde-
pendent given the hidden states. These assumptions may limit their applicability in
scenarios where the underlying system does not conform to these assumptions.

• Lack of scalability, since the computational complexity of HMMs increases exponen-
tially with the number of hidden states and observations. This can make training
and inference computationally intensive, particularly for large-scale problems with
a large number of states or observations.

• Lack of flexibility and generalization, since they are limited to specific assumptions
about the system or the data.

• Lack of distributed computations, since HMMs are typically formulated as cen-
tralized models, where the inference and learning processes are performed on a
single machine or system. Variations and extensions of HMMs have been proposed
to enable distributed computations in certain scenarios, but they raise the overall
complexity of the detection process.

The remainder of this paper is organized as follows. The system model is presented in
Section 2, whereas Section 4 describes the connection to the statistical mechanics framework.
Section 3 introduces the basic tools used in this paper, namely the belief propagation
algorithm, which is then applied to detect the operational state of multiple primary sources.
Section 5 introduces the replica symmetric solution for the particular model. In Section 6,
the results obtained from numerical simulations are discussed. In Section 7, we introduce
the idea of single-source detection through a myopic secondary user. We conclude this
paper in Section 8 with a summary and plans for future work.

2. System Model

Let us consider a network comprising primary wireless source nodes and SUs, which
are randomly placed in a certain region of area A, with the corresponding node densities
denoted by ns and nt, respectively. The channel power gain at the location of the i-th SU
due to the ν-th source is denoted by Hiν. Each source ν in the network is assumed to be in
one of two states: idle, in which case its transmitting power πν is zero, or active, with its
transmitting power πν > 0. For simplicity, we assume that πν is the same for all sources.
Both Hiν and πν are assumed to be known to the SUs through a REM entity. The received
power at SU i is denoted by Pi, which is a linear combination of the transmitted powers of
all the primary sources in its neighborhood and can be expressed as

Pi =
N

∑
ν=1

Hiνπν

(
1− sν

2

)
(1)
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where sν ∈ {−1,+1} is a random variable that describes the emitting state of the ν-th
primary source. It is convenient to define a shifted version of Pi as

yi = Pi −
1
2

N

∑
ν=1

Hiνπν ≡
N

∑
ν=1

Giνsν (2)

where Giν =
Hiνπν

2
. To model the effects of path loss and fading, we express Giν as [35]

Giν =
p xiνziν

dγ
iν

(3)

where p = Pref πν
2 , Pref is the reference power (in dBm) at a reference distance from the

source node [36], ziν is the shadow fading coefficient, xiν is the fast fading component,
diν is the Euclidean distance between the source ν and the i-th SU, and γ is the path loss
exponent. The above-mentioned simple transformation, from πν → sν, is widely used in
various problems connected with statistical mechanics [37] and can be seen in Table 2.

Table 2. Transformation between bipolar and binary representations.

Binary Bipolar Transformation

s ∈ {0, 1} s̄ ∈ {−1, 1} s̄ = 2s− 1

y = Gs + η ȳ = (2G)s̄ + η ȳ = y + G1

min
x
‖y−Gs‖ min

s̄
‖ȳ− (2G)s̄‖

s.t s ∈ {0, 1}N s.t s̄ ∈ {−1, 1}N

For simplicity, we assume, as in [38], a simple thresholding approach, where an SU
detects a source if

Giν ≥ G0 (4)

where G0 depends on the sensitivity of an SU’s receiver and its minimum received energy.
We then assume that all Giν that do not satisfy this inequality vanish. We then neglect all
other interferences since they are weak.

Thus, we can calculate the distribution of the number of SUs connected to a source
and, correspondingly, the distribution of the number of sources connected to a single SU.
Starting with the former case, we first note that due to the independence of the positions
of the SUs, the probability Pk of k SUs connected to a given source follows the Poisson
distribution, i.e.,

Pk =
Rk

k!
exp[−R] (5)

where R = nsAeff, and Aeff is the effective area where the SU is connected to a source in
the presence of fading and shadowing, i.e., when G > G0, which is given by

Aeff =

+∞∫
0

dr 2πr
+∞∫
−∞

dt√
2π

exp
[
− t2

2

]
×

+∞∫
0

dx exp[−x] Θ
(

p x exp[σt]
rγ

−G0

)

= π

(
p

G0

) 2
γ

Γ
(

2
γ
+ 1
)

exp
[(

2
γ
− 1
)

σ2

γ

]
(6)

where Γ(·) is the Euler Γ-function and Θ(·) is the step function. Similarly, the number
of sources connected to a given SU follows the Poisson distribution, with the parameter
T = ntAeff.
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We can also evaluate the distribution of G for the connected sites as the normalized
area density, such that G = r−γ px exp[σt] > G0, which can be shown to be

P(G|G > G0) =
2
γ

G
2
γ

0

G
2
γ +1

(7)

After the introduction of the channel model, we now describe the detection process.
Define s = [s1, s2, . . . , sN ]

T as a vector of length N, with sτ = ±1, depending on the
operational state of the corresponding source, i.e., whether the source is on or off. We also
assume that noise ηi is added to the received signal at each secondary user, thus corrupting
the signal. The form of the measurement vector at the i-th SU is then expressed by the
following equation

yi = ∑
ν∈N (i)

Giνsν + ηi (8)

where N (i) signifies the sources connected with secondary user i, i.e., those for which
Giν > 0, and similarly, N (ν) is defined as the neighborhood of source ν.

Although the sparsity of the channel matrix G is obvious due to finite connectivity,
which is a consequence of (4), we also make the assumption that the corresponding graph
does not have short loops. Nevertheless, the embedding of the graph on a two-dimensional
surface inevitably invalidates this assumption. As will be seen later on, the results obtained
justify this assumption in accordance with [39]. The desired state vector of the system, s,
can then be obtained by solving the following least-squares (LS) optimization problem

ŝ = argmin
s∈{−1,+1}N

‖y−Gs‖2 (9)

It is interesting to note that if ηi is additive white Gaussian noise (AWGN), then the LS
detection problem is identical to the maximum a posteriori (MAP) estimate, in which we
perform maximization of the log-likelihood

− logP(s|y) = 1
σ2 ‖y−Gs‖2 (10)

For simplicity, in the rest of this paper, we restrict ourselves to this case of noise. As a result,
the probability of error can be expressed as a function of the true value s0

µ,

Perr =
1
2

(
1− 1

M

M

∑
µ=1

E
[
ŝµs0

µ

])
(11)

where the expectation is over y, G, and η.

3. The Belief Propagation Algorithm

In this section, we provide a detailed description of the belief propagation method that
minimizes the cost function in (9). Belief propagation is a widely used inference algorithm
that has been proven to be exact on tree structures, but it is also a powerful heuristic
on loopy graphical models. The algorithm is based on iteratively exchanging messages
between nodes about the estimated probability of the values of a given variable (sµ). For
any two connected nodes on the graph, say i and µ, there are two messages exchanged,
mµ→i(sµ) and m̂i→µ(sµ), which depend on information on the two distinct sides of the link
and the value of the dynamical variable at µ, sµ.

From the structure of the graph, we can see that the update rules of the incoming
messages to the SU yi and source sµ, respectively, can be written as

mµ→i(sµ) ∝ ∏
j∈N (µ)\i

m̂j→µ

(
sµ

)
(12)
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and

m̂i→µ(sµ) ∝ ∑
sµ

fi(sN (i)) ∏
ν∈N (i)\µ

mν→i(sν) (13)

where we have defined fi(sN (i)) = exp[−βεi].
We note that the messages can be expressed by their log-likelihood ratios (which are

also called “local cavity fields”, a term obtained from the analogy to statistical physics) as,

ĥi→µ ≡
1

2β
ln

(
m̂i→µ

(
sµ = +1

)
m̂i→µ

(
sµ = −1

)) (14)

so that
m̂i→µ(sµ) =

1
2

(
1 + sµ tanh

(
βĥi→µ

))
(15)

and, respectively,

mµ→i(sµ) =
1
2
(
1 + sµ tanh

(
βhµ→i

))
(16)

The above Equation (16) can be reformulated to include the fields ĥ and h as follows

hµ→i = ∑
j∈N (µ)\i

ĥj→µ (17)

Additionally, the corresponding equation for m̂i→µ is

m̂i→µ(sµ) =
1
Z i→µ ∑

sν∈N (i)\µ

fi(sN (i)) ∏
ν∈N (i)\µ

mν→i(sν) (18)

where

fi(sN (i)) = exp

−β

ηi + ∑
ν∈N (i)

Giν

(
s0

ν − sν

)2
 (19)

After some calculations, it can be easily shown that

m̂i→µ(sµ) =
1
2
(
1 + sµεβ

)
(20)

where

εβ =
ϑβ

ϕβ
(21)

with

ϕβ = ∑
sν∈N (i)

exp

[
− β

(
yi − ∑

ν∈N (i)
Giνsνs0

ν

)2]
∏

ν∈N (i)\µ

exp[βsνhν→i]

2 cosh(βhν→i)
(22)

and

ϑβ = ∑
sν∈N (i)

sµ exp

−β

yi − ∑
ν∈N (i)

Giνsνs0
ν

2
 ∏

ν∈N (i)\µ

exp[βsνhν→i]

2 cosh(βhν→i)
(23)
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These equations, being local, can also be evaluated straightforwardly as part of the message-
passing algorithm’s updates. Nevertheless, we would like to obtain the β→ ∞ limit, where
the corresponding equation for ĥi→µ (calculated in our previous work in [23]) is

ĥi→µ = lim
β→∞

tanh−1(εβ)

β
= σµ

ξ+ − ξ−

2
(24)

where

ξ+ = min
sν∈N (i)

εi(sν∈N (i))− ∑
ν∈N (i)\µ

hi→ν

 (25)

σµ = argmin
sν∈N (i)

εi(sν∈N (i))− ∑
ν∈N (i)\µ

hi→ν

 (26)

ξ− = min
sν∈N (i)\µ
sµ=−σµ

εi(sν∈N (i))− ∑
ν∈N (i)\µ

hi→ν

 (27)

Since we have defined the outgoing messages from sources (hµ→i) and SUs (ĥi→µ),
respectively, it is convenient to provide an expression for the error detection rate in terms
of these fields as

Perr = 1− 1
2M ∑

µ

tanh
(

β
(

ĥi→µ + hµ→i

))
→

β→∞
1− 1

2M ∑
µ

sign
(

ĥi→µ + hµ→i

)
(28)

Intuitively, the error occurs when the sign of the incoming messages is opposite to the
ones outgoing from the source. The derivation of (28) based on Algorithm 1 is shown in
Appendix B, where the replica-symmetry method is used. Note that although the Bethe
approximation is exact for the case of loopless graphs, it depends heavily on the graph and,
consequently, on the network topology. So instead of having to determine the underlying
graph every time, it would be preferable to provide a more general framework that is
independent of the specific graph realization.

Algorithm 1 MESSAGE-PASSING Neighborhood MatrixH, Prior Distribution P0)

1: Initialization
2: Find the number of sources and sensors from neighborhood matrixH.
3: Randomly generate the ĥi→µ and hµ→i fields.
4: for k = 1→ max number of loops do
5: Generate s0 according to P0
6: Generate yi according to (8)
7: for i = 1→ M do
8: Calculate hµ→i according to
9: hµ→i = ∑

j 6=i
βĥj→µ.

10: Calculate ĥi→µ according to
11: ĥi→µ = tanh−1[εβ

({
βhµ→i

})]
.

12: end for
13: end for
14: Calculate the error detection rate according to

15: 1− Perr =
1

2M

M
∑

µ=1
sgn
(

ĥi→µ + hµ→i

)
.
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4. Connection With Statistical Mechanics

It is now worth providing a connection between the above model and the statistical
mechanics of random systems. The so-called random-bond Ising model [40] is the simplest
such model, in which N variables si, with discrete possible values si = ±1, represent local
spins or magnetic dipoles located on a graph. Each spin is allowed to interact with its
neighbors with a random interacting matrix. Such models have been used extensively in
statistical mechanics to study the behavior of random systems.

Given the difficulty of tackling the random nature of the interaction, sophisticated
techniques have been developed, such as the replica approach. Despite their considerable
success in describing the behavior of the system, these methods are not mathematically
rigorous. Although widely believed to be exact, in some cases, they have recently been
proven to be correct [41]. Nevertheless, they have also recently been used with great success
in problems in wireless communications [42,43], error-correcting codes [44], communication
networks [45], inference in graphical models [46], compressed sensing [47], and machine
learning [48].

Given the above, the resemblance of our model to statistical mechanical models
becomes apparent (see Table 3). Indeed, instead of having spins taking values of si = ±1,
we have transmission variables, which determine the state of the source. Additionally, the
interactions between the neighboring spins represent the channel gain entries, Giν, which
are non-zero for the SUs that lie inside the communication range of a source.

Table 3. Analogies of probability theory with statistical mechanics and the respective terms used in
this paper.

Probability Statistical Mechanics Statistical Mechanics
Terminology

− ln(P(y|s)P(s)) βE(s|y) Energy Functional

P(y) = ∑
s
P(y|s)P(s) Z = ∑

s
exp[−βE(s|y)] Partition Function

P(s|y) Z−1 exp[−βE(s|y)] Gibbs Probability of State s

argmax
s

P(s|y)
argmin

s
E(s|y) =

limβ→∞ − 1
β ln(Z)

Ground State

− lnP(y) F = − 1
β ln(Z) Gibbs Free Energy

Before describing in detail the message-passing algorithm in the next section, we
define the optimization problem in (9) as an energy function

E =
N

∑
i=1

εi

(
sN (i)

)
=

N

∑
i=1

yi − ∑
ν∈N (i)

Giνsν

2

(29)

where εi is the energy (cost) corresponding to the i-th SU.
The detection problem that corresponds to (10) is shown in Figure 2. To this end, we

proceed with the multi-source detection problem by setting it up as a problem in the context
of a statistical mechanics system, where the system energy is E and the inverse temperature
is β, serving as the “soft maximum” parameter. The total probability P(y), which is the
sum over all state vectors s, is called “partition function” Z , and it is expressed as

Z(y) = ∑
sµ

exp[−βE ] (30)
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Figure 2. The graphical model we used for establishing the network structure of an SU network.
Shaded nodes distribute the messages of the respective source to all the neighbors connected with
it. sµ (ĥ→µ) and yi (h→i) are the incoming messages to the primary source and secondary user,
respectively. The network structure has been modeled as a Bethe lattice [49], where every secondary
user/primary source is connected to an arbitrary number of primary sources/secondary users. We
have assumed, without loss of generality, that the secondary user yi is the origin of the lattice and all
the other sources are arranged in shells around this root node.

The corresponding Helmholtz free energy per spin is

FN = − 1
Nβ

ln(ZN) (31)

Then, the above-mentioned optimization problem becomes equivalent to finding the
state vector s that minimizes the above energy functional. This can be achieved directly by
taking the limit β→ ∞, i.e.,

ŝ = argmin
s∈{−1,+1}N

E = − lim
β→∞

1
Nβ

ln(Z) (32)

Similar arguments to the above can be also made if we generalize the domain of the state
variables si from binary to continuous.

The free energy is a random quantity depending on the realization of the network
and the noise. However, it has been conjectured [50] (and proven in some cases) that it
self-averages in the large system limit in the sense that

lim
N→∞

FN = lim
N→∞

E[FN ] (33)

If E depends on external “quenched” random variables, i.e., E(s, G), then Emin and
F also depend on G. To evaluate the quantity E[ln(Z)], where the expectation is taken
with respect to G, y, T, R, we perform the replica trick, which can be expressed as

E
[

ln(Z)
]
= lim

n→0+

1
n

ln
(
E[Zn]

)
(34)

where it is assumed that the resulting expression holds when analytically continuing
n→ 0+. In summary, we can, therefore, make the following assumptions:

Assumption 1 (Replica Assumption). E[Zn] evaluated for n ∈ N+ can be analytically contin-
ued in the vicinity of n→ 0+.

This assumption has seen widespread use in the field of statistical mechanics for alleviating the
problem of dealing with averages of logarithms of random quantities since the logarithm is obtained
after calculating Zn, as demonstrated in Appendix B.



Telecom 2023, 4 661

Assumption 2 (Interchanging Limits). The limits N → ∞ and n→ 0+ in evaluating Zn can
be interchanged.

The above assumptions enable us to obtain an expression for E[Zn], which we need to evaluate
using the saddle-point approximation. Here, we need to guess the right symmetries for the correct
saddle-point solution. To do this, we invoke an additional assumption.

Assumption 3 (Replica Symmetry). The correct saddle-point solution is symmetric under the
permutation of replica indices.

Although quite appealing, this assumption is often incorrect. In fact, in several instances, it
has been shown that the saddle-point solutions break replica symmetry [40]. Nevertheless, given the
difficulty of evaluating the replica-symmetry-broken solution, it is customary in similar applications
to proceed with the replica-symmetric assumption, which has been shown to yield results very close
to the correct ones.

5. Results Using the Replica Approach

In this section, we describe how to obtain the results below using the replica approach,
which constitutes the main results of this paper. For reasons of completeness, we analyze
the replica method for our problem in Appendix B . For more details concerning the replica
method, the interested reader is referred to [51–53].

We first average over the replicated partition function, i.e., E[Zn] (see (34)), assum-
ing a random graph with a Poisson-distributed source-connectivity probability and SU-
connectivity probability Pk, with Poisson parameters T and R, respectively (see (5)). We
also assume that the source-activity probability is Pα (which, in simulations, we set to
Pα = 0.5), which means that each source is on with probability Pα. In addition, we assume
a Gaussian noise of strength σ2. After taking the replica-symmetry approximation, the
fixed-point equations take a form similar to (17) and (24).

However, since the H and ĥ fields appearing are random, the fixed-point equations
amount to the determination of their distributions in a self-consistent manner.

Equations (17) and (24) provide the (stochastic) relationship between the effective
fields H and Ĥ. As a result, at a steady state on the random graph where these quantities
reside, their probability densities need to be related. In particular, by taking the limit of
β→ ∞, we obtain the following two basic recursive relations for their probability density,
following [54]

Q̂
(

Ĥ
)
= lim

β→∞
EG,z,R

[
R

∏
i=1

∫
dHi Q(Hi)δ

(
Ĥ −

[
εβ(H)

])]
(35)

with the expectation being over the realizations of the channel instantiation G, the noise z,
and the number of SUs per source R and

Q(H) = ET

[
T−1

∏
k=1

∫
dĤkQ̂

(
Ĥk

)
δ

(
H −

T−1

∑
k=1

Ĥk

)]
(36)

with T being the (random) number of sources per SU. It has been shown that both T and R
follow the Poisson distribution determined by the average density of the sources and SUs
in the network.

The probability of erroneous detection can be derived directly from the above distri-
butions, (36) and (35), as depicted in Figure 3, and it can be written as

Perr =
1
2

(
1−EH,Ĥ

[
sgn
(

H + Ĥ
)])

(37)

Equations (35)–(37) and the algorithm behind them, i.e., Algorithm 2, are the main results
of this paper. The above error probability can be obtained by using population dynamics to
calculate Q(H) and Q̂(Ĥ), which solve the above distributional equations [22].
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(a) (b)

Figure 3. Q(H) and Q̂(Ĥ) distributions of populations (fields) H and Ĥ, respectively, for β→ ∞ and
resolution K = 1000. The criterion we used for the population dynamics algorithm to stop was to
examine whether there were no fluctuations in these two fields after a specific number of iterations.
In practice, the algorithm converges fast enough, always as a function of the resolution K. Obviously,
there is a trade-off between accuracy and convergence speed.

Algorithm 2 POPULATION DYNAMICS (Graphical Model Ensemble, Resolution K, Number
of Iterations I)

1: Initialize {Hi}
2: for i = 1, . . . , I do
3: for k = 1, . . . , K do
4: Draw an integer t ∼ Poisson(R).
5: Choose t− 1 random samples from the Ĥ bin and store their sum in the H bin.
6: Draw an integer r ∼ Poisson(T).
7: Pull r random samples of the H bin.
8: Calculate the function tanh−1[εβ].
9: Pass the result to a randomly chosen element of the Ĥ bin.

10: end for
11: end for

Population dynamics can be analyzed by representing the effective field distributions
by a large population of K copies (fields) randomly drawn from these two distributions. K is
sufficiently large so as to provide good resolution in the desired performance measures [51].
As inputs, it requires the resolution K, the maximum number of iterations I, and a speci-
fication of the ensemble of the graphical model. The latter is needed for the description
of the degree distributions between the sources and SUs and vice versa. The algorithmic
procedure is described below.

First, we create K random values for H and K random samples for Ĥ. Using these
samples, we take at random t− 1 random samples from the Ĥ bin and store their sum at
a random location in the H bin, where t is a random number obtained from the Poisson
distribution, with the parameter R corresponding to the Erdős–Rényi random graph. We
then generate a random T-Poisson-distributed number r and pull r random samples from
the H bin, which are then used to evaluate the function tanh−1[εβ(H)], and we associate
this number with a randomly chosen element in the Ĥ bin. This procedure is iterated until
the distributions of Ĥ and H cease to vary over time.

As we can see, Equations (17) and (24) are at the heart of the above algorithm. When
this message-passing approach converges to a steady state, the population and resulting
empirical distributions, Q(H) and Q̂(Ĥ), no longer vary. The distributions of fields H and
Ĥ for β = ∞ are depicted in Figure 3.

It should be noted that the probability of error (37) includes only cases where there
is connectivity of each source with at least one SU. Thus, to normalize the source-outage
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probability by taking this observation into account, we must consider the probability of a
primary source being completely unconnected to the secondary network, which is simply
Punc = exp[−R]. Taking this into account, the resulting total error detection rate can be
written as

Ptotal = Punc + (1− Punc)Perr (38)

In concluding this section, it is worth summarizing the results [23]. First, we applied
the message-passing algorithm to reliably detect the operational state of primary sources in
a large random wireless network. At the same time, we developed an analytic methodology
based on statistical physics, which obtains the probability of error of such an algorithm
subject only to the statistical characteristics of the network. This analytic framework
inputs the densities of primary users and secondary users, as well as the statistics of the
propagation environment. From these inputs, it calculates the (Poisson) distribution of
the connectivity of the bipartite network of primary users and SUs. Including the thermal
noises in the detection process results in Equations (36) and (35), which then determine
the densities Q(H) and Q̂(Ĥ) of the effective message fields for such a resulting bipartite
random graph. From the above densities, we finally derive the probability of error detection
in (37) and then (38).

6. Simulation Results

In this section, we numerically generate instances of two-dimensional primary-secondary
networks with the aim of validating the above-discussed algorithm. The parameters and
their values used in all the simulation scenarios can be seen in Table 4, where only the
path-loss coefficient and the probability of a source being active have fixed values γ = 4
and Pα = 0.5, respectively, without loss of generality. The communication range, along
with the average densities of the primary sources and SUs in a certain area, varies in each
case to capture the fluctuations of the error detection rate. We start by showing that the
proposed message-passing algorithm converges rapidly. Indeed, Figure 4b depicts the
results from the simulation process regarding the convergence rate of the message-passing
algorithm for various neighboring matrices, which differ not only in size, revealing the
number of SUs and sources, but also in the connectivity between SUs and sources. As can
be seen, the proposed algorithm converges very fast to the optimal solution. The SNR has
been kept fixed, equal to SNR = 0 dB without loss of generality. The appealing aspect of
our belief propagation algorithm is its linear complexity, which constitutes a competitive
advantage compared to other algorithms.

Next, we analyze the level of accuracy of the analytic approach from Equations (35) and (36),
which are solved using population dynamics, and compare the results with an Erdős–Rényi
random graph with the same parameters. Figure 4a depicts the error detection rate for the two
algorithms we used, i.e., the message-passing and population dynamics algorithms. As can be
seen, both algorithms demonstrate extremely good performance agreement.

Further, it is important to compare the behavior of realistic two-dimensional networks.
To this end, we generated 100 random instantiations of a network formed by 5× 5 and
10× 10 SUs and primary sources, respectively, with one such instantiation depicted in
Figure 5a. The average error detection probability was evaluated for various values of the
SNR using the population dynamics algorithm. Figure 6 shows a comparison of the two
results with good agreement.
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Figure 4. (a) Error detection rate as a function of the SNR for the message-passing algorithm and the
population dynamics method in a random network. The network structure for testing these two
algorithms consisted of 10 primary sources and 10 SUs with a random degree of connectivity between
them. As can be seen, both algorithms exhibit similar performance. It is worth highlighting the fact
that the small difference between these two curves at high SNR values lies in the presence of loops
in the tree structure that we have assumed. (b) Convergence of the message-passing algorithm in
random networks with various connectivity matrices for fixed SNR = 0 dB. The algorithm scales
linearly with the number of sources (in this tentative simulation, equal to nt = 12) which, as expected,
converges in the same number of iterations. The convergence depends only on the number of sources
per sensor and not on the size of the neighborhood matrix, as can be seen. The error detection rate is
fixed after a specific number of iterations, simplifying the complexity of the proposed algorithm.
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Figure 5. (a) A single instantiation of a 20× 20 random network. (b) Error detection rate for the
network of (a). The red line represents the performance of myopic SU and the blue line represents
the population dynamics algorithm. Note that above 0 dB, the proposed algorithm based on belief
propagation outperforms the simple case of single-source detection.



Telecom 2023, 4 665

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

SNR

E
rr

or
D

et
ec

ti
on

R
at

e

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

E
rr

o
r

D
et

ec
ti

o
n

R
a
te

(a)

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

SNR

E
rr

or
D

et
ec

ti
on

R
at

e

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

SNR (dB)

E
rr

o
r

D
et

ec
ti

o
n

R
a
te

(b)

Figure 6. Performance comparison of the population dynamics algorithm and belief propagation
algorithm, applied in 200 different random networks, all in an area A of 5 m2. The network consists
of (a) 5 sources and 5 sensors, and (b) 10 sources and 10 sensors, all randomly connected to each
other, and both path loss and Rayleigh fading have been considered.

Interestingly, there is no phase transition, i.e., an error-free area, for the problem of
multi-source detection. This can be easily demonstrated if one implements the message-
passing algorithm with a strongly positive initial field (ferromagnetic) and compares it to
the one with a random initial field (paramagnetic) [55]. In our case, there was no substantial
difference in the value of the error detection rate, either for the dense case—where many
sources were connected to a few SUs—or for the sparse case.

Finally, having justified the accuracy of the replica-symmetric approximation, we
obtained the values of the error detection rate using the population dynamics algorithm
for various values of T and R, as shown in Figure 7. On the left-hand side, we plot the
probability of error, given that the source is connected to some SU, i.e., Perr. Here, we
find the approximate symmetry around the line T = R; above that, the error is higher,
whereas below that, the error is much lower. The figure on the right-hand side shows the
total value of error Ptot. We can see that for this set of parameter values, the detection rate
is dominated by the probability of non-connection. As an SU’s density ns increases, the
probability of non-connectivity is expected to decrease since more SUs in the same area
yield better connectivity conditions between SUs and sources. Thus, both of the diagrams
will have similar behavior, and we can constrain the error detection rate analysis to the case
of Perr.

Table 4. Parameter settings for the obtained simulations.

Parameter Value

Path Loss Exponent γ = 4

Communication Range rc

Average Density of Sources nt

Average Density of SUs ns

Source Activity Probability Pα = 0.5

The below Figure 7 depicts the results of our work, as it provides insights into how
dense a wireless network should be for adequate source detection. Given some parameters
such as the SU and source density, the communication range of the SUs, and the desired
SNR, one can simply estimate the error detection probability. For example, if we have a
density of R = 6 SUs/area and a fixed SNR = 0 dB, we can increase the detection reliability
by almost 2 dB by taking R to be 7 instead of 6. Additionally, from a different perspective,
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if we have a density of T = 5 sources/area, increasing R by a factor of 1 will result in a
substantial decrease in the error detection rate.
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Figure 7. Error detection rate as a function of sources’ T and SUs’ R factors for fixed SNR = 0 dB. The
network consists of 10 sources and 10 SUs, and the SUs’ and sources’ densities range from 0.1 to 1.
(a) The error detection rate Perr derived from the population dynamics algorithm according to (37),
and (b) the total error detection rate Ptot, which includes the probability of a node to be isolated. We
have assumed that rc = 0.5 and the environmental factor γ = 4. The regions (between contours)
with the same colors have the same error detection rate (in dB). As expected, since R and T are
proportional to densities ns and nt, the total error detection rate becomes higher when the number of
SUs placed within the area of an emitting source is small.

Concluding our discussion of the simulation results, we point out the use of diagrams
or error detection maps, such as the one in Figure 7, to determine how dense the connections
between SUs and sources should be for a given SNR. In practice, they can be used to
determine how many SUs should be scattered in a field of interest so that all emitting
sources in the field can be adequately detected.

Surprisingly, the fact that we modeled our system to behave well when the network
forms a loop-less Cayley tree seemed not to be exceedingly important. Despite the fact
that in our randomly instantiated two-dimensional networks, the neighborhood matrices
contained many short loops, this did not substantially degrade the overall network perfor-
mance. Additionally, we did not notice any phase transitions that could pose algorithmic
barriers to the multi-source detection problem.

7. Comparison with the Case of Myopic SUs

In this section, we consider the detection problem in a network of myopic SUs, which
are users that are capable of covering only one source at a time. As a consequence, the
complexity is reduced; however, at the price of a considerable performance loss, as we will
demonstrate. For this case, we formulate the problem and show through simulation results
that it performs poorly in the case of intensive connectivity.

In a relatively dense environment, each SU receives a signal from several sources.
A naive approach to detecting whether one source emits is to find the nearest SU to the
specific source and rely only on this user for the detection process.

The SU uses a simple binary Neyman–Pearson hypothesis testing based on its (aggre-
gated) received signal strength. If we denote SU yi to be the nearest user to source sµ, then
the observations under the two different hypotheses are given by

yi =


Giµ + ∑

ν∈N (i)\µ
Giνsν + ηi, H1

−Giµ + ∑
ν∈N (i)\µ

Giνsν + ηi, H0
(39)
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where H1 denotes the emitting hypothesis (sµ = +1) and H0 is the null hypothesis
(sµ = −1). Therefore, the likelihood under hypothesis H1 is

P(yi|H1) =
1√

2πσ2
i

exp

[
− 1

2σ2
i

(
yi −Giµ

)2
]

(40)

and, respectively, under hypothesis H0 is

P(yi|H0) =
1√

2πσ2
i

exp

[
− 1

2σ2
i

(
yi + Giµ

)2
]

(41)

The logarithmic likelihood ratio test is then given by

L(yi) = log
(
P(yi|H1)

P(yi|H0)

) H1
≷
H0

τ (42)

where the SU decides, according to a threshold τ. Different criteria can be used to find the
optimal threshold, but we do not deal with this topic in this paper.

The above-mentioned analysis shows that the multi-source detection task based on the
measurements of the energy intensity field is a very hard problem since each measurement
is composed of information from all individual sources.

Due to the nonlinearity of the energy intensity with respect to the distance, it is
very difficult to decode each individual component [56]. In Figure 5b, a comparison of
the aforementioned analysis for the myopic case detection and the population dynamics
algorithm is depicted. It can be seen that the population dynamics algorithm and the
message-passing algorithm (since their behavior is very similar) are superior to the simple
scenario of the myopic SU detection of a single source.

8. Discussion and Conclusions

This paper presented an analytical study of detecting the transmitting state of multiple
sources using a secondary user network in the presence of noise. We employed tools
from statistical mechanics, namely the replica approach, to calculate the error detection
rate for the network and showed that its results were in numerical agreement with those
of the message-passing approach. Based on these results, we were able to analyze and
quantitatively predict the error detection behavior in large-scale networks using only a
few parameters related to the statistical characteristics of the connections, such as SUs’ and
primary sources’ density, path loss exponent, and fading, which was the main novelty
of this paper. Furthermore, driven by the need for a practical network implementation,
we introduced a general framework for mapping our bipartite graph to a network struc-
ture. The entire framework we developed is fully distributed and presents an excellent
approximation to the inference solution.

In the future, we intend to expand this approach to fault detection and diagnosis in
sensor networks, i.e., the identification of faulty sensors or sensors with abnormal behavior,
incorporating the dependencies between sensor signals. In parallel, we expect to modify
the proposed framework by targeting the prediction of the powers of the primary sources.
In this case, the exchanged messages are real-valued variables and thus differentiate most
of the aspects of our analysis.

Additionally, we could extend our results to wireless networks where the sources
emit dynamically, i.e., in several time frames. This scenario introduces the time variable
into our problem of multi-source detection, creating a structured graph with many short
loops, Therefore, it requires a new methodology. Interesting applications of the proposed
framework include sensor localization, where neighboring sensor nodes exchange infor-
mation based on the received signal strength; time of arrival; or other localization-related
measurements. Apart from the sensor-localization application, which constitutes a direct
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continuation of our work, we plan to introduce the statistical mechanics-inspired solution
to the target-localization problem, where belief propagation can be deployed to estimate
the trajectory or current location of a moving target in a wireless sensor network.

Finally, as an interesting approach to detecting the emitting state of sources in a sensor
network, we plan to combine the belief propagation algorithm with hidden Markov models
to target improved inference in more complex graphical structures. Belief propagation can
propagate beliefs through the HMM’s graphical structure, allowing for a more accurate
estimation of the hidden states and model parameters. Moreover, the belief propagation
algorithm can effectively deal with noisy or missing data in the observation sequence and
thus compensate for the uncertainties in the observed data.
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Appendix A. Network Implementation of the MP Algorithm

Along with the performance of the message-passing detection algorithm, it is impor-
tant to describe how this algorithm can be implemented in an SU network. Despite the
distributed nature of belief propagation methods, their implementation in a particular
network structure is not necessarily obvious [57]. In this section, we provide a simple
protocol for distributing information in SU networks in the context of the message-passing
algorithm.

We assume that at any given step of the iteration, the ith SU has local measurement
and channel information {yi, Giν}, as well as the messages hν→i, for all neighboring sources
ν available. From this, it can calculate the messages ĥi→ν using (24). It can then transmit
each of the ĥi→ν to a designated SU connected with source ν. This designated SU can then
sum over all received ĥj→ν for j ∈ N (ν) and then broadcast the resulting sum ∑j ĥj→ν to
all SUs connected to ν. In the next step, each SU i can obtain the revised value of hν→i by
subtracting its own ĥi→ν, as seen in (17).

The choice of the above designated SU for each source should be made to minimize
the total network communication energy consumption. In general, this is not trivial to
determine, so we propose a suboptimal criterion, namely the nearest SU neighboring each
source. This choice makes sense because this SU has the larger probability of including
in its communication range all the other SUs the source is connected to. Additionally,
assuming a semi-static topology, these two nodes of the bipartite graph will probably have
a high-quality communication link between them (see Figure 2).

In Figure A1, we compared the average SU energy consumed for the case where the
chosen SU is the nearest neighbor of the source, i.e., the SU that has the minimum Euclidean
distance from the source, with the case where the SU is the true SU, which minimizes the
total energy consumed in the network, which is expressed for simplicity as

E0 = min
j

{
Ej

}
= min

j

{
k

∑
i=1

dγ
ij

}
(A1)

where Ej is the energy for every SU j for the case where the signal is degraded due to path
loss. It can be readily seen that these two different schemes behave very similarly and,
especially for a large number of nodes, they tend to consume the same amount of power.
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Figure A1. Average energy of an SU consumed as a function of the number of SUs participating
in the network formation. We generated 10,000 instantiations of different networks formed by k
SUs, with k = 1, . . . , 30, randomly dropped inside a circular area with a radius equal to the SU’s
communication range (rc = 0.5). It can be observed that for highly dense environments, where the
connectivity between SUs is large, these two schemes yield similar results, considering signal power
degradation due to path loss.

Appendix B. The Replica Method

In this section, we provide the detailed replica calculation. We start with (30), which
can be re-written as

Z(y|Tµ, Ri) = ∑
s(a)

exp

[
− β

2 ∑
i

εi

(
sν∈N (i)

)]
(A2)

where

εi

(
sν∈N (i)

)
=

yi − ∑
ν∈N (i)

GiνAiνsν

2

(A3)

yi = ∑
ν∈N (i)

GiνAiνs0
ν + ηi (A4)

and Tµ and Ri are the source and SU connectivities, respectively, and A is the adjacency
matrix, with the elements Aiν = 1 if a link between source ν and SU i exists and 0 otherwise.

The graphs considered in this paper are described by a fixed ratio of the number of
sources to the number of SUs, or equivalently, the ratio of the mean SU node connectivity
to the mean source node connectivity

$ =
K
M

=
T
R

. (A5)

A prior distribution on the edges for the Erdős–Rényi (sparse) graph model is given by

P(Aiν|T, R) =
(

1− T
K

)
δAiν ,0 +

(
T
K

)
δAiν ,1 (A6)

where δ is the Kronecker delta function.
To proceed with the replica method, we introduce the replica index a for the total n

replicas of the partition function. This way, we can express the exponential term of (A2) as
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Zn = ∑
{s(a)}

exp

[
− β

2 ∑
i,a

εi

(
s(a)

ν∈N (i)

)]

= ∑
{s(a)}

K

∏
i=1

n

∏
a=1

 ∞∫
−∞

dεai√
2π

exp

[
−

ε2
ai
2

] exp

i
√

β
n

∑
a=1

εai

ηi + ∑
ν∈N (i)

GiνAiν

(
s0

ν − s(a)
ν

) (A7)

or equivalently,

Zn = ∑
{s(a)}

K

∏
i=1

n

∏
a=1

 ∞∫
−∞

Dεai exp
[
i
√

β εai ηi

]∏
ν,i

exp

[
i
√

βGiνAiν ∑
a

εai

(
s0

ν − s(a)
ν

)]
. (A8)

In the expression above, we have performed the Hubbard–Stratonovich transformation [58]
to express the square term in the exponent as a linear term at the expense of introducing
the additional variable ε(a)

exp
[
−χ2

2

]
=

+∞∫
−∞

dε√
2π

exp
[
− ε2

2
+ iεχ

]
. (A9)

For reasons of notational simplicity, we have also introduced Dε(a), which is connected to
the ε(a) variable in the following way

∞∫
−∞

Dε(a) =

∞∫
−∞

dε(a)√
2π

exp

[
−

ε2
(a)

2

]
. (A10)

The average replicated partition function can now be evaluated as

E[Zn] = ∑
{sν}

P
(

s0
ν

) K

∏
i=1

∏
a

 ∞∫
−∞

Dεai exp
[
i
√

β εai ηi

]
×∏

i,ν
EAiν

[
EGiν

[
exp

[
i
√

βAiνGiν

n

∑
a=1

εai

(
s0

ν − s(a)
ν

)]]]
(A11)

At this point, we denote

giν = gi(sν) = EG

[
exp

[
i
√

βG
n

∑
a=1

εa,i

(
s0

ν − s(a)
ν

)]]
(A12)

and impose the source and SU connectivity constraints using the Cauchy integral formula

∑
Tν

δ

(
K

∑
i=1

Aiν − Tν

)
= ∑

Tν

1
2πi

∮ dτν

τTν+1
ν

K

∏
i=1

τ
Aiν
ν (A13)

∑
Ri

δ

(
M

∑
ν=1

Aiν − Ri

)
= ∑

Ri

1
2πi

∮ dωi

ω
Ri+1
i

M

∏
ν=1

ω
Aiν
i (A14)

where the integrals are around unit circles in the complex plane, centered at zero. In (A11),
we average over Aiν and obtain
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∏
i,ν

EAiν

[
gAiν

i

]
=

K

∏
i=1

M

∑
Ri=0

∮ dωi

2πi ω
Ri+1
i

M

∏
ν=1

K

∑
Tν=0

∮ dτν

2πi τTν+1
ν

∏
i,ν

EAiν

[
(giνωiτν)

Aiν
]

=
K

∏
i=1

M

∑
Ri=0

∮ dωi

2πi ω
Ri+1
i

M

∏
ν=1

K

∑
Tν=0

∮ dτν

2πi τTν+1
ν

∏
i,ν

(
1− R

M
+

R
M

giνωiτν

)
(A15)

Approximating to leading order the last parenthesis as exp
[

T
K (giνωiτν − 1)

]
and perform-

ing the Cauchy integral, results in the selection of the Tν-th term in the expansion of the
i-product, so

∏
i,ν

EAiν

[
gAiν

i

]
=

M

∏
ν=1

∑
Tν

∮ dτν

2π i τTν+1
ν

×
K

∏
i=1

∑
Ri

exp[−R]
RRi

Ri!

(
1
M ∑

ν

giντν

)Ri

. (A16)

To extract the ν-th dependence of the above expression, we introduce the auxiliary func-
tionals Φ(σ) and Φ̂(σ) of σ(a) at each site a = 1, . . . , n and then define δσ,sν as

δσ,sν =
n

∏
a=0

δ
σ(a),s(a)

ν
. (A17)

In this way, the dynamical variable dependence is expressed as

∫
dΦ(σ)δ

(
Φ(σ)− 1

M

M

∑
ν=1

τνδσ,s

)
= 1, (A18)

and (A16) becomes

∏
i,ν

EAiν

[
gAiν

iν

]
=
∫

dΦ(σ)
∫

dΦ̂(σ) exp

[
TM ∑

σ

Φ(σ)Φ̂(σ)

]

×
M

∏
ν=1

∫ dτν

2π i τTν+1
ν

exp
[
−TτνΦ̂(sν)

] K

∏
i=1

exp[−R]
RRi

Ri!

Ri

∏
l=1

∑
σl

Φ(σl)gi(σl). (A19)

The next step is to integrate over τν and obtain

M

∏
ν=1

∫ dτν

τTν+1
ν

exp
[

TτνΦ̂(sν)
]
=

M

∏
ν=1

TTν

Tν!

[(
Φ̂(sν)

)Tν
]

(A20)

Note that the last term in (A19) has an εaν-dependence and it can be integrated out, so

K

∏
i=1

∑
Ri

exp[−R]
RRi

Ri!

Ri

∏
l=1

∑
σl

Φ(σl)giν =

Ri

∏
l=1

∑
σl

Φ(σl) exp

− β

2

n

∑
a=1

(
η +

Ri

∑
l=1

Gl

(
σ0

l − σ
(a)
l

))2
 =

∏
i,a

∫
Dεai exp

[
i
√

β εai ηi

]
∏

i
exp[−R]

RRi

Ri!
∑
{σl}

Ri

∏
l=1

Φ(σl)gi(σl)

∏
i

exp[−R]
RRi

Ri!
∑
{σl}

Ri

∏
l=1

Φ(σl)Eη,g

exp

− β

2

n

∑
a=1

(
η −

Ri

∑
l′=1

gl′
(

σ0
l′ − σ

(a)
l′

))2
 (A21)
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The replicated partition function defined in (A11) after integrating over εai, can then be
decomposed into three terms as

E[Zn] ∝
∫

∏
σ

dΦ(σ)dΦ̂(σ) exp[−G1 − G2 − G3] (A22)

where

G1 = TM ∑
σ

Φ(σ)Φ̂(σ) (A23)

G2 = −K ln

(
ERi ,G,η

[
Ri

∏
l=1

∑
σl

Φ(σl) exp

[
− β

2

n

∑
a=1

(
η +

Ri

∑
l=1

Gl

(
σ0

l − σ
(a)
l

))2]])
(A24)

G3 = −TM−M ln

(
∑
sν

P
(

s0
ν

)
ETν

[
Φ̂(sν)

Tν

])
(A25)

In (A24), the average over Ri is taken using the Poisson distribution

PR(Ri) =
RRi

Ri!
exp[−R] (A26)

Similarly, for the average over Tν in (A25),

PT(Tν) =
TTν

Tν!
exp[−T]. (A27)

Since G1,G2, and G3 are all O(N), (A22) can be evaluated using the saddle-point
analysis [59]. At the saddle point, the self-averaged free energy can be written as

βF = lim
n→0

∂

∂n
extr
Φ,Φ̂

{
− G1

(
Φ, Φ̂

)
− G2(Φ)− G3

(
Φ̂
)}

(A28)

A tractable form for the saddle-point equations is attained using the RS assumption,
which is

Φ(σ) =
∫

dh Q(h)
exp

[
σ0βh

n
∑

a=1
σ(a)

]
2n coshn(βh)

(A29)

In this way, by plugging (A29) into (A22), for each separate term, we obtain

G1(n) = TM ∑
σ

∫
dh

∫
dĥ Q̂(ĥ)Q(h)

exp
[

βhσ0 ∑
a

σa

]
exp

[
βĥσ0 ∑

a
σa

]
(2 cosh(βh))n

(
2 cosh(βĥ)

)n

= TM ∑
σ

∫
dh Q(h)

∫
dĥ Q̂(ĥ)

(
2 cosh(β

(
h + ĥ

))n

(2 cosh(βh))n
(

2 cosh(βĥ)
)n

= TM ∑
σ

∫
dh Q(h)

∫
dĥ Q̂(ĥ)

1 + n ln

 2 cosh(β
(

h + ĥ
)

2 cosh(βh)2 cosh(βĥ)

 (A30)

G2(n) = −K ln

ERi ,G,η

 Ri

∏
l=1

∑
σ0

l

∫
dhl Q(hl)X n

 (A31)
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where

X = ∑
σ1,...,σRi

Ri

∏
l=1

exp
[
βσ0

l hlσl
]

2 cosh(βhl)
exp

− β

2

(
η +

Ri

∑
l=1

Gl

(
σ0

l − σl

))2
 (A32)

Finally, by following the same procedure as before, we express G3(n) as

G3(n) = −TM−M ln[W ] (A33)

where

W = ETν

 Tν

∏
k=1

∫
dĥk Q̂(ĥk)


2 cosh

(
β

Tν

∑
k=1

ĥk

)
∏
k

2 cosh
(

βĥk

)


n

= ETν

[
2−Tν exp

[
−T

2

]]
+ETν

 Tν

∏
k=1

∫ dĥk
2

Q̂(ĥk)n ln


2 cosh

(
β

Tν

∑
k=1

ĥk

)
∏
k

2 cosh
(

βĥk

)

 (A34)

so,

G3(n) = −
MT

2
− nMETν

 Tν

∏
k=1

∫ dĥk
2

Q̂(ĥk ln


2 cosh

(
β

Tν

∑
k=1

ĥk

)
∏
k

2 cosh
(

βĥk

)

 (A35)

By taking the functional derivative with respect to Q̂
(

ĥ
)

at n = 0, we obtain

∂

∂n
δG1(n)

δQ̂
(

ĥ
) ∣∣∣∣∣

n=0

= TM
∫

dh Q(h) ln

 2 cosh
(

β
(

h + ĥ
))

2 cosh(βh)2 cosh
(

βĥ
)


= −TM
2

∫
dh Q(h) ln

1 + tanh(βh) tanh
(

βĥ
)

2

 (A36)

and

∂

∂n
δG3(n)

δQ̂
(

ĥ
) ∣∣∣∣∣

n=0

= −M
Tν−1

∏
k=1

∫
dĥk Q̂(ĥk)s ln


(

2 cosh
(

β
Tν−1

∑
l=1

ĥl + h
))

Tν

∏
l=1

2 cosh
(

βĥl

)
 (A37)

Similarly, the functional derivative with respect to Q(h) is

∂

∂n
δG1(n)
δQ(h)

∣∣∣∣∣
n=0

= TM
∫

dĥ Q̂
(

ĥ
)

ln

 2 cosh β
(

ĥ + h
)

2 cosh(βh)2 cosh
(

βĥ
)
 (A38)

and

∂

∂n
δG2(n)
δQ(h)

∣∣∣∣∣
n=0

= −KR
Ri

∏
l=1

∫
dhl Q(hl)∑

σ0
l

P
(

σ0
l

)
ln(X ) (A39)
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where we have used the following approximation

X n ≈ 1 + n ln(X ) (A40)

The sum inside the exponential term of (A32) can be further analyzed as

Ri

∑
l=1

Gl

(
1− σ

(a)
l

)2
= GRi

(
1− σRi

)
+

Ri−1

∑
l=1

Gl

(
1− σ

(a)
l

)2
(A41)

From (A36) and (A37), we obtain

∫
dĥ Q(ĥ) ln

(
2 cosh β

(
h + ĥ

))
=

Tν−1

∏
k=1

∫
dĥkQ(ĥk) ln

(
2 cosh β

(
h +

Tν−1

∑
j=1

ĥj

))
(A42)

and if we set y =
Tν−1

∑
j=1

ĥj, the above expression results in

Q(h) = ETν

[
Tν−1

∏
k=1

∫
dĥk Q̂

(
ĥk

)
δ

(
h−

Tν−1

∑
k=1

ĥk

)]
(A43)

Similarly, from (A38) and (A39), we obtain

∫
dĥ Q̂

(
ĥ
)

ln
(

cosh β
(

ĥ + h
))

=
Ri

∏
l=1

∫
dhl Q(hl)∑

σ0
l

P
(

σ0
l

)
ln(X ) (A44)

To have a more compact form, we define

U+ = ∑
σl

exp[hl ] exp

−β

η +
Ri

∑
l=1

l 6=Ri

Gl(1− σl)
2


 (A45)

U− = ∑
σl

exp[−hl ] exp

[
− β

(
η + GRi

(
1− σRi

)2
+

Ri−1

∑
l=1

Gl

(
1− σ

(a)
l

)2
)]

(A46)

In this way, we can express ĥ as

ĥ = ln
(
U+
U−

)
(A47)

and obtain the Q̂(ĥ) distribution

Q̂
(

ĥ
)
= ERi

[
Ri

∏
j=1

∫
dhj Q(hj)δ

(
ĥ−

[
εβ(h)

])]
(A48)

which is (35) in Section 5.
The total error detection probability can be calculated by adding an effective magnetic

field term in the cost function, E , of (29), so,

E → E + δ
M

∑
µ=1

sµ ŝµ (A49)
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which modifies the G3 term of the replicated partition function in (A8), resulting in

G3 =
Tν

∏
k=1

∫
dĥk Q̂(ĥk)×

2 cosh
(

∑
k

ĥk − βδ

)
∏
k

2 cosh
(

ĥk

)


n

= −TM−M ln

ETνEĥ

2 cosh
(

∑
k

ĥk − βδ

)
∏
k

2 cosh
(

ĥk

)



n

(A50)

After taking the partial derivative of G3 with respect to the distribution Q̂
(

ĥ
)

, we obtain

δG3

δQ̂
(

ĥ
) = −METν

Tν−1

∏
k=1

Q̂
(

ĥk

)
ln

(
2 cosh

(
Tν−1

∑
k

ĥk + ĥ

))
(A51)

As a final step, we take the partial derivative of F with respect to δ for δ→ 0,

∂F
∂δ

=
1
β

∂

∂δ

(
G3(δ)

)∣∣∣∣
δ=0

= METνEĥ

[
sign

(
Tν

∑
k=1

ĥk

)]
= M

∫
dh
∫

dĥ Q(h)Q̂
(

ĥ
)

sign
(

h + ĥ
)

(A52)

which validates the results in [23] obtained using the Bethe approximation.
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