
Citation: Ajjaj, S.; El Houssaini, S.;

Hain, M.; El Houssaini, M.-A.

Incremental Online Machine

Learning for Detecting Malicious

Nodes in Vehicular Communications

Using Real-Time Monitoring. Telecom

2023, 4, 629–648. https://doi.org/

10.3390/telecom4030028

Academic Editor: Barbara M. Masini

Received: 22 June 2023

Revised: 14 July 2023

Accepted: 5 September 2023

Published: 11 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Incremental Online Machine Learning for Detecting Malicious
Nodes in Vehicular Communications Using Real-Time
Monitoring
Souad Ajjaj 1,* , Souad El Houssaini 2, Mustapha Hain 1 and Mohammed-Alamine El Houssaini 3

1 ENSAM, AICSE Laboratory, Hassan II University, Casablanca 20000, Morocco
2 Faculty of Sciences, Chouaib Doukkali University, El Jadida 24000, Morocco
3 ESEF, Chouaib Doukkali University, El Jadida 24000, Morocco
* Correspondence: souad.ajjaj-etu@etu.univh2c.ma

Abstract: Detecting malicious activities in Vehicular Ad hoc Networks (VANETs) is an important
research field as it can prevent serious damage within the network and enhance security and privacy.
In this regard, a number of approaches based on machine learning (ML) algorithms have been
proposed. However, they encounter several challenges due to data being constantly generated over
time; this can impact the performance of models trained on fixed datasets as well as cause the need
for real-time data analysis to obtain timely responses to potential threats in the network. Therefore,
it is crucial for machine learning models to learn and improve their predictions or decisions in real
time as new data become available. In this paper, we propose a new approach for attack detection in
VANETs based on incremental online machine learning. This approach uses data collected from the
monitoring of the VANET nodes’ behavior in real time and trains an online model using incremental
online learning algorithms. More specifically, this research addresses the detection of black hole
attacks that pose a significant threat to the Ad hoc On Demand Distance Vector (AODV) routing
protocol. The data used for attack detection are gathered from simulating realistic VANET scenarios
using the well-known simulators Simulation of Urban Mobility (SUMO) and Network Simulator
(NS-3). Further, key features which are relevant in capturing the behavior of VANET nodes under
black hole attack are monitored over time. The performance of two online incremental classifiers,
Adaptive Random Forest (ARF) and K-Nearest Neighbors (KNN), are assessed in terms of Accuracy,
Recall, Precision, and F1-score metrics, as well as training and testing time. The results show that ARF
can be successfully applied to classify and detect black hole nodes in VANETs. ARF outperformed
KNN in all performance measures but required more time to train and test compared to KNN. Our
findings indicate that incremental online learning, which enables continuous and real-time learning,
can be a potential method for identifying attacks in VANETs.

Keywords: VANETs; routing attacks; detection; incremental learning; online learning

1. Introduction

Vehicular Ad hoc Networks (VANETs) is a type of Mobile Ad hoc Network (MANET)
consisting of vehicles equipped with advanced communication devices and sophisticated
features. VANETs provide a platform for various applications, such as safety, traffic
efficiency, and infotainment services [1]. However, VANETs are subject to several kinds
of attacks, including denial-of-service, jamming, black holes, and worm hole attacks, that
might compromise the network’s security and privacy [2]. To detect these attacks, various
approaches based on machine learning algorithms are suggested [3]. These methods are
proven to be effective in detecting both known and unknown attacks, but they face several
challenges in VANET networks [4]. First, attack patterns may change over time, which may
affect the performance of a model trained on a fixed dataset [5]. Second, the complexity
of the data in VANET networks can increase rapidly over time, making it challenging to

Telecom 2023, 4, 629–648. https://doi.org/10.3390/telecom4030028 https://www.mdpi.com/journal/telecom

https://doi.org/10.3390/telecom4030028
https://doi.org/10.3390/telecom4030028
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/telecom
https://www.mdpi.com
https://orcid.org/0000-0001-9489-7696
https://doi.org/10.3390/telecom4030028
https://www.mdpi.com/journal/telecom
https://www.mdpi.com/article/10.3390/telecom4030028?type=check_update&version=1

Telecom 2023, 4 630

scale traditional machine learning algorithms to handle new patterns in the data. In that
regard, incremental online learning algorithms can be an effective solution for real-time
applications compared to traditional machine learning techniques, which typically require
large training datasets. Incremental online learning algorithms allows the model to learn
continuously over time, adapting to new data as they become available [6].

The core interest of this study is to explore incremental online learning algorithms
in the context of attack detection in VANETs. More specifically, our research focuses on
the detection of the black hole attack, estimated as the most damaging attacks that might
compromise Ad hoc On Demand Distance Vector (AODV) routing protocol in VANETs in
terms of data availability [7,8]. To this end, we have used data gathered from extensive
simulations of realistic VANET scenarios based on two well-known simulators, namely
SUMO [9] and NS-3 [10]. The collected data incorporate essential features which are
relevant in capturing the behavior of VANET nodes under a black hole attack. We selected
more appropriate features, namely CTRLpackets, CountRREQ, CountRREP, CountRERR,
Throughput, SentPckts, ReceivedPckts and Dropping ratio. Further, the performance of
two incremental online classifiers, namely Adaptive Random Forest (ARF) and K-Nearest
Neighbors (KNN), is investigated [11,12]. Additionally, metrics such as Accuracy, Precision,
Recall, and F1-score are assessed in order to track the classifiers’ performance over time.

The findings demonstrate that ARF outperforms the KNN algorithm in terms of
Accuracy, Precision, Recall, and F1-score. However, the latter records a higher running
time. Furthermore, this study outlines the effectiveness of the proposed approach as it
enables the creation of constantly updated models by processing small amounts of data at
a time, rather than the entire dataset at once, unlike traditional machine learning methods
that require substantial computing resources when dealing with large datasets. Further,
this approach is especially beneficial in dynamic applications such as VANET networks,
where data are continuously generated in a streaming manner. Moreover, it is adaptive,
allowing it to adapt and improve predictions or decisions as new data arrive, thereby
accommodating changing data patterns over time.

The main contributions of this paper are as follows:

• We introduce a more dynamic approach for detecting attacks based on incremental
online machine learning algorithms trained on data generated in real-time;

• We collect data form VANET scenarios using a robust methodology for VANET simu-
lations based two well-known simulators, namely SUMO and NS-3;

• We select essential features that are relevant in capturing the behavior of black hole
nodes in the AODV routing protocol;

• We assess the overall performance of classifiers in terms of multiple performance
metrics, namely Accuracy, Precision, Recall and F1-score. Further, each performance
metric is tracked over time to continuously evaluate the classifiers;

• The complexities of both classifiers in terms of training and testing time are computed
and compared.

The rest of this paper is organized as follows: in Section 2, related works on attack
detection in VANETs using ML-based approaches are reviewed. Section 3 presents the
materials and methods including the proposed method, the experimental settings, the sim-
ulation environment, the data collection, as well as the incremental algorithms considered.
Results and discussion are provided in Section 4. Finally, we summarize the achieved
results and point out future research directions.

2. Related Works

Machine learning is an intensively researched area within the broader field of artificial
intelligence (AI), as it has been used in a variety of real-world applications, such as image
identification, speech recognition, natural language processing, autonomous cars, attack
detection, fraud detection, etc. [3]. In the research area of attack detection in VANETs,
several solutions based on machine learning algorithms have been suggested.

Telecom 2023, 4 631

In what follows, we present the most recent studies that addressed attack detection in
VANETs.

In the paper [13], the authors propose a novel technique for detecting jamming in wire-
less networks within vehicles. They utilize unsupervised machine learning and introduce a
new metric called variations of the relative speed (RSV) between the jammer’s vehicle and
the receiver’s vehicle. Additionally, parameters from the wireless communication systems
on the receiving vehicle are taken into account. By applying unsupervised learning through
clustering, the proposed method effectively distinguishes intentional and unintentional
jamming and identifies the unique characteristics associated with each jamming attack. The
authors highlight the importance of relative speed and its variations in successful jamming
detection. They also demonstrate that relying solely on conventional wireless receiver
metrics from the physical and network layers, such as PDR, SINR, and RSSI, is insufficient
for discriminating interference from deliberate jamming events or recognizing the specific
traits of an attack.

In another work [14], the objective is to analyze safety messages and detect false
position information sent by misbehaving nodes. Machine learning (ML) techniques
are applied to the VeReMi dataset to detect such misbehavior. The researchers consider
the ML-based approach to be a practical and efficient method for identifying improper
behavior in real-world VANET scenarios. The results indicate that SVM with normalization
outperforms logistic regression with or without normalization. The goal of study [15] is to
use machine learning to identify wormhole attacks in VANETs’ multi-hop communication.
The authors create a scenario of multi-hop communication using the AODV routing protocol
on the NS3 simulator, employing mobility traces generated by the SUMO traffic simulator
to replicate the attack in the VANET. The gathered traces are preprocessed to enable the
model to learn about wormhole attacks, and then, K-NN and SVM algorithms are applied.
The two machine learning techniques are evaluated in terms of detection accuracy for four
different alert types.

In [16], various machine learning techniques are employed to identify five different
attacks: constant attack, random attack, constant offset attack, eventual attack, and random
offset attack. Initially, binary classification methods are used to identify each attack individ-
ually. Subsequently, a novel method is developed for multi-classification of attacks. The
accuracy obtained for each attack type varies depending on the machine learning algorithm
used. The Random Forest technique achieves the highest accuracy in the case of the new
multi-classification procedure. The VeReMi dataset is used for malicious node detection in
VANETs.

Another study [17] suggests a new machine learning approach that utilizes Random
Forest and posterior detection based on coresets to enhance the performance of Intrusion
Detection Systems (IDSs). The results show that, in comparison to conventional machine
learning models utilized in related applications, the proposed model greatly increases
detection accuracy.

For attack classification in VANETs, a hybrid optimization-based Deep Maxout Net-
work (DMN) is developed in [18]. The hybrid optimization approach is used for Cluster
Head (CH) selection and routing operations. Feature selection is crucial for efficient clas-
sification, and the DMN is employed for attack classification with a new optimization
approach. The optimization model based on the DMN improves routing performance,
energy consumption, and trust metrics. Precision and Recall measures are also reported.
In [19], an Intelligent Intrusion Detection System (IDS) that combines deep learning and
machine learning techniques is proposed. Convolutional Neural Networks (CNN) and the
Adaptive Neuro Fuzzy Inference System (ANFIS) are both used in the system. This strategy
overcomes this constraint by making use of soft computing techniques and an Intelligent
IDS system, in contrast to previous systems that focus on identifying known threats in the
VANET environment. A hybrid technique is used to identify several attack types, such as
Denial-of-Service (DoS), Botnet, PortScan, and Brute Force assaults. Real-time data from

Telecom 2023, 4 632

the CIC-IDS 2017 dataset are used for evaluation, and the proposed methodology shows
effectiveness compared to other state-of-the-art techniques.

In study [20], a practical and effective machine learning (ML)-based method for
detecting malicious behavior is suggested. The Vehicular Reference Misbehavior Dataset
(VeReMi) is utilized by the proposed machine-learning-based misbehavior detection system.
The VeReMi dataset contains labeled examples of five different types of position falsification
attacks with varying vehicle and attacker densities. The authors propose a model that
employs two sequential BSM approaches to detect these attacks. The categorization of the
roadside unit’s model enables the identification and removal of harmful nodes from the
network, reducing computational overhead on moving vehicles. Researchers used SVM in
the study [21] to identify false message attacks using the driving status, speed, acceleration,
vehicle type, reputation, and distance as features. Additionally, they investigated message
suppression strategies involving packet loss, packet delay, and packet forwarding. In order
to combine various assessments, their proposed vehicle trust model calls for both a local
vehicle trust module and a central Trust Authority (TA). In another paper by [22], authors
provide a machine learning (ML) mechanism that makes use of three new features, namely
those that relate to the sender position, to improve the performance of IDS against position
falsification attacks. Additionally, it compares K-Nearest Neighbor (KNN) and Random
Forest (RF), two distinct machine learning (ML) algorithms for classification that are used
to identify malicious vehicles using these features.

All the aforementioned studies used approaches that have proven to be effective in
detecting known and unknown attacks. However, they face several challenges in VANETs
because of the evolving nature of attack patterns as well as the complexity of the data which
can increase rapidly over time, making it difficult to scale traditional machine learning
algorithms to handle data generated in real-time. In the next section, we introduce the
use of incremental online machine learning algorithms in the context of attack detection in
VANETs.

3. Materials and Methods

In this section, we first describe the proposed approach for attack detection after
introducing incremental online machine learning. The data collection process is extensively
detailed including experimental settings, simulation environment, and selected features.
Tools and frameworks used for the implementation of incremental online algorithms are
also described.

3.1. Incremental Online Learning

Recently, incremental online learning has received more attention, especially in the
context of learning from data streams where data continually arrive, such as in IoT appli-
cations, spam filtering, attack detection, time series forecasting, etc. [5]. This evolution
challenges traditional machine learning algorithms, which assume that they have access to
the entire training dataset during the learning stage [3].

Using traditional machine learning algorithms consists of collecting large historical
data, with the model being trained on the training set and validated on the testing set.
In this way, the model is trained on a large dataset that has been collected and labeled
beforehand [23]. This approach performs well when all the data are available up front since
the model is trained on a large static dataset [6].

In contrast, incremental online learning algorithms involves building dynamic models
which are trained in real-time, rather than on a fixed dataset all at once [4].

Formally, let D be a data stream including instances denoted by(→
x i, yi

)
, (i = 1,t,) (1)

where t represents a timestamp,
→
x i is a vector of features, and yi is the target or the class.

Telecom 2023, 4 633

Incremental online learning allows the model to learn continuously from each new
data instance. The goal here is to continue to learn from new incoming data and update
the model continuously [24]. The updated model can be used to predict a label yi

′ for an

unlabeled
→
x i
′
. The primary difference between traditional and online learning is how the

data are presented [25]. In the former, the dataset is static and entirely available, whereas
data instances are presented sequentially over time in online learning. Incremental online
learning has a number of characteristics including:

• Incremental learning allows for the use of data as they becomes available, creating
models that are constantly up-to-date instead of having to process the entire dataset
at once [5]. This can be very helpful in dynamic applications like VANET networks
where data are produced in a streaming way [6];

• There is a need to process a small amount of data at a time to learn from it [25]. This is
in contrast to traditional machine learning techniques, which need a lot of computing
resources, particularly when training on big datasets [24];

• The ability to handle streaming data in real-time [6]. This makes it particularly useful
in this area of research, where data are constantly being generated and need to be
analyzed in real-time [4];

• Adaptive, because it can adjust to changing data patterns over time. This suggests
that it is capable of learning and improving its predictions or decisions as new data
arrive [23].

The proposed approach for detecting malicious nodes in VANETs is outlined in the
following section.

3.2. Proposed Method

The process of the proposed method for attack detection based on incremental online
learning is outlined in the diagram below (Figure 1):

Telecom 2023, 4, FOR PEER REVIEW 5

where t represents a timestamp, 𝑥⃗௜ is a vector of features, and 𝑦௜ is the target or the class.
Incremental online learning allows the model to learn continuously from each new

data instance. The goal here is to continue to learn from new incoming data and update
the model continuously [24]. The updated model can be used to predict a label 𝑦௜ᇱ for an
unlabeled 𝑥⃗௜ᇱ. The primary difference between traditional and online learning is how the
data are presented [25]. In the former, the dataset is static and entirely available, whereas
data instances are presented sequentially over time in online learning. Incremental online
learning has a number of characteristics including:
• Incremental learning allows for the use of data as they becomes available, creating

models that are constantly up-to-date instead of having to process the entire dataset
at once [5]. This can be very helpful in dynamic applications like VANET networks
where data are produced in a streaming way [6];

• There is a need to process a small amount of data at a time to learn from it [25]. This
is in contrast to traditional machine learning techniques, which need a lot of compu-
ting resources, particularly when training on big datasets [24];

• The ability to handle streaming data in real-time [6]. This makes it particularly useful
in this area of research, where data are constantly being generated and need to be
analyzed in real-time [4];

• Adaptive, because it can adjust to changing data patterns over time. This suggests
that it is capable of learning and improving its predictions or decisions as new data
arrive [23].
The proposed approach for detecting malicious nodes in VANETs is outlined in the

following section.

3.2. Proposed Method
The process of the proposed method for attack detection based on incremental online

learning is outlined in the diagram below (Figure 1):

Figure 1. The process of the proposed approach for attack detection using incremental online learn-
ing.
Figure 1. The process of the proposed approach for attack detection using incremental online learning.

The basic idea of the proposed approach is to use the data collected from the monitor-
ing of the VANET nodes behavior in real-time and train an online model using incremental
online learning algorithms. The incremental model performed is used for classifying

Telecom 2023, 4 634

VANET nodes as normal or attacker. The primary steps of the proposed method are as
follows:

• Initial model training

An initial model is trained on initial data to build a base model before online incre-
mental learning is performed. This model will serve as the starting point for the online
incremental learning process.

• Incremental model training

The model is incrementally updated after processing each new data instance provided
in real-time. This process is repeated each time a new data instance is available, and the
updating of the models occurs continually [6]. The model is updated or refined employing
new data rather than being trained from scratch on the entire dataset. This ensures that the
model is always up-to-date. The updated model is used for classifying VANET nodes as
normal or malicious.

• Attack detection

This component performs online classification of unlabeled data, leveraging the up-
dated trained model to classify new data. Online classification makes it possible to detect
attacks in real-time by identifying patterns that indicate malicious activity. If the pattern of
the data is matched with an attack, an alarm is triggered.

The proposed attack detection method involves data collection using a monitoring
system designed to record various metrics and behavioral parameters within each vehicle
node in the network. This includes recording the most relevant features to distinguish
between normal nodes and black hole nodes in the network.

The following subsections provide technical details on how the data are collected
and preprocessed. This includes network simulation environment, scenario-based data
collection, and the most relevant features for attack detection.

3.3. Data Collection
3.3.1. Simulation Environment and Scenarios

In this study, the steps followed to simulate the VANET network are as follows:
Step 1: The preparation of a road network by importing a map from Open Street Map

(OSM) [26]. The simulation zone is defined on a map form the Moroccan city El Jadida
(Figure 2).

Telecom 2023, 4, FOR PEER REVIEW 6

The basic idea of the proposed approach is to use the data collected from the moni-
toring of the VANET nodes behavior in real-time and train an online model using incre-
mental online learning algorithms. The incremental model performed is used for classify-
ing VANET nodes as normal or attacker. The primary steps of the proposed method are
as follows:
• Initial model training

An initial model is trained on initial data to build a base model before online incre-
mental learning is performed. This model will serve as the starting point for the online
incremental learning process.
• Incremental model training

The model is incrementally updated after processing each new data instance pro-
vided in real-time. This process is repeated each time a new data instance is available, and
the updating of the models occurs continually [6]. The model is updated or refined em-
ploying new data rather than being trained from scratch on the entire dataset. This ensures
that the model is always up-to-date. The updated model is used for classifying VANET
nodes as normal or malicious.
• Attack detection

This component performs online classification of unlabeled data, leveraging the up-
dated trained model to classify new data. Online classification makes it possible to detect
attacks in real-time by identifying patterns that indicate malicious activity. If the pattern
of the data is matched with an attack, an alarm is triggered.

The proposed attack detection method involves data collection using a monitoring
system designed to record various metrics and behavioral parameters within each vehicle
node in the network. This includes recording the most relevant features to distinguish
between normal nodes and black hole nodes in the network.

The following subsections provide technical details on how the data are collected and
preprocessed. This includes network simulation environment, scenario-based data collec-
tion, and the most relevant features for attack detection.

3.3. Data Collection
3.3.1. Simulation Environment and Scenarios

In this study, the steps followed to simulate the VANET network are as follows:
Step 1: The preparation of a road network by importing a map from Open Street Map

(OSM) [26]. The simulation zone is defined on a map form the Moroccan city El Jadida
(Figure 2).

Figure 2. The simulation map from Open Street Map.

Step 2: The generation of mobility trace files using SUMO (Simulation of Urban Mo-
bility) [9] which simulate realistic vehicle movements. SUMO provides a variety of python

Figure 2. The simulation map from Open Street Map.

Step 2: The generation of mobility trace files using SUMO (Simulation of Urban
Mobility) [9] which simulate realistic vehicle movements. SUMO provides a variety of
python tools such as netconvert, randomTrips, poly-convert, and traceExporter used for
the creation, execution, and evaluation of traffic simulations. The generated mobility trace
file is then fed to the network simulator NS-3 (Figure 3).

Telecom 2023, 4 635

Telecom 2023, 4, FOR PEER REVIEW 7

tools such as netconvert, randomTrips, poly-convert, and traceExporter used for the crea-
tion, execution, and evaluation of traffic simulations. The generated mobility trace file is
then fed to the network simulator NS-3 (Figure 3).

Figure 3. Network XML file edited by SUMO.

Step 3: Simulate the network components using the NS-3 network simulator, which
is used to model the VANET communications’ whole protocol stack. Simulation scenarios
are configured in NS-3 using scripts written in the C++ programming language. Simula-
tions are implemented using parameters exhibited below (Table 1).

Table 1. Simulation settings.

Parameter Value
Platform Linux, Ubuntu environment.

Simulator of network NS3.29
Simulator of Mobility SUMO-0.32.0

Routing protocol AODV
Mac/Phy Layer IEEE 802.11p

WiFichannel YansWifi
Propagation model friisLoss model

Transmission power 33 dbm
Transport protocol UDP

Traffic type CBR (constant bit rate)
Packet size 64 bytes

Number of vehicles 50
Runtime 360 s

We consider two VANET scenarios using the simulation parameters previously out-
lined in Table 1.

In the first scenario, 50 vehicles are involved, with 10 random source–destination
pairs, which produce CBR traffic with fixed-size packets. The AODV routing protocol is
used to route packets considering all nodes as legitimate vehicles. In this case, no black
hole node is simulated.

In the second simulated scenario, we implement AODV routing protocol with black
hole attacks wherein 1 to 3 nodes are selected to act as attackers and are configured at
different times to launch the black hole attacks. The remainder of the nodes are trustwor-
thy and have legitimate communications to the other vehicles in the network.

Figure 3. Network XML file edited by SUMO.

Step 3: Simulate the network components using the NS-3 network simulator, which is
used to model the VANET communications’ whole protocol stack. Simulation scenarios are
configured in NS-3 using scripts written in the C++ programming language. Simulations
are implemented using parameters exhibited below (Table 1).

Table 1. Simulation settings.

Parameter Value

Platform Linux, Ubuntu environment.
Simulator of network NS3.29
Simulator of Mobility SUMO-0.32.0

Routing protocol AODV
Mac/Phy Layer IEEE 802.11p

WiFichannel YansWifi
Propagation model friisLoss model
Transmission power 33 dbm
Transport protocol UDP

Traffic type CBR (constant bit rate)
Packet size 64 bytes

Number of vehicles 50
Runtime 360 s

We consider two VANET scenarios using the simulation parameters previously out-
lined in Table 1.

In the first scenario, 50 vehicles are involved, with 10 random source–destination pairs,
which produce CBR traffic with fixed-size packets. The AODV routing protocol is used to
route packets considering all nodes as legitimate vehicles. In this case, no black hole node
is simulated.

In the second simulated scenario, we implement AODV routing protocol with black
hole attacks wherein 1 to 3 nodes are selected to act as attackers and are configured at
different times to launch the black hole attacks. The remainder of the nodes are trustworthy
and have legitimate communications to the other vehicles in the network.

3.3.2. Definition of Features

During the simulation, a monitoring system is designed to record various metrics and
behavioral parameters within each vehicle node during the normal scenario and the black
hole attack scenario. This includes recording the most relevant information to distinguish
between a normal node and a black hole node in the network.

Hereafter, a brief description of the characteristics of AODV routing protocol [27] and
its vulnerability to black hole attack, which will help us selecting essential features relevant
in detecting the black hole attack [7].

Telecom 2023, 4 636

AODV relies on two fundamental mechanisms, namely route discovery and route
maintenance. The protocol utilizes RREQ (Route Request) and RREP (Route Reply) mes-
sages for route discovery. When a source node needs to send data to a destination, it
checks its routing table for a valid route. If there is no valid route available (possibly due to
non-existence, expiration, or failure), the source node broadcasts an RREQ message to all
neighboring nodes.

Each intermediate node forwards the RREQ message until it reaches either the des-
tination or an intermediate node that has a valid route to the destination. The node with
a valid route responds to the source node by sending a unicast RREP message along the
reverse path.

Upon receiving the RREP message, the source node proceeds with transmitting data
packets [27]. Regarding the mechanism of route maintenance in AODV, active routes are
the only ones that are maintained. Nodes regularly communicate with their neighbors by
sending HELLO messages in order to analyze the status of the links and identify whether a
path is fresh or not.

If a link breaks, a Route Error (RERR) message is sent to the source node and any other
nodes affected by the broken link. The nodes are informed of the link failure by this RERR
message.

The AODV routing protocol’s activities are illustrated in Figure 4 [7].

Telecom 2023, 4, FOR PEER REVIEW 8

3.3.2. Definition of Features
During the simulation, a monitoring system is designed to record various metrics

and behavioral parameters within each vehicle node during the normal scenario and the
black hole attack scenario. This includes recording the most relevant information to dis-
tinguish between a normal node and a black hole node in the network.

Hereafter, a brief description of the characteristics of AODV routing protocol [27] and
its vulnerability to black hole attack, which will help us selecting essential features rele-
vant in detecting the black hole attack [7].

AODV relies on two fundamental mechanisms, namely route discovery and route
maintenance. The protocol utilizes RREQ (Route Request) and RREP (Route Reply) mes-
sages for route discovery. When a source node needs to send data to a destination, it
checks its routing table for a valid route. If there is no valid route available (possibly due
to non-existence, expiration, or failure), the source node broadcasts an RREQ message to
all neighboring nodes.

Each intermediate node forwards the RREQ message until it reaches either the desti-
nation or an intermediate node that has a valid route to the destination. The node with a
valid route responds to the source node by sending a unicast RREP message along the
reverse path.

Upon receiving the RREP message, the source node proceeds with transmitting data
packets [27]. Regarding the mechanism of route maintenance in AODV, active routes are
the only ones that are maintained. Nodes regularly communicate with their neighbors by
sending HELLO messages in order to analyze the status of the links and identify whether
a path is fresh or not.

If a link breaks, a Route Error (RERR) message is sent to the source node and any
other nodes affected by the broken link. The nodes are informed of the link failure by this
RERR message.

The AODV routing protocol’s activities are illustrated in Figure 4 [7].

Figure 4. AODV routing protocol mechanism.

A severe kind of denial of service known as a “black hole attack” occurs when a rogue
node purposefully intercepts routing request (RREQ) messages from nearby nodes.

Instead of sending these RREQ packets as intended to other nodes, the malicious
node disrupts the route discovery process by rapidly providing a false route reply mes-
sage (RREP) with the highest sequence number.

As a result, the malicious node receives data packets from the source node, assuming
it is the best route, under the erroneous idea that the route discovery was successful. How-
ever, the misbehaving node captures all the routing packets and intentionally discards
them, effectively preventing any successful communication [1].

Figure 4. AODV routing protocol mechanism.

A severe kind of denial of service known as a “black hole attack” occurs when a rogue
node purposefully intercepts routing request (RREQ) messages from nearby nodes.

Instead of sending these RREQ packets as intended to other nodes, the malicious
node disrupts the route discovery process by rapidly providing a false route reply message
(RREP) with the highest sequence number.

As a result, the malicious node receives data packets from the source node, assuming it
is the best route, under the erroneous idea that the route discovery was successful. However,
the misbehaving node captures all the routing packets and intentionally discards them,
effectively preventing any successful communication [1].

Based on these unique behavioral characteristics of the black hole attack, we will
choose features that are the most relevant to distinguish between a normal node and a
black hole node in the VANET network.

Here are the key considered points when recording various metrics and behavioral
parameters:

• Routing Behavior Analysis: this involves tracking the overall routing control packets in
AODV and monitoring particular packets such as RREQ (Route Request), RREP (Route
Reply), and RERR (Route Error). These parameters can contribute to the detection
of the black hole attack, so they are summarized in the CTRLpackets, CountRREQ,
CountRREP, and CountRERR features;

Telecom 2023, 4 637

• Traffic Analysis: this involves monitoring the traffic characteristics and keeping track
of the number of bytes that are sent or received by each node;

• Dropping ratio monitoring: observing the dropping rate of packets can help in the
identification of nodes that selectively drop or discard incoming packets, indicating
malicious behavior;

• Throughput monitoring: black hole attack typically drops a large amount of data,
which may decrease significantly the throughput, making it an important metric to
monitor for detection purposes.

The set of features recorded in our dataset are summarized in Table 2: CTRLpackets,
Count RREQ, CountRREP, CountRERR, Throughput, Sent Pckts, Received Pckts, and
DroppingRatio.

Table 2. Relevant features for black hole attack detection.

Feature Name Feature Description

CTRLpackets

AODV routing control packets: a black hole node may advertise a fake
and optimized route to the destination. Thus, it is essential to keep track
of the routing control packets and detect any changes in their number
advertised by a node.

CountRREQ

Number of Route Request messages that are used by the nodes to
discover new routes to other nodes in the network. In the case of a black
hole attack, the malicious node may not generate any RREQ messages
because it is not interested in receiving any packets, and instead, it drops
all the packets that it receives.

CountRREP

Number of Route Reply messages that are sent by nodes in response to
RREQ messages to establish a route to the destination node. In the case of
a black hole attack, the black hole sends fake RREP; if a large number of
RREP messages are received from a single node, it could be an indication
that the node is a potential black hole.

CountRERR
Number of Route Error (RERR) Messages: a black hole node may
generate an abnormal amount of RERR messages, indicating that the
node is not following the protocol’s correct path discovery mechanism.

Throughput
Throughput measures the amount of data that can be transferred in a
given time. A sudden decrease in throughput can be an indication of a
black hole attack.

SentPckts
The number of sent packets. The attacker node captures and drops all
routing packets, leading to a significant decrease in the number of
successfully sent packets.

ReceivedPckts
The number of received packets. The rogue node selectively drops all the
data packets received from other nodes, which may cause a decrease in
the number of bytes that are received.

DroppingRatio
The dropping ratio measures the percentage of packets dropped by a
node, and this feature can be used to detect if a node is dropping a higher
number of packets than normal.

3.4. Data Preprocessing

In the context of our study, data normalization is employed to scale features to a
common range between 0 and 1 or −1 and 1, which make it simpler to compare and
evaluate the data.

Different normalization techniques can be applied, including min–max scaling, z-score
normalization, and log transformation [28].

Z-score normalization is employed to transform each instance of the original data xi
into x′i using the following equation:

x′i =
xi − µ

σ
(2)

Telecom 2023, 4 638

where µ and σ denote the mean and standard deviation, respectively.

3.5. Incremental Online Algorithms

In the current study, we selected two incremental online classifiers, namely Adaptive
Random Forest (ARF) and K-Nearest Neighbors (KNN) [11,12]. The algorithms are chosen
based on their popularity in the online classification area and are freely available in the
python framework sickit-multiflow [12].

Adaptive Random Forest (ARF): a modified version of the Random Forest (ARF)
method developed to handle data streams. The algorithm includes important extended
techniques that modify the way the trees are trained and sampled in order to adapt to
streaming data: the online bagging and adaptive resampling techniques. In the standard
Random Forest algorithm, each tree is trained on a bootstrap sample of the training data,
which is obtained by randomly sampling with replacement from the original data. However,
in data streams, new instances arrive continuously, and it is not feasible to store the entire
training data in memory. The core idea underlying online bagging is to train a tree in
a forest using a sample that is generated by randomly selecting instances from the data
stream with replacement. The trees in the forest differ from one another due to the use of
several samples, resulting in a varied ensemble. Adaptive resampling is another technique
used to adapt to changes in the stream by updating the weight of instances according to
their arrival times. Formally, instances that are more recent are given a higher weight,
which enables the classifier to adapt to concept drift over time. This technique is used to
update the weights of instances in the sample used to build the trees [6,11].

The pseudo code of the ARF algorithm is given in Algorithm 1. This algorithm begins
by initializing a specified number of trees in an ensemble. Each new instance in the data
stream is then sent to each tree in the ensemble for testing and training. ARF follows a
“test-then-train” approach, where an incoming instance is first used to test the model’s
performance by making a prediction and estimating its accuracy. After testing, the instance
is used to train the model. The training process in ARF utilizes online bagging, a technique
that randomly selects a subset of features and performs splits based on these features.

Algorithm 1: Pseudo Code of Adaptive Random Forest

Inputs: n_trees: the number of trees in the ensemble, STREAM: the stream of data instances,
f_s_size: size of the random subset of features to select for each split.
Outputs: arf_model: the trained ARF model

1. Initialize an ensemble with a specified number of trees.
2. Receive a stream of data instances.
3. For each new instance in the stream:

a. Test the model’s performance by making a prediction.
b. Estimate the model’s performance.
c. If the performance is below the test threshold, train the model with the instance.
d. Apply online bagging and select a random subset of features with f_s_size for tree

training.
e. Train all background trees on the current instance.

4. Repeat the above steps for all instances in the stream
5. The trained ARF model, which is the ensemble of trees, is the output.

K-Nearest Neighbors (KNN): a well-known classification algorithm used in machine
learning that relies on the distance metric between data points. In online classification,
the algorithm works by maintaining a set of labeled instances in memory, which are used
to classify new incoming instances based on their proximity in the feature space. For
each incoming data instance x, the algorithm computes the distance between x and each
instance in the data stream using a distance metric which is typically the Euclidean distance.
Subsequently, the K-Nearest Neighbors of x in D based on their distances are found. The
class label of x is assigned based on the majority of its K-Nearest Neighbors. In KNN,

Telecom 2023, 4 639

K is a hyper parameter that determines the number of nearest neighbors to consider for
classification. As new instances are received, the algorithm updates its set of labeled
instances and can change its classification decisions accordingly.

The pseudo code below exhibits the core functionality of the KNN algorithm, which
involves updating the model with new instances and making predictions based on the
K-nearest neighbors.

Algorithm 2: Pseudo Code of K-Nearest Neighbors

Inputs: K: The number of nearest neighbors to consider, M: The memory size or maximum number of instances to retain, STREAM:
the stream of data instances.
Outputs: Predicted label for each instance in the data stream

1. Initialize the KNN model:

Set the number of nearest neighbors (K).
Set the memory size (M).
Initialize an empty memory buffer.

2. Receive a stream of data instances:

For each new instance in the stream:

a. Find the K nearest neighbors from the instances in the memory buffer using eEuclidien distance metric.
b. Classify the new instance based on the majority class among the K-nearest neighbors.
c. Update the model and memory buffer:

If the memory buffer is not full (number of instances < M), add the new instance to the buffer.
If the memory buffer is full, replace the oldest instance in the buffer with the new instance.

d. Store the predicted label for the new instance.

3. Repeat step 2 for all instances in the data stream.

3.6. Prequential Evaluation

In the performance evaluation of machine learning models, the hold-out evaluation
method is the commonly used approach, wherein the available data are split into two
parts: a training set and a test set [3]. The model is trained on the training set, and its
performance is evaluated on the test set to evaluate how well the model can perform on
new unseen data.

Prequential evaluation, on the other hand, is a more recent and alternative approach to
model evaluation used for data generated continuously in time. In prequential evaluation
(or test-then-train evaluation), the basic idea is to use new data instances to firstly test the
model and then to train it [29]. The process of prequential evaluation involves the following
steps:

• Pretrain the model with initial data;
• Test and train: For each incoming data instance, the model is tested on the current

instance and then trained using the same instance, using the partial_fit() method;
• Evaluate: The model’s performance is tracked over time where metrics are updated

over time.

For the prequential evaluation, several parameters are tuned amongst test step,
max_samples, and pretrain_size, which refer, respectively, to the number of samples
between each model test, the maximum number of samples to process from the data stream,
and the number of samples to use for pretraining the model before starting the prequential
learning process [12].

An example of pseudo code for prequential accuracy evaluation is outlined in the
Algorithm 3 below:

Telecom 2023, 4 640

Algorithm 3: Prequential Accuracy for Model Evaluation

Inputs: D: a stream of data (X,y), Arf: the classifier to be evaluated, pretrain_size: the number of
samples for pretraining the model, Ts: test step, number of samples to process between each
model test, max_samples: the maximum number of samples to evaluate.
Outputs: Acc_list: a list containing accuracy measures after each test step.

1. Initialize Acc_list to store accuracy measures
2. Initial counters CorrPred and TotalPred for correct predictions and total predictions.
3. Pretrain the model by calling model.partial_fit() on pretrain_size samples of the data stream.

for i in range(pretrain_size)
(X, y) = D.next_sample()
Arf.partial_fit(X, y)

end for
4. Repeat for max_samples iterations:
for i in range(max_samples):

(X, y) = D.next_sample()
prediction = model.predict(X)
Arf.partial_fit(X, y)
TotalPred+= 1

if y == prediction:
CorrPred+= 1

if TotalPred % Ts == 0:
accuracy = CorrPred/TotalPred

Acc_list.append(accuracy)
CorrPred = 0
end if

end for
5. Return Acc_list

In this study, we use Accuracy, Precision, Recall, and F1-score metrics computed
according to the following equations:

Accuracy = (tp + tn)/(tp + fp + fn + tn) (3)

Precision = tp/((tp + fp)) (4)

Recall = tp/(tp + fn) (5)

F1− score = 2 ∗ ((Precision ∗ Recall)/(Precision + Recall)) (6)

where tp, fp, fn, and tn are, respectively, number of instances correctly classified as positive,
number of instances incorrectly classified as positive, number of instances incorrectly
classified as negative, and number of instances correctly classified as negative.

Experiments are performed on Jupyter notebook, and Python 3.9.13 is used along
with the Matplotlib 3.5.2, NumPy 1.20.0, and pandas 1.4.4 libraries. Implementation of
incremental online algorithms is performed using scikit-multiflow 0.5.3, a Python library
that provides a range of tools, algorithms, and evaluation metrics to handle data streams
in real-time scenarios. Scikit-multiflow can be used along with other Python libraries like
Numpy and SciPy, pandas and scikit-learn.

In the subsequent section, we will exhibit and discuss the results of evaluating the
overall performance of the Adaptive Random Forest (ARF) and K-Nearest Neighbors
(KNN) classifiers.

4. Results and Discussion

In this section, we will first analyze the mean Accuracy of classifiers under varying
values of the pretrain_size parameter, which refers to the number of samples to use for

Telecom 2023, 4 641

pretraining the model before starting the prequential learning process. We will then
compare the overall performance of the classifiers according to Accuracy, Recall, Precision,
and F1-score metrics. Plots that monitor the performance metrics of both classifiers over
time are also given. Finally, the running time (training time and testing time) of both
classifiers are assessed and compared.

The dataset used for evaluation includes eight features and two classes (Normal, BKH)
with 4492 data samples as Normal and 4670 as black hole.

Regarding the choice of the pretrain_size parameter for prequential evaluation, we
evaluated the mean Accuracy of both classifiers under varying values of the pretrain_size
in order to choose the most appropriate value. Table 3 reports the obtained results.

Table 3. The mean Accuracy of classifiers under varying pretrain size values.

Classifier
Pretrain_Size

400 600 1000 1200

Adaptive Random Forest (ARF) 94.73% 94.77% 94.83% 94.90%
K-Nearest Neighbors classifier (KNN) 86.86% 87.13% 87.30% 87.83%

The results exhibited in Table 3 show that both classifiers Adaptive Random Forest
(ARF) and K-Nearest Neighbors (KNN) record Accuracy above 86% for the different values
of Pretraining size. It is also observed that Adaptive Random Forest (ARF) achieves higher
Accuracy values than the KNN, which reaches almost 95% for the different values of
the pretrain_size parameter. Further, we note that the overall Accuracy increases as the
pretrain_size increases (varying from 400, 600, 1000 to 1200) for both classifiers.

The Accuracy results of Adaptive Random Forest (ARF) varies from 94.73% to 94.90%,
presenting a slight increase, while KNN improves its Accuracy from 86.86% to 87.38%
when increasing the pretrain_size from 400 to 1200.

Overall, the results of the carried-out experiments clearly indicate that using ARF
achieves good Accuracy even with small pretraining data sizes, while the KNN’s classifier
Accuracy improves as the pretrain_size values increase.

This can be explained by the inherent characteristics of the Adaptive Random Forest
(ARF) algorithm which is based on ensemble learning. ARF tends to leverage diverse
models trained on different subsets of data to make a decision about the class label. This
allows ARF to perform well in situations with a small number of pretraining samples. The
K-Nearest Neighbors (KNN) classifier, on the other hand, relies on the nearest neighbors
for classification.

This suggest that when increasing the pretraining data size, the KNN algorithm can
achieve better performance.

Therefore, considering the above findings, we adopt {pretrain-size = 1200} for the
evaluation of the classifiers in the rest of our study.

4.1. Performance Assessment of Classifiers

The mean Accuracy, Precision, Recall, and F1-score of each classifier are reported in
Table 4

Table 4. The mean performance of ARF and KNN classifiers.

Incremental Classifier Accuracy Precision Recall F1-Score

Adaptive Random Forest (ARF) 94.90% 93.10% 96.81% 94.92%
KNN Classifier 87.38% 87.58% 86.62% 87.09%

From Table 4, we notice that both ARF and KNN classifiers achieve good performance.
However, Adaptive Random Forest (ARF) outperforms the KNN classifier in terms of
Accuracy, Precision, Recall, and F1-score.

Telecom 2023, 4 642

ARF reaches 94.90%, 93.10%, 96.81% and 94.92% for Accuracy, Precision, Recall and
F1-score, respectively, while KNN records a lower performance: the Accuracy is 87.38%,
Precision is 87.58%, Recall is 86.62%, and F1-score is 87.09%.

These findings suggest that Adaptive Random Forest may be a more suitable choice for
detecting malicious nodes in VANETs, offering improved predictive capabilities compared
to the KNN algorithm.

Complementing the above results, the variations of the performance of both classifiers
over time according to each performance metric are plotted.

Figures 5–8 illustrate the monitoring over time of the performance of the classifiers
regarding Accuracy, Precision, Recall, and F1-score, respectively.

Telecom 2023, 4, FOR PEER REVIEW 15

These findings suggest that Adaptive Random Forest may be a more suitable choice
for detecting malicious nodes in VANETs, offering improved predictive capabilities com-
pared to the KNN algorithm.

Complementing the above results, the variations of the performance of both classifi-
ers over time according to each performance metric are plotted.

Figures 5–8 illustrate the monitoring over time of the performance of the classifiers
regarding Accuracy, Precision, Recall, and F1-score, respectively.

Figure 5. Accuracy of ARF and KNN classifiers over time.

Figure 6. Recall of ARF and KNN classifiers over time.

Figure 5. Accuracy of ARF and KNN classifiers over time.

Telecom 2023, 4, FOR PEER REVIEW 15

These findings suggest that Adaptive Random Forest may be a more suitable choice
for detecting malicious nodes in VANETs, offering improved predictive capabilities com-
pared to the KNN algorithm.

Complementing the above results, the variations of the performance of both classifi-
ers over time according to each performance metric are plotted.

Figures 5–8 illustrate the monitoring over time of the performance of the classifiers
regarding Accuracy, Precision, Recall, and F1-score, respectively.

Figure 5. Accuracy of ARF and KNN classifiers over time.

Figure 6. Recall of ARF and KNN classifiers over time. Figure 6. Recall of ARF and KNN classifiers over time.

Telecom 2023, 4 643Telecom 2023, 4, FOR PEER REVIEW 16

Figure 7. Precision of ARF and KNN classifiers over time.

Figure 8. F1-score of ARF and KNN classifiers over time.

For each performance metric, the mean and the current values are plotted. We note
that the mean Accuracy is obtained by averaging the Accuracy scores obtained in all test
steps while the current Accuracy refers to the Accuracy of the classifier on the current test
step.

For each classifier, Figures 5–8 exhibit both the mean and the current performance
over time.

Figure 5 represents the monitoring of Accuracy for the ARF and KNN algorithms.
First, we notice that the Accuracy of ARF is higher than that of KNN throughout the eval-
uation time, with a mean Accuracy ranging from 93% to 95% for ARF while KNN records
a lower performance with a mean Accuracy between 83% and 87%.

Further, we observe that the plots of the mean Accuracy for both ARF and KNN ap-
pear to be stable throughout the evaluation time. This outcome is logical since the mean
Accuracy is an average measure which computes the overall performance of the classifier
over multiple test periods.

These outcomes suggest that both classifiers show consistent Accuracy over time.
Similarly, examining the plots of the current Accuracy of both ARF and KNN, we point
out that ARF achieves a higher Accuracy between 92% and 97%, outperforming KNN,
whose current Accuracy ranged from 83% to 91%.

Figure 7. Precision of ARF and KNN classifiers over time.

Telecom 2023, 4, FOR PEER REVIEW 16

Figure 7. Precision of ARF and KNN classifiers over time.

Figure 8. F1-score of ARF and KNN classifiers over time.

For each performance metric, the mean and the current values are plotted. We note
that the mean Accuracy is obtained by averaging the Accuracy scores obtained in all test
steps while the current Accuracy refers to the Accuracy of the classifier on the current test
step.

For each classifier, Figures 5–8 exhibit both the mean and the current performance
over time.

Figure 5 represents the monitoring of Accuracy for the ARF and KNN algorithms.
First, we notice that the Accuracy of ARF is higher than that of KNN throughout the eval-
uation time, with a mean Accuracy ranging from 93% to 95% for ARF while KNN records
a lower performance with a mean Accuracy between 83% and 87%.

Further, we observe that the plots of the mean Accuracy for both ARF and KNN ap-
pear to be stable throughout the evaluation time. This outcome is logical since the mean
Accuracy is an average measure which computes the overall performance of the classifier
over multiple test periods.

These outcomes suggest that both classifiers show consistent Accuracy over time.
Similarly, examining the plots of the current Accuracy of both ARF and KNN, we point
out that ARF achieves a higher Accuracy between 92% and 97%, outperforming KNN,
whose current Accuracy ranged from 83% to 91%.

Figure 8. F1-score of ARF and KNN classifiers over time.

For each performance metric, the mean and the current values are plotted. We note
that the mean Accuracy is obtained by averaging the Accuracy scores obtained in all test
steps while the current Accuracy refers to the Accuracy of the classifier on the current
test step.

For each classifier, Figures 5–8 exhibit both the mean and the current performance
over time.

Figure 5 represents the monitoring of Accuracy for the ARF and KNN algorithms.
First, we notice that the Accuracy of ARF is higher than that of KNN throughout the
evaluation time, with a mean Accuracy ranging from 93% to 95% for ARF while KNN
records a lower performance with a mean Accuracy between 83% and 87%.

Further, we observe that the plots of the mean Accuracy for both ARF and KNN
appear to be stable throughout the evaluation time. This outcome is logical since the mean
Accuracy is an average measure which computes the overall performance of the classifier
over multiple test periods.

These outcomes suggest that both classifiers show consistent Accuracy over time.
Similarly, examining the plots of the current Accuracy of both ARF and KNN, we point out
that ARF achieves a higher Accuracy between 92% and 97%, outperforming KNN, whose
current Accuracy ranged from 83% to 91%.

Telecom 2023, 4 644

Overall, the plots of current Accuracy present more variations in comparison with
those of mean Accuracy. This is because current Accuracy reflects the performance of the
classifier on the most recent test period of time.

Considering the above results, we can conclude that monitoring both mean and current
Accuracy over the evaluation time can be useful in monitoring the real-time performance
of the classifiers and provide a more reliable estimate of the classifier’s ability to detect
misbehavior.

Similarly, Figures 6–8 capture the variations of Recall, Precision, and F1-score metrics
over time. Both the plots of mean and current metric are monitored. ARF shows superior
performance in comparison with KNN regarding all metrics, namely Recall, Precision, and
F1-score.

In summary, the carried-out experiments demonstrate that Adaptive Random Forest
(ARF) has superior performance than the K-Nearest Neighbors (KNN) algorithm regarding
Accuracy, Recall, Precision, and F1-score metrics in the context of our study.

These findings can be attributed to the specificities of each algorithm. On the one
hand, Adaptive Random Forest (ARF) is based on an ensemble approach that combines
multiple decision trees to make predictions, which allows for making accurate predictions.
Further, ARF’s online bagging mechanism allows reducing the impact of poor or irrele-
vant features on the classification process. This technique makes ARF capable of making
accurate predictions by handling imbalance in data and capturing the data patterns more
accurately [11]. On the other hand, KNN relies on the calculation of a distance metric and
makes predictions based on the majority of the K-Nearest Neighbors [12].

In what follows, we aim to analyze the training and testing time of the ARF and KNN
algorithms.

4.2. Training and Testing Time

Figure 9 shows the variations of ARF and KNN models in terms of total running time,
which include both training time and testing time.

Telecom 2023, 4, FOR PEER REVIEW 17

Overall, the plots of current Accuracy present more variations in comparison with
those of mean Accuracy. This is because current Accuracy reflects the performance of the
classifier on the most recent test period of time.

Considering the above results, we can conclude that monitoring both mean and cur-
rent Accuracy over the evaluation time can be useful in monitoring the real-time perfor-
mance of the classifiers and provide a more reliable estimate of the classifier’s ability to
detect misbehavior.

Similarly, Figures 6–8 capture the variations of Recall, Precision, and F1-score metrics
over time. Both the plots of mean and current metric are monitored. ARF shows superior
performance in comparison with KNN regarding all metrics, namely Recall, Precision,
and F1-score.

In summary, the carried-out experiments demonstrate that Adaptive Random Forest
(ARF) has superior performance than the K-Nearest Neighbors (KNN) algorithm regard-
ing Accuracy, Recall, Precision, and F1-score metrics in the context of our study.

These findings can be attributed to the specificities of each algorithm. On the one
hand, Adaptive Random Forest (ARF) is based on an ensemble approach that combines
multiple decision trees to make predictions, which allows for making accurate predic-
tions. Further, ARF’s online bagging mechanism allows reducing the impact of poor or
irrelevant features on the classification process. This technique makes ARF capable of
making accurate predictions by handling imbalance in data and capturing the data pat-
terns more accurately [11]. On the other hand, KNN relies on the calculation of a distance
metric and makes predictions based on the majority of the K-Nearest Neighbors [12].

In what follows, we aim to analyze the training and testing time of the ARF and KNN
algorithms.

4.2. Training and Testing Time
Figure 9 shows the variations of ARF and KNN models in terms of total running time,

which include both training time and testing time.

Figure 9. Training and testing time for ARF and KNN.

It is observed that ARF requires an average time of 56.53 s for training and testing,
whereas the average training and testing time for KNN is 28.43 s.

These findings can be attributed to the fact that the two algorithms have fundamental
differences. KNN relies on relatively simple techniques based on determining the K-Near-
est Neighbors and assigning the most common class label as the new label for the data
point [30]. ARFs, on the other hand, are ensembles of decision trees that combine decisions

Figure 9. Training and testing time for ARF and KNN.

It is observed that ARF requires an average time of 56.53 s for training and testing,
whereas the average training and testing time for KNN is 28.43 s.

These findings can be attributed to the fact that the two algorithms have fundamental
differences. KNN relies on relatively simple techniques based on determining the K-
Nearest Neighbors and assigning the most common class label as the new label for the
data point [30]. ARFs, on the other hand, are ensembles of decision trees that combine

Telecom 2023, 4 645

decisions from various trees and aggregate their results to obtain the final output [6,11].
Consequently, ARF might require higher training and testing time than KNN.

4.3. Comparison with State-of-the-Art Methods

In this section, we present a concise comparison of our proposed work with the
state-of-the-art methods explored in this study as exhibited in Table 5.

Table 5. Comparison with state-of-the-art ML methods for attack detection.

Study Approach Real-Time Dataset Tools Performance
Metrics

Continuous
Learning

[14] SVM and Logistic
Regression No VeReMi PYTHON tools F1-score No

[16]
Binary classification with
Naïve Bayes, decision tree

and Random Forest
No VeReMi PYTHON tools Accuracy No

[17]
Random Forest and a

posterior detection based
on coresets

No CICIDS2017 MATLAB Accuracy No

[18]
Hybrid

optimization-based Deep
Maxout Network (DMN)

No

BoT-IoT data
and

NSL-KDD
data

PYTHON tools Precision
and Recall No

[19]

Adaptive Neuro Fuzzy
Inference System (ANFIS)
and Convolutional Neural

Networks (CNN)

No CICIDS 2017 PYTHON tools

Precision
Sensitivity

Recall
Specificity

No

[22] ML methods for
classification, KNN and RF No VeReMi PYTHON tools Accuracy

F1-Score No

[21] SVM No Generated
data

SUMO and
OMNeT++

PYTHON tools

TPR, FPR, and
ACC No

[31] Distributed multi-layer
classifier Yes Generated

data OMNET++ SUMO Accuracy No

Our work

Incremental Online
classification using

Adaptive Random Forest
(ARF) and K-Nearest

Neighbors (KNN)
classifiers

Yes Generated
data

NS-3
SUMO

Python tools

Accuracy
Recall

Precision
F1-score

Training time
Testing time

Yes

The comparison is conducted based on several parameters such as the real-time
detection, the dataset used, the involved tools, the considered evaluation metrics, and the
online learning approach.

The results of this comparison indicate that the current study may offer a novel strategy,
involving incremental online learning for detecting routing attacks in VANETs.

First, a key benefit of our approach is the ability to monitor the behavior of nodes
in the network in real-time. This allows identifying potential threats in time and acting
appropriately.

Further, we build our own dataset for attack detection, which incorporates essen-
tial features, which are relevant in capturing the behavior of VANET nodes under black
hole attacks.

Additionally, the adopted simulation methodology allows reliable VANET simulations
built upon accurate mobility models that were generated from realistic maps using popular
tools like OSM, SUMO, and NS-3.

Telecom 2023, 4 646

Finally, our proposed approach allows continuous and real-time learning thanks to
the incremental learning process, which allows for the use of data as it becomes available,
creating models that are constantly up-to-date instead of models that are trained on fixed
datasets. This suggests that it is capable of learning and improving its predictions or
decisions as new data arrive.

5. Conclusions

The current study introduced a new approach for detecting routing attacks in VANETs,
leveraging incremental online learning algorithms trained on data generated in real-time.
Our study focused on assessing the performance of two algorithms, namely Adaptive
Random Forest (ARF) and K-Nearest Neighbors, with regard to Accuracy, Precision, Recall,
and F1-score metrics. The training and testing time of both classifiers were also analyzed.
Our research particularly addressed the detection of black hole attacks, which pose a
significant threat to the AODV routing protocol. Data used for attack detection are collected
from simulating realistic VANET scenarios using two well-known simulators, namely
SUMO and NS-3. Further, essential features, which are relevant in capturing the behavior
of VANET nodes under a black hole attack, are monitored over time.

The findings show that incremental learning is a promising solution in time-critical
applications like attack detection in highly dynamic environments such as VANETs, as it
allows continuous and real-time learning. Further, the results show that Adaptive Random
Forest (ARF) can be successfully applied to classify and detect black hole nodes in VANETs.
ARF outperformed KNN with respect to all performance measures. However, ARF required
more time for both training and testing in comparison with KNN.

While these conclusions have shown promising results, the detection of intrusions
using online incremental machine learning remains a challenging problem due to the
constantly evolving nature of attacks and the need to continuously adapt the models to new
threats. It is worth noting that the choice of features used to represent the network traffic
data has a significant impact on the performance of the classifier. Further, the performances
of incremental learning classifiers seem to vary depending on various factors like the
dataset used, the complexity of the problem, as well as the type of the incremental learning
framework used.

As a next step, we intend to lead an in-depth study by tuning the algorithms’ parame-
ters in order to enhance their performance as well as the overall required time for training
and testing.

Finally, it is crucial to acknowledge the challenges of real-time attack detection in
VANETs, owing to the highly dynamic nature of the network and the rise of sophisticated
attack strategies. Accordingly, our next priority is to implement a hybrid model that
incorporates ARF with other well-known algorithms like online SVM for more effective
and precise detection of potential threats and attacks in VANETs.

Author Contributions: Conceptualization, S.A. and S.E.H.; methodology, S.A. and M.-A.E.H.; vali-
dation, M.H.; formal analysis, S.A., M.H. and S.E.H.; investigation, S.A. and S.E.H.; resources, S.A.
and S.E.H.; data curation, S.A. and S.E.H.; writing—original draft preparation, S.A., M.H. and S.E.H.;
writing—review and editing, S.A., M.H. and S.E.H.; visualization, S.A., M.-A.E.H. and S.E.H.; su-
pervision, M.H.; project administration, M.H. and S.E.H. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Telecom 2023, 4 647

References
1. Ajjaj, S.; El Houssaini, S.; Hain, M.; El Houssaini, M.-A. A New Multivariate Approach for Real Time Detection of Routing

Security Attacks in VANETs. Information 2022, 13, 282. [CrossRef]
2. Banafshehvaragh, S.T.; Rahmani, A.M. Intrusion, Anomaly, and Attack Detection in Smart Vehicles. Microprocess. Microsyst. 2023,

96, 104726. [CrossRef]
3. Mchergui, A.; Moulahi, T.; Zeadally, S. Survey on Artificial Intelligence (AI) Techniques for Vehicular Ad-Hoc Networks (VANETs).

Veh. Commun. 2022, 34, 100403. [CrossRef]
4. Nallaperuma, D.; Nawaratne, R.; Bandaragoda, T.; Adikari, A.; Nguyen, S.; Kempitiya, T.; De Silva, D.; Alahakoon, D.; Pothuhera,

D. Online Incremental Machine Learning Platform for Big Data-Driven Smart Traffic Management. IEEE Trans. Intell. Transp. Syst.
2019, 20, 4679–4690. [CrossRef]

5. Losing, V.; Hammer, B.; Wersing, H. Incremental On-Line Learning: A Review and Comparison of State of the Art Algorithms.
Neurocomputing 2018, 275, 1261–1274. [CrossRef]

6. López, J.M. Fast and Slow Machine Learning. Ph.D. Thesis, Université Paris-Saclay–Télécom Paristech, Paris, France, 2019.
7. Malik, A.; Khan, M.Z.; Faisal, M.; Khan, F.; Seo, J.-T. An Efficient Dynamic Solution for the Detection and Prevention of Black

Hole Attack in VANETs. Sensors 2022, 22, 1897. [CrossRef]
8. Ajjaj, S.; El Houssaini, S.; Hain, M.; El Houssaini, M.-A. Performance Assessment and Modeling of Routing Protocol in Vehicular

Ad Hoc Networks Using Statistical Design of Experiments Methodology: A Comprehensive Study. ASI 2022, 5, 19. [CrossRef]
9. Documentation-SUMO Documentation. Available online: https://sumo.dlr.de/docs/index.html (accessed on 21 September 2021).
10. Ns-3|a Discrete-Event Network Simulator for Internet Systems. Available online: https://www.nsnam.org/ (accessed on 21

September 2021).
11. Gomes, H.M.; Bifet, A.; Read, J.; Barddal, J.P.; Enembreck, F.; Pfharinger, B.; Holmes, G.; Abdessalem, T. Adaptive Random Forests

for Evolving Data Stream Classification. Mach. Learn. 2017, 106, 1469–1495. [CrossRef]
12. Montiel, J.; Jesse, R.; Bifet, A.; Talel, A. Scikit-Multiflow: A Multi-Output Streaming Framework. J. Mach. Learn. Res. 2018, 19,

2914–2915.
13. Karagiannis, D.; Argyriou, A. Jamming Attack Detection in a Pair of RF Communicating Vehicles Using Unsupervised Machine

Learning. Veh. Commun. 2018, 13, 56–63. [CrossRef]
14. Singh, P.K.; Gupta, S.; Vashistha, R.; Nandi, S.K.; Nandi, S. Machine Learning Based Approach to Detect Position Falsification

Attack in VANETs. In Security and Privacy; Nandi, S., Jinwala, D., Singh, V., Laxmi, V., Gaur, M.S., Faruki, P., Eds.; Springer:
Singapore, 2019; Volume 939, pp. 166–178. ISBN 9789811375606.

15. Singh, P.K.; Gupta, R.R.; Nandi, S.K.; Nandi, S. Machine Learning Based Approach to Detect Wormhole Attack in VANETs. In
Web, Artificial Intelligence and Network Applications; Barolli, L., Takizawa, M., Xhafa, F., Enokido, T., Eds.; Springer International
Publishing: Cham, Switzerland, 2019; Volume 927, pp. 651–661. ISBN 978-3-030-15034-1.

16. Sonker, A.; Gupta, R.K. A New Procedure for Misbehavior Detection in Vehicular Ad-Hoc Networks Using Machine Learning.
Int. J. Electr. Comput. Eng. IJECE 2021, 11, 2535. [CrossRef]

17. Bangui, H.; Ge, M.; Buhnova, B. A Hybrid Machine Learning Model for Intrusion Detection in VANET. Computing 2022, 104,
503–531. [CrossRef]

18. Kaur, G.; Kakkar, D. Hybrid Optimization Enabled Trust-Based Secure Routing with Deep Learning-Based Attack Detection in
VANET. Ad Hoc Netw. 2022, 136, 102961. [CrossRef]

19. Karthiga, B.; Durairaj, D.; Nawaz, N.; Venkatasamy, T.K.; Ramasamy, G.; Hariharasudan, A. Intelligent Intrusion Detection
System for VANET Using Machine Learning and Deep Learning Approaches. Wirel. Commun. Mob. Comput. 2022, 2022, 5069104.
[CrossRef]

20. Sharma, A. Position Falsification Detection in VANET with Consecutive BSM Approach Using Machine Learning Algorithm.
Ph.D. Thesis, Faculty of Graduate Studies through the School of Computer Science, Windsor, ON, Canada, 2021.

21. Zhang, C.; Chen, K.; Zeng, X.; Xue, X. Misbehavior Detection Based on Support Vector Machine and Dempster-Shafer Theory of
Evidence in VANETs. IEEE Access 2018, 6, 59860–59870. [CrossRef]

22. Ercan, S.; Ayaida, M.; Messai, N. Misbehavior Detection for Position Falsification Attacks in VANETs Using Machine Learning.
IEEE Access 2022, 10, 1893–1904. [CrossRef]

23. Rojas, J.S.; Rendon, A.; Corrales, J.C. Consumption Behavior Analysis of over the Top Services: Incremental Learning or Traditional
Methods? IEEE Access 2019, 7, 136581–136591. [CrossRef]

24. Jin, B.; Jing, Z.; Zhao, H. Incremental and Decremental Extreme Learning Machine Based on Generalized Inverse. IEEE Access
2017, 5, 20852–20865. [CrossRef]

25. Almeida, A.; Brás, S.; Sargento, S.; Pinto, F.C. Time Series Big Data: A Survey on Data Stream Frameworks, Analysis and
Algorithms. J. Big Data 2023, 10, 83. [CrossRef]

26. OpenStreetMap. Available online: https://www.openstreetmap.org/ (accessed on 4 September 2023).
27. Das, S.R.; Belding-Royer, E.M.; Perkins, C.E. Ad Hoc On-Demand Distance Vector (AODV) Routing. Available online: https:

//tools.ietf.org/html/rfc3561 (accessed on 20 December 2020).
28. Singh, D.; Singh, B. Investigating the Impact of Data Normalization on Classification Performance. Appl. Soft Comput. 2020, 97,

105524. [CrossRef]

https://doi.org/10.3390/info13060282
https://doi.org/10.1016/j.micpro.2022.104726
https://doi.org/10.1016/j.vehcom.2021.100403
https://doi.org/10.1109/TITS.2019.2924883
https://doi.org/10.1016/j.neucom.2017.06.084
https://doi.org/10.3390/s22051897
https://doi.org/10.3390/asi5010019
https://sumo.dlr.de/docs/index.html
https://www.nsnam.org/
https://doi.org/10.1007/s10994-017-5642-8
https://doi.org/10.1016/j.vehcom.2018.05.001
https://doi.org/10.11591/ijece.v11i3.pp2535-2547
https://doi.org/10.1007/s00607-021-01001-0
https://doi.org/10.1016/j.adhoc.2022.102961
https://doi.org/10.1155/2022/5069104
https://doi.org/10.1109/ACCESS.2018.2875678
https://doi.org/10.1109/ACCESS.2021.3136706
https://doi.org/10.1109/ACCESS.2019.2942782
https://doi.org/10.1109/ACCESS.2017.2758645
https://doi.org/10.1186/s40537-023-00760-1
https://www.openstreetmap.org/
https://tools.ietf.org/html/rfc3561
https://tools.ietf.org/html/rfc3561
https://doi.org/10.1016/j.asoc.2019.105524

Telecom 2023, 4 648

29. Hidalgo, J.I.G.; Maciel, B.I.F.; Barros, R.S.M. Experimenting with Prequential Variations for Data Stream Learning Evaluation.
Comput. Intell. 2019, 35, 670–692. [CrossRef]

30. AlQabbany, A.O.; Azmi, A.M. Measuring the Effectiveness of Adaptive Random Forest for Handling Concept Drift in Big Data
Streams. Entropy 2021, 23, 859. [CrossRef] [PubMed]

31. Rashid, K.; Saeed, Y.; Ali, A.; Jamil, F.; Alkanhel, R.; Muthanna, A. An Adaptive Real-Time Malicious Node Detection Framework
Using Machine Learning in Vehicular Ad-Hoc Networks (VANETs). Sensors 2023, 23, 2594. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1111/coin.12208
https://doi.org/10.3390/e23070859
https://www.ncbi.nlm.nih.gov/pubmed/34356400
https://doi.org/10.3390/s23052594
https://www.ncbi.nlm.nih.gov/pubmed/36904798

	Introduction
	Related Works
	Materials and Methods
	Incremental Online Learning
	Proposed Method
	Data Collection
	Simulation Environment and Scenarios
	Definition of Features

	Data Preprocessing
	Incremental Online Algorithms
	Prequential Evaluation

	Results and Discussion
	Performance Assessment of Classifiers
	Training and Testing Time
	Comparison with State-of-the-Art Methods

	Conclusions
	References

