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Abstract: Spectral efficiency is crucial for implementing 5G cellular networks and beyond. Non-
orthogonal multiple access (NOMA) is a promising scheme to enhance efficiency. This paper intro-
duces two improvements that will further enhance the channel capacity using the NOMA algorithm.
We first introduce a novel algorithm, the User Sub-Channel Fair Matching Algorithm (USFMA),
by applying a new sub-channel sorting and compensations scheme and then benefiting from the
well-known Hungarian algorithm to allocate users to each sub-channel in a way that guarantees an
optimum overall system performance. Then, for per sub-channel power allocation, we convert the
non-convex objective function into a convex sub-problem using the concave–convex procedure (CCP)
by converting the objective function into convex sub-problems and using the successive convex ap-
proximation to solve the convex sub-problems to find effective sub-optimal solutions. We have built
a MATLAB simulation cellular environment to evaluate and compare the system performance with
other known schemes. The results are promising and showed significant improvements compared to
the other capacity and energy efficiency schemes.

Keywords: non-orthogonal multiple access; user allocation algorithm; Hungarian algorithm; user
fairness; non-convex problem; DC programming

1. Introduction

Future 5G cellular mobile communication systems require further ultra-reliability,
availability, low latency, and high throughput to fulfil the high projected requirements.
Besides its expected enormous connectivity, the Internet of Things (IoT) is intended to
support diverse employments for a wide range of devices and applications. Future 5G
cellular mobile communication systems are poised to demand even greater levels of ultra-
reliability, availability, low latency, and high throughput in order to meet the increasingly
ambitious requirements. In addition to its anticipated extensive connectivity, the Internet of
Things (IoT) is envisaged to facilitate a broad spectrum of applications catering to diverse
needs across a wide array of domains For instance, crucial IoT applications such as digitalis
health, smart cities, geological monitoring and control will impose considerable difficulties
on spectrum use regarding energy consumption and low latency.

For instance, critical IoT applications such as digital health, smart cities, and geological
monitoring and control will present significant challenges in terms of spectrum utilization.
In this regard, non-orthogonal multiple access (NOMA) is intended to accomplish the
massive expansion of wireless data traffic, resolve the shortage of frequency resources
for the next generation of wireless networks [1], and significantly enhance the spectral
efficiency of 5G networks [2]. NOMA can be incorporated into various wireless communica-
tions techniques like Multiple-Input Multiple-Output (MIMO), beamforming, cooperative
communications, and network coding [3,4]. In [5], it was shown that NOMA enhances the
IoT structure by utilizing several temporarily unused computational and storage resources
by requesting cooperative caching and computing. Unlike Orthogonal Frequency Division
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Multiple Access (OFDMA), where each channel can largely be allocated to a single user,
NOMA enables multiple user allocations per channel by implementing power-multiplexing
and resolves multiple-access interference by applying successive interference cancellation
(SIC) at the receivers [6]. However, SIC adds significant complexity to the NOMA struc-
ture [6]. In other words, NOMA enhances the spectral efficiency at the expense of a higher
complexity compared to OFDMA [7].

On the other hand, MIMO systems employ spatial multiplexing to increase data ca-
pacity by establishing multiple paths and effectively using them as additional “channels”
to transfer data. By considering the advantages of MIMO, the implementation of NOMA
within MIMO systems was considered in [8,9]. As a related technology, it was shown
in [10,11] that the implementation of Full Duplex (FD) mode alongside NOMA brings
a significant improvement to the performance compared to Half-Duplex (HD) NOMA.
The authors of [12] illustrated that the FD-NOMA scheme can achieve tremendous through-
put in a multi-cell system concerning user assistance and resource optimization. Based
on the above, NOMA and FD systems can coexist cooperatively, and their integration has
evolved progressively to enhance spectrum efficiency.

2. Related Works and Motivation

Recently, MIMO-NOMA has attracted the attention of many researchers. The authors
of [13] presented an iterative algorithm to minimize the overall transmission power. They
investigated optimizing power allocation under fixed beam-forming vectors, achieving
ideal beam-forming directions based on definite power allocation. Furthermore, a hybrid
relaying scheme proposed in [14] can achieve a significant performance gain over con-
ventional NOMA, HD cooperative NOMA (HD-CNOMA) and FD-CNOMA. In [15], the
authors presented a full-duplex device-to-device (DtD)-aided cooperative NOMA scheme
and derived the outage probability to show the practicality and effectiveness of their de-
sign. The authors of [16] discussed the fundamental notion of MIMO-NOMA to indicate
the challenges in this domain. Simultaneous wireless information and power transfer
(SWIPT) is the key to increasing energy efficiency. In [17], SWIPT was used in composite
precoding based on millimeter wave (mmWave) massive MIMO-NOMA. Compared with
LTE systems, MIMO-NOMA networks introduce more enhanced spectral efficiency and
network capacity with more practical resource allocation algorithms. The authors of [18,19]
investigated resource allocation for NOMA, and their primary emphasis was on sum rate
optimization following the total power and proportional rate constraints. The authors
of [20] proposed an algorithm to jointly optimize power and channel allocation in NOMA,
which significantly optimized throughput and fairness. Regarding ideal channel state infor-
mation (CSI) at the base station (BS), a near-optimal resolution considering power allocation
was proposed in [21]. The authors of [22] presented an effective power allocation design
through defective CSI concerning distinct quality-of-service (QoS) conditions. The massive
increases in information transfer and wireless end users drive an assured rise in the energy
consumption of wireless networks; therefore, energy efficient (EE) schemes for the future
generations of wireless systems is of critical concern [23]. Thus, the design of resource
allocation schemes with the purpose of enhancing EE has become a vital research topic in
NOMA networks. For instance, the authors of [24] analyzed an EE power allocation struc-
ture in mmWave massive MIMO with NOMA. Moreover, in [25], the authors investigated
an EE transmission design for SISO-NOMA systems. Additionally, the authors of [26] con-
sidered a shared power allocation and channel distribution for optimizing the EE of NOMA
networks, then later they expanded their work in [27] by introducing a joint subchannel and
power optimization structure for a downlink NOMA heterogeneous network that enhances
the EE. However, the presented solution concentrated only on increasing the overall EE
of networks, driving unbalanced system resource use. The authors of [28] investigated
MIMO-NOMA networks for wireless communication networks that aid adaptive multiple
access. Three scenarios were used to test and propose innovative adaptive resource alloca-
tion mechanisms. An energy efficient strategy for downlinking mmWave-NOMA systems
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with joint user grouping, scheduling, and optimal power allocation was provided to maxi-
mize energy efficiency, proposed by the authors of [29]. This work considers an improved
k-means algorithm with NOMA to meet energy efficiency limitations and allocate users to
the actual cluster to boost the network sum throughput. The authors of [30] investigated
the performance of MC-NOMA technology in an uplink scenario to see how well it can
improve system EE by performing energy efficient power and subchannel allocation. They
proposed a joint user clustering, subchannel allocation, and power allocation problem to
maximize the uplink MC-NOMA scenario’s EE (JSPEE). The authors found that the uplink
MC-NOMA network’s EE performance was significantly improved by utilizing channel
gain diversity, even at high minimum data rate parameter values.

Finally, it was shown that effectively integrating resource allocation and grant-free
transmission within NOMA will provide a better EE and throughput than using them
separately [31].

This paper deals with resource and user allocation problems for NOMA systems
with wireless power transfer to ensure fast rates and energy efficiency. We compare the
performance of our proposed USFMA with two other algorithms: The first one being the
User Subchannel Matching Algorithm (USMA) [32], which is considered as a many-to-
many matching algorithm. The principle of USMA is that each user selects and proposes
their preferred sub-channel. Based on the allowed number of users per sub-channel, each
sub-channel makes a decision of accepting or rejecting any user offer. When all users
have made an offer, a round of proposals is performed, and once all users are assigned
to sub-channels, the iteration is ended and user allocation is complete. The criteria and
selection algorithm is described in detail in Table I in [32]. The second algorithm is Channel
State Sorting–Pairing Algorithm (CSS-PA) [33]. As known, SIC is sensitive to the channel
state, and hence the Signal to Interference Plus Noise (SINR) difference between paired
users should be large enough to alleviate error propagation. Thus, CSS-PA pairs a user with
a good condition with a user with a bad channel condition, which enhances user fairness
and increases system capacity

The contributions of this work can be summarized as follows:

• We propose a new user allocation algorithm called User Sub-channel Fair Matching Al-
gorithm (USFMA), benefiting from existing user allocation algorithms and combining
their advantages. Unlike USMA, we propose an optimum channel gain compensation,
sorting, and selection that can enhance the overall system capacity and performance.
This algorithm has a lower computational complexity than the Exhaustive Search Al-
gorithm (ESA) and can ensure user fairness. Moreover, the complexity of the USFMA
will not increase sharply when increasing the number of superimposed users.

• Optimization of the energy efficiency of NOMA systems. We propose using the
DC programming method to allocate power for end users superimposed on the
corresponding sub-channel. The main idea is to utilize DC programming to convert
non-convex problems into convex problems.

• Simulations of the proposed algorithm in Matlab. The simulation results confirm that
NOMA systems surpass OFDM systems. Additionally, the USFMA is better than the
existing USMA and CSS-PA. Therefore, using DC programming to allocate power for
end users can improve the system’s energy efficiency.

The paper is organized as follows: The system model is described in Section 3. We
formulate the problem and propose the objective optimization function in Section 4. The pro-
posed resource allocation scheme is addressed in Section 5. The performance of the pro-
posed method is evaluated in Section 6. We finally conclude our work in Section 7.

3. System Model

We consider that a wireless network consists of many base stations (BSs), where each
BS transmits information to U users, where each user is u ∈ {u1, u2, . . . , uU}, through V
sub-channels, where each sub-channel is v ∈ {v1, v2, . . . , vV}. Furthermore, each receiver is
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equipped with SIC and a single antenna. Assuming that the system bandwidth (BW) is B,
then the BW of every sub-channel is:

Bv = B/V (1)

By expressing the total transmitted power of the BS as PBS, and the power of the ith
user of the sub-channel v as Pi,v, then, the signal sent via the BS for n users per sub-channel
can be expressed as follows:

xv =
n

∑
i=1

√
Pi,vsi (2)

where si represents the symbol of the ith user. According to the principle of NOMA, each
piece of user equipment (UE) receives a superposition of the correct and interfering signals
simultaneously. Thus, the received signal for the jth user can be represented as:

yj,v = xvhj,v + wj,v (3)

= (
n

∑
i=1

√
Pi,vsi)hj,v + wj,v (4)

=
√

Pj,vsjhj,v +
n

∑
i=1,i 6=j

√
Pi,vsihj,v + wj,v (5)

where hj,v is the sub-channel coefficient of the jth user and wj,v is the additive white
Gaussian noise (AWGN) with wj,v ∼ NC(0, σ2

v ). Then, SINR (without SIC) received by the
jth user can be expressed as:

SINRj,v =
Pj,v|hj,v|2

σ2
v + ∑n

i=1,i 6=j Pi,v|hj,v|2
,

=
Pj,vHj,v

1 + ∑n
i=1,i 6=j Pi,vHj,v

(6)

where Hj,v = |hj,v|2/σ2
v represents the channel response normalized by noise for the jth

user at sub-channel v. For the SIC optimal decoding order, the channel conditions for user
superpositions per sub-channel should be sorted by the channel responses normalized by
noise as follows:

Hi,v 6 Hj,v , ∀ (i < j) ∈ {1, . . . , n} (7)

Consequently, the power assigned to users per sub-channel will be according to the
following order:

|Pi,v| > |Pj,v| , ∀ (i < j) ∈ {1, . . . , n} (8)

Then, after removal of the interference of users with poorer channel conditions, the es-
timated SINR for the jth user can be expressed as:

S̃INRj,v =
Pj,v Hj,v

1 + ∑n
i=j+1 Pi,v Hj,v

, j = 1, . . . , n− 1. (9)

Based on Shannon’s capacity formula, the data rate for the jth user is given by:

Rj,v = Bv log2(1 +
Pj,vHj,v

1 + ∑n
i=j+1 Pi,v Hj,v

) (10)

The sum rate of the sub-channel v is given by:

Rv =
n

∑
j=1

Bvlog2(1 +
Pj,vHj,v

1 + ∑n
i=j+1 Pi,v Hj,v

) (11)
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Accordingly, the total sum rate of the system is:

R =
V

∑
v=1

Rv (12)

4. Problem Description

Figure 1 depicts the NOMA downlink system for reference. As seen in Figure 1,
each sub-channel v serves users that are close and far, with channel and power conditions
described in (7) and (8), respectively.

Figure 1. User pairing diagram.

The NOMA energy efficiency is determined as the ratio of the total data transmission
rate to the system’s total power consumption. The total power consumption includes the
base station transmission power and the circuit consumption of the wireless devices [34].
Thus, from (11), the energy efficiency of the sub-channel can be expressed as:

Ev =
Rv

Pf ixed + Pv
(13)

where Pf ixed is the power of fixed circuit in simulator, and:

Pv =
n

∑
j=1

Pj,v (14)

The energy efficiency of the system is:

E =
V

∑
v=1

Ev (15)

Hence, we can achieve the goal of energy saving by optimizing the problem via
maximizing the data rate that can be transferred per unit of energy. Therefore, to increase
the energy efficiency of the system, our objective function is:
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max
Pv>0

V

∑
v=1

Rv(αn)

Pf ixed + Pv
, 0 < αn < 1 (16)

subject to

C1 : Rj,v > Rmin

C2 :
V

∑
v=1

Pv = PBS

where α is the coefficient of the power allocation of the worst channel gain. Constraint C1
guarantees the user’s minimum data rate, where Rmin is the minimum data rate required
by QoS. Constraint C2 means that the transmit power at the base station is constant.

The global optimal solution suffers from a high complexity. To obtain sub-optimal
solutions, we have divided the objective optimization function into two sub-problems: the
user allocation sub-problem and the power allocation sub-problem. These will be discussed
in the following section.

5. The Sub-Optimal Solution

In this section, we propose and examine how to maximize the minimum individual EE
under transmit power and QoS constraints to ensure fairness among users. As a result of the
fractional structure of the EE expression and the binary variable in the channel allocation
indicator, the optimization problem at hand is a non-convex problem that is difficult to
solve directly. Next, we will introduce the problem optimization solutions; first USFMA
will be discussed, then power allocation by DC programming will be detailed.

5.1. User Sub-Channel Fair Matching Algorithm

The proposed USFMA is based on CSS-PA, the USMA, and the Hungarian algo-
rithm [35,36]. Random power allocation (RPA) [37] has a low complexity, but the system
performance is poor because the user’s channel conditions are not considered. The exhaus-
tive search algorithm (ESA) [38] can maximize the system performance but the computa-
tional complexity is too high. Existing user allocation algorithms either have the problem of
excessive complexity or sacrifice partial throughput to reduce the complexity. Therefore, we
have combined the advantages of several existing user allocation algorithms and proposed
a new user allocation algorithm that is not too complex and can ensure user fairness.

According to the CSS-PA, the greater the difference in channel gains of users superim-
posed on the same sub-channel, the better the system throughput. By exploiting the USMA,
we can regard the user allocation problem as a bilateral matching problem between the
user and the sub-channel, and then we can use the Hungarian algorithm to find the perfect
match with the largest channel gain. Taking into account the complexity of the receiver,
we assume that each sub-channel only superimposes two users and hence, the number of
users is twice the number of sub-channels, 2V = U.

We construct a channel gain matrix G of size (UV) from the users and sub-channels,
then the gains for every sub-channel are sorted from small to large. After that, G is
split in the middle into two square matrices (G1, G2), each with size VV. Then, gain
compensation is applied for the users in G1, G2, respectively, according to our USFMA.
After compensation, we use the Hungarian algorithm for the two matrices to obtain the
gain and maximum user allocation.
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Let us consider an example of a channel matrix to demonstrate the operation of each
algorithm when assigning users to each sub-carrier. We consider in our example a NOMA
system with U = 6 and V = 3. Then, G can be expressed as:

G =



42 80 1586
219 37 183
309 773 678
74 91 49
64 21 23
2 38 9

 (17)

The gain matrices G1, G2 after sorting and splitting G are:

G1 =

 2 21 9
42 37 23
64 38 49

 (18)

G2 =

 74 80 183
219 91 678
309 773 1586

 (19)

We normalize all the elements in G1 and G2 by their corresponding column sum and
compensate them as follows:

Ḡmn =

(
Gmn

∑U/2
m=1 Gmn

)−β

, G ∈ {G1, G2} (20)

where m and n are row and column indices, respectively, and β is the attenuation coefficient.
We set β = 0.4. Therefore, based on (20), the normalized and compensated forms of (18)
and (19) are:

Ḡ1 =

 4.9313 1.8366 2.4082
1.4590 1.4643 1.6546
1.2328 1.4488 1.2227

 (21)

Ḡ2 =

 2.3128 2.6838 2.8215
1.4985 2.5490 1.6709
1.3057 1.0832 1.1894

 (22)

After that, we apply the Hadamard product between each matrix and its corresponding
normalized counterpart as follows:

Ĝ1 = G1 ◦ Ḡ1 =

 10 39 22
61 54 38
79 55 60

 (23)

Ĝ2 = G2 ◦ Ḡ2 =

 171 215 516
328 232 1133
403 837 1886

 (24)

Then, we use the Hungarian algorithm to perform perfect matching on the Ĝ1 matrix
and the Ĝ2 matrix, respectively. The channel gain and the largest user allocation are
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found under perfect matching. After using the Hungarian algorithm, the user’s allocation
result is:

Ĝ1 =

 10 [39] 22
[61] 54 38
79 55 [60]

 (25)

Ĝ2 =

 171 [215] 516
[328] 232 1133
403 837 [1886]

 (26)

As seen in (25) and (26), we can obtain the first user allocated to each sub-channel
from Ĝ1 and the second user allocated to each sub-channel from Ĝ2, as indicated in Table 1.
After this, the user assignment is complete.

Table 1. The matching result of the user allocation.

Matching Results v1 v2 v3

u1 10 [39] 22

u2 [61] 54 38

u3 79 55 [60]

u4 171 [215] 516

u5 [328] 232 1133

u6 403 837 [1886]

Table 1 shows the matching results. This result indicates that users u2 and u5 are
superimposed on the first sub-channel v1, while u1 and u4 are superimposed on v2 and u3
and u6 are superimposed on v3. From the allocation result, we can see that the gains of the
two users superimposed on the same sub-channel are quite different, so the system will
have better throughput. Based on the premise of perfect matching [39], user fairness can be
guaranteed. The specific process of Algorithm 1 is as follows:

Algorithm 1: User Sub-Channel Fair Matching Algorithm (USFMA)

1. Calculate the channel gain matrix of users u ∈ {u1, u2, . . . , uU} and sub-channels
v ∈ {v1, v2, . . . , vV}

2. Sort the gain matrix in column-wise ascending order starting from first row to
get a new gain matrix G of size UV.

3. Generate a gain compensation matrix as shown in (20), where β is the the
attenuation coefficient. We set β = 0.4 in this paper.

4. Let the sorted gain matrix G be multiplied, element wise, by the compensation
matrix Ḡ as in (23) to get compensated, the new compensated gain matrix is Ĝ.

5. Split Ĝ into two matrices Ĝ1, Ĝ2, each of size U
2 V

6. Using the Hungarian algorithm for Ĝ1, the first matching user on each
sub-channel is obtained. Using the Hungarian algorithm for Ĝ2, the second
user matched on each sub-channel is obtained.

7. End.

If the number of super-positions is increased to three, then the user channel gain
matrix is divided into three groups, and the other steps are the same as Algorithm 1.

Complexity Analysis

If there are V sub-channels and U = 2V users, the time complexity of the ESA
with the best performance in user allocation is O( (2V)!

2V ), and the time complexity of the
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USFMA considered in this paper is O(2V3). Furthermore, the complexity of the CSS-PA is
O(Vlog(V)), while the complexity of the USMA is O(UV2). Accordingly, we can notice
that when the number of users is large, the complexity of the user allocation algorithm
proposed in this paper is much lower than that of the ESA. The CSS-PA shows the lowest
complexity; however, the USFMA still shows comparable complexity with other schemes.

In summary, the algorithm is suitable for superimposing multiple users on the same
sub-channel, and the complexity will not increase sharply.

5.2. Power Allocation by DC Programming

In this section, corresponding to the USFMA, to maximize the system’s energy effi-
ciency, we use the difference of convex (DC) programming method to solve the power
allocation problem of users on the sub-channel. The DC programming approach is widely
used in solving non-convex optimization problems. Moreover, DC programming can be
applied if the objective function can be written as a minimization of the difference of two
convex functions.

Suppose the objective function of a non-convex optimization problem can be formu-
lated as a difference minimization between two convex functions. In that case, the non-
convex optimization problem can be solved by DC programming, which is given by:

min
α∈χ

L(α) = f (α)− g(α) , χ = [α1, α2, . . . , αn]
T (27)

where χ is a convex set and f (α) and g(α) are continuous, convex, or quasi-convex [40].
The solution methods of DC programming can be divided into two methods: The first

is to obtain the global optimal solution, for example, as done in the branch-and-bound
technique [41] and the cutting plane method. The other approximation methods are based
on combinatorial optimization ideas; although these types of methods can obtain the global
optimal solution, the computational complexity is relatively high. Different types can obtain
local optimal solutions and global sub-optimal solutions, for instance, the concave–convex
procedure (CCP) algorithm [42]. Although this type of method can only obtain a locally
optimal solution, its computational complexity is relatively low [43–45].

The CCP algorithm converts the objective function into convex sub-problems by
linearizing the non-convex part of the objective function and using the successive convex
approximation to solve the convex sub-problems to find effective sub-optimal solutions. In
our work, we use the CCP algorithm to find the sub-optimal solutions.

We consider two users superimposed on the same sub-channel, where we assume u1
is an edge user who is far away from the base station with poor channel conditions. u2 is
near the base station with good channel conditions, illustrated in Figure 2. Consider that
the symbol sent by the base station over a sub-channel is:

xv =
√

αPvs1 +
√
(1− α)Pvs2 , 0 < α < 1 (28)

where α is the power allocation coefficient. Then, the received symbols of u2 and u2 are:

y1,v =
√

αPvs1h1,v +
√
(1− α)Pvs2h1,v + w1,v

y2,v =
√

αPvs1h2,v +
√
(1− α)Pvs2h2,v + w2,v

(29)

Based on the SIC decoding sequences, u2 is able to cancel the interfering power term
of u1. Then, the acceptance symbol for two users can be rewritten as:

y1,v =
√

αPvs1h1,v +
√
(1− α)Pvs2h1,v + w1,v

y2,v =
√
(1− α)Pvs2h2,v + w2,v

(30)
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Figure 2. Two users transmitting on the same channel.

Based on Shannon’s capacity formula, the data rate for each user is given by:

Ru1 , v = Bvlog2(1 +
αPv H1,v

1 + (1− α)Pv H1,v
)

Ru2 , v = Bvlog2(1 + (1− α)Pv H2,v)

(31)

where H as defined in (6). Then, the rate sum for the sub-channel v is:

Rv = Bvlog2(1 +
αPvH1,v

1 + (1− α)PvH1,v
) + Bvlog2(1 + (1− α)PvH2,v) (32)

Therefore, as in (16), the maximum energy efficiency for the sub-channel problem can
be expressed as:

Emax
v = max

α∈(0,1)

Bvlog2(1 +
αPv H1,v

1+(1−α)Pv H1,v
) + Bvlog2(1 + (1− α)PvH2,v)

Pf ixed + Pv

= max
α∈(0,1)

Bvlog2(1 +
αPv H1,v

1+(1−α)Pv H1,v
)

Pf ixed + Pv
+

Bvlog2(1 + (1− α)Pv H2,v)

Pf ixed + Pv

 (33)

We transform the maximization problem into the minimization problem via deploying
the DC programming approach as follows:

min
α∈(0,1)

−
Bvlog2(1 +

αPv H1,v
1+(1−α)Pv H1,v

)

Pf ixed + Pv
− Bvlog2(1 + (1− α)Pv H2,v)

Pf ixed + Pv
(34)

This can be rewritten as:

min
α∈(0,1)

( f (α)− g(α)) (35)

where f (α) = −
Bv log(1+

αPv H1,v
1+(1−α)Pv H1,v

)

Pf ixed+Pv
and g(α) = Bv log(1+(1−α)Pv H2,v)

Pf ixed+Pv
.

Since the second derivatives of function f (α) and function g(α) are both greater than
zero, that is,∇2 f (α) > 0 and∇2g(α) > 0, these two functions are convex functions of α that
satisfy the conditions to apply the DC programming method. Accordingly, we can use the
DC programming approach to allocate power to different sub-channel users. The principle
in deploying Algorithm 2 is to convert a non-convex problem into convex sub-problems
by using successive convex approximations. The specific algorithm is demonstrated as
follows:
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Algorithm 2: Power Allocation by DC Programming [46]

1. Initialize α(0), set iteration number i = 0, set differential tolerance value ξ

2. while |L(α(i+1))− L(α(i))| > ξ do
3. Define convex approximation of L(i)(α) as

ˆL(i)(α) = f (α)− (g(α(i)) +∇gT(α(i))(α− α(i))) (36)

4. Solve the convex problem

α(i+1) = arg min
α∈χ

L̂(i)(α) (37)

5. i← i + 1
6. end while.

In the algorithm, ξ is the difference tolerance and α presents the allocated powers
of the sub-channels. The g(α) objective function in (27) is substituted by the g(α(i)) +
∇gT(α(i))(α − α(i)) function in (36), where ∇gT(α(i)) is the partial derivative of g(α(i))
for α(i). Therefore, the convex problem in (37) can be determined utilizing the standard
algorithm of convex optimization theory [44], such as the interior point and sequential
quadratic programming methods. In the simulation part of this article, we use sequential
quadratic programming.

6. Performance Analysis

In this section, we analyze our proposed resource allocation algorithms through
extensive MATLAB simulations. Through the simulations, we assume one base station
is placed in the centre and the users are classified randomly in a circular area. In the
NOMA system, we assume that only two users are superpositioned on each sub-channel.
In the OFDMA system, every user can be allocated to one sub-channel only. During the
simulation, we compared the performances of NOMA and OFDMA systems using the same
resource allocation algorithm. Table 2 illustrates the values of the simulation parameters.

Table 2. The list of simulation parameters.

Simulation Parameters Parameter Value

Cell radius 500 m
Minimum distance between BS and UEs 50 m
Minimum distance between two users 40 m

System bandwidth 5 MHz
Maximum number of UTs 60
Fixed circuit power [47] 1 W

Noise power spectral density −174 dBm/Hz
Difference tolerance in Algorithm 2 0.01

Compensation matrix attenuation coefficient 0.4
Base station peak power PBS 41 dBm

Simulation Results

The network capacity curve as the number of users in a cell increases from 10 to 60
is shown in Figure 3. It can be seen that as the number of users grows, the cell system’s
capacity grows as well. We can see from Figure 3 that the proposed USFMA offers the
highest system capacity for the NOMA system. When there are 40 users, the USFMA
outperforms the USMA by 13.11% and the CSS-PA by 40.27%. Furthermore, the USFMA
outperforms the OFDMA by 77.72%; this can be justified by the capability of the OFDMA,
which can only use one user per sub-channel. As a result, the BS is unable to utilize the
spectrum resources to their fullest potential.
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Figure 3. Capacity of the system versus different number of users.

Figure 4 depicts the network energy efficiency as a function of PBS. As predicted, The
figure shows that when the power of the BS is increased, the system’s capacity also grows,
with the USFMA giving the best performance. The energy efficiency equation shows that
this curve trend is identical to the sum rate curve trend. We can see from Figure 5 that
all NOMA system schemes outperform the OFDMA scheme. Furthermore, the energy
efficiency of the USFMA is the best through our proposed sub-channel and power allocation
using DC programming. When there are 40 users, the USFMA outperforms the USMA by
12.47%, the CSS-PA by 32.43%, and the OFDMA by 75.19%.
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Figure 4. Capacity of the system vs. BS power.
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Figure 5. Energy efficiency of the system versus the number of users.

The energy efficiency of the system affected by base station power growth with a fixed
number of users (U = 10) is shown in Figure 6. We set the power to between one and
twelve watts. We can observe in Figure 6 that there is almost a linear relation between
system energy efficiency and BS power, and the energy deficiency is inversely proportional
to BS power also. All NOMA methods outperform the OFDM system, with the USFMA
showing the best performance using DC for sub-channel power allocation.

The impact of a fixed circuit to base station power ratio (
Pf ixed
PBS

) on the system energy
efficiency is shown in Figure 7. From the figure, we can notice that the relationship is
inversely proportional, i.e., as the power ratio increases, the system energy efficiency
decreases. The system is less energy efficient when Pf ixed increases and BS power is fixed
at 12 watts. However, the NOMA systems, particularly the USFMA, still outperform the
OFDMA system when using the recommended resource allocation algorithms.
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Figure 6. Energy efficiency of the system versus BS power.



Telecom 2023, 4 624

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

The power of circuit Pc/Ps

2

4

6

8

10

12

14

16

18

20

T
h
e 

E
n
er

g
y
 E

ff
ic

ie
n
cy

 o
f 

th
e 

sy
st

em
 (

M
b
it

s/
Jo

u
le

)

USFMA

CSSPA

USMA

OFDMA

Figure 7. Energy efficiency of the system versus Pf ixed
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.

The effect of implementing DC programming alongside the USFMA was studied in
both Figures 8 and 9, and the results were compared with USFMA implementing fixed
power allocation (FPA). In Figure 8, it can be seen that sum rate for both USFMA-DC and
USFMA-FPA is better than OFDMA, with the former showing the best results. Furthermore,
when comparing the system’s energy efficiency vs. the number of users, it can be seen,
as shown in Figure 9, that USFMA-DC provides the best results. For example, if there are
30 users, DC programming has a 1.8% higher energy efficiency than FPA. These results
show that DC programming will provide further improvements to the optimized USFMA
as discussed above.
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Figure 8. Sum rate of the system versus BS power.
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Figure 9. Energy efficiency versus the different number of users.

On the other hand, we studied the impact of USFMA on user capacity fairness. Af-
ter running Monte Carlo simulations considering PBS = 10 dB, u = 20, and v = 10, the
results are shown in Figure 10. It can be seen that, with the power equally distrusted among
sub-channels, the capacity is almost equal between all sub-channels. The system fairness
was also evaluated based on Jain’s fairness index (JFI), which can be expressed as [48]:

JFI =
(∑U

u=1 Ru)2

U ∑U
u=1 R2

u
(38)

The JFI comparison, as shown in [49], is depicted in Figure 11. The results are obtained
by setting PBS = 45 dBm. It can be seen that USFMA and USMA are fairly close to each
other, with our algorithm being slightly better.

Figure 10. USFMA capacity distribution per sub-channel (v).
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7. Conclusions

NOMA is one of the most promising techniques to enable massive connectivity in
5G systems and enhance data rates in future mobile communication systems. This work
offers a novel user allocation algorithm (USFMA) that builds on the advantages of other
existing user allocation algorithms. We also proposed implementing a DC programming
approach to assign power to superimposed users on the same sub-channel to maximize the
system’s energy efficiency. The fundamental concept is to use the DC programming method
to convert non-convex problems into convex problems. We also used Matlab to simulate
the proposed novel technique. The results of the simulation show that the NOMA system
outperforms the OFDM system, and the proposed USFMA outperforms the existing USMA
and CSS-PA. For future exploration, we suggest the integration of USMA with emerging
technologies like massive MIMO, millimeter wave communications, and device-to-device
communications for enhanced performance and capabilities.

Author Contributions: H.R. as the principal investigator takes the primary responsibility for this
research and analyzed the results. B.R. and T.C. conceived the study and participated in its design and
coordination and helped to draft the manuscript. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the CHIST-ERA grant SAMBAS (CHIST-ERA-20-SICT-003)
funded by FWO, ANR, NKFIH and UKRI.

Data Availability Statement: The data used to support the findings of this study are available from
the corresponding author upon request.

Acknowledgments: This research was supported by Tempus Public Foundation, Stipendium Hun-
garicum Scholarship Programme and High-Speed Networks Lab, Department of Telecommunications
and Media Informatics, Budapest University of Technology and Economics.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Wang, Y.; Ren, B.; Sun, S.; Kang, S.; Yue, X. Analysis of non-orthogonal multiple access for 5G. China Commun. 2016, 13, 52–66.

[CrossRef]
2. Kizilirmak, R.C.; Bizaki, H.K. Non-orthogonal multiple access (NOMA) for 5G networks. Towards 5G Wirel. Netw. Phys. Layer

Perspect. 2016, 83, 83–98.

http://doi.org/10.1109/CC.2016.7405722


Telecom 2023, 4 627

3. Islam, S.R.; Avazov, N.; Dobre, O.A.; Kwak, K.S. Power-domain non-orthogonal multiple access (NOMA) in 5G systems:
Potentials and challenges. IEEE Commun. Surv. Tutor. 2016, 19, 721–742. [CrossRef]

4. Ding, Z.; Xu, J.; Dobre, O.A.; Poor, H.V. Joint power and time allocation for NOMA–MEC offloading. IEEE Trans. Veh. Technol.
2019, 68, 6207–6211. [CrossRef]

5. Ai, Y.; Wang, L.; Han, Z.; Zhang, P.; Hanzo, L. Social networking and caching aided collaborative computing for the Internet of
Things. IEEE Commun. Mag. 2018, 56, 149–155. [CrossRef]

6. Ding, Z.; Liu, Y.; Choi, J.; Sun, Q.; Elkashlan, M.; Chih-Lin, I.; Poor, H.V. Application of non-orthogonal multiple access in LTE
and 5G networks. IEEE Commun. Mag. 2017, 55, 185–191. [CrossRef]

7. Yang, Z.; Ding, Z.; Fan, P.; Al-Dhahir, N. A general power allocation scheme to guarantee quality of service in downlink and
uplink NOMA systems. IEEE Trans. Wirel. Commun. 2016, 15, 7244–7257. [CrossRef]

8. Ding, Z.; Adachi, F.; Poor, H.V. The application of MIMO to non-orthogonal multiple access. IEEE Trans. Wirel. Commun. 2015,
15, 537–552. [CrossRef]

9. Sun, Q.; Han, S.; Xu, Z.; Wang, S.; Chih-Lin, I.; Pan, Z. Sum rate optimization for MIMO non-orthogonal multiple access systems.
In Proceedings of the 2015 IEEE Wireless Communications and Networking Conference (WCNC), New Orleans, LA, USA, 9–12
March 2015; pp. 747–752.

10. Ding, Z.; Fan, P.; Poor, H.V. On the coexistence between full-duplex and NOMA. IEEE Wirel. Commun. Lett. 2018, 7, 692–695.
[CrossRef]

11. Kader, M.F.; Shin, S.Y.; Leung, V.C. Full-duplex non-orthogonal multiple access in cooperative relay sharing for 5G systems. IEEE
Trans. Veh. Technol. 2018, 67, 5831–5840. [CrossRef]

12. Elbamby, M.S.; Bennis, M.; Saad, W.; Debbah, M.; Latva-Aho, M. Resource optimization and power allocation in in-band full
duplex-enabled non-orthogonal multiple access networks. IEEE J. Sel. Areas Commun. 2017, 35, 2860–2873. [CrossRef]

13. Choi, J. Minimum power multicast beamforming with superposition coding for multiresolution broadcast and application to
NOMA systems. IEEE Trans. Commun. 2015, 63, 791–800. [CrossRef]

14. Liu, G.; Chen, X.; Ding, Z.; Ma, Z.; Yu, F.R. Hybrid half-duplex/full-duplex cooperative non-orthogonal multiple access with
transmit power adaptation. IEEE Trans. Wirel. Commun. 2017, 17, 506–519. [CrossRef]

15. Zhang, Z.; Ma, Z.; Xiao, M.; Ding, Z.; Fan, P. Full-duplex device-to-device-aided cooperative nonorthogonal multiple access.
IEEE Trans. Veh. Technol. 2016, 66, 4467–4471.

16. Huang, Y.; Zhang, C.; Wang, J.; Jing, Y.; Yang, L.; You, X. Signal processing for MIMO-NOMA: Present and future challenges.
IEEE Wirel. Commun. 2018, 25, 32–38. [CrossRef]

17. Dai, L.; Wang, B.; Peng, M.; Chen, S. Hybrid precoding-based millimeter-wave massive MIMO-NOMA with simultaneous
wireless information and power transfer. IEEE J. Sel. Areas Commun. 2018, 37, 131–141. [CrossRef]

18. Zhang, S.; Di, B.; Song, L.; Li, Y. Radio resource allocation for non-orthogonal multiple access (NOMA) relay network using
matching game. In Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia,
22–27 May 2016; pp. 1–6.

19. Al-Abbasi, Z.Q.; So, D.K. Resource allocation in non-orthogonal and hybrid multiple access system with proportional rate
constraint. IEEE Trans. Wirel. Commun. 2017, 16, 6309–6320. [CrossRef]

20. Lei, L.; Yuan, D.; Ho, C.K.; Sun, S. Power and channel allocation for non-orthogonal multiple access in 5G systems: Tractability
and computation. IEEE Trans. Wirel. Commun. 2016, 15, 8580–8594. [CrossRef]

21. Wei, Z.; Ng, D.W.K.; Yuan, J. Power-efficient resource allocation for MC-NOMA with statistical channel state information.
In Proceedings of the 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC, USA, 4–8 December 2016;
pp. 1–7.

22. Wei, Z.; Ng, D.W.K.; Yuan, J.; Wang, H.M. Optimal resource allocation for power-efficient MC-NOMA with imperfect channel
state information. IEEE Trans. Commun. 2017, 65, 3944–3961. [CrossRef]

23. Zaman, N.; Tang Jung, L.; Yasin, M.M. Enhancing energy efficiency of wireless sensor network through the design of energy
efficient routing protocol. J. Sens. 2016, 2016, 9278701. [CrossRef]

24. Hao, W.; Zeng, M.; Chu, Z.; Yang, S. Energy-efficient power allocation in millimeter wave massive MIMO with non-orthogonal
multiple access. IEEE Wirel. Commun. Lett. 2017, 6, 782–785. [CrossRef]

25. Zhang, Y.; Wang, H.M.; Zheng, T.X.; Yang, Q. Energy-efficient transmission design in non-orthogonal multiple access. IEEE Trans.
Veh. Technol. 2016, 66, 2852–2857. [CrossRef]

26. Fang, F.; Zhang, H.; Cheng, J.; Leung, V.C. Energy-efficient resource allocation for downlink non-orthogonal multiple access
network. IEEE Trans. Commun. 2016, 64, 3722–3732. [CrossRef]

27. Fang, F.; Cheng, J.; Ding, Z. Joint energy efficient subchannel and power optimization for a downlink NOMA heterogeneous
network. IEEE Trans. Veh. Technol. 2018, 68, 1351–1364. [CrossRef]

28. Tran, T.N.; Voznak, M. Adaptive multiple access assists multiple users over multiple-input-multiple-output non-orthogonal
multiple access wireless networks. Int. J. Commun. Syst. 2021, 34, e4803. [CrossRef]

29. Ganesan, I.; Jayakumar, R.J.S.; Murugan, S.P.; Muneeswaran, D.B. Joint energy-efficient user scheduling and power allocation
scheme for a millimeter-wave-NOMA system. Int. J. Commun. Syst. 2021, 34, e4901. [CrossRef]

30. Rashid, B.; Ahmad, A.; Saleem, S.; Khan, A. Joint energy efficient power and subchannel allocation for uplink MC-NOMA
networks. Int. J. Commun. Syst. 2020, 33, e4606. [CrossRef]

http://dx.doi.org/10.1109/COMST.2016.2621116
http://dx.doi.org/10.1109/TVT.2019.2907253
http://dx.doi.org/10.1109/MCOM.2018.1701089
http://dx.doi.org/10.1109/MCOM.2017.1500657CM
http://dx.doi.org/10.1109/TWC.2016.2599521
http://dx.doi.org/10.1109/TWC.2015.2475746
http://dx.doi.org/10.1109/LWC.2018.2811492
http://dx.doi.org/10.1109/TVT.2018.2799939
http://dx.doi.org/10.1109/JSAC.2017.2726218
http://dx.doi.org/10.1109/TCOMM.2015.2394393
http://dx.doi.org/10.1109/TWC.2017.2767601
http://dx.doi.org/10.1109/MWC.2018.1700108
http://dx.doi.org/10.1109/JSAC.2018.2872364
http://dx.doi.org/10.1109/TWC.2017.2721936
http://dx.doi.org/10.1109/TWC.2016.2616310
http://dx.doi.org/10.1109/TCOMM.2017.2709301
http://dx.doi.org/10.1155/2016/9278701
http://dx.doi.org/10.1109/LWC.2017.2741493
http://dx.doi.org/10.1109/TVT.2016.2578949
http://dx.doi.org/10.1109/TCOMM.2016.2594759
http://dx.doi.org/10.1109/TVT.2018.2881314
http://dx.doi.org/10.1002/dac.4803
http://dx.doi.org/10.1002/dac.4901
http://dx.doi.org/10.1002/dac.4606


Telecom 2023, 4 628

31. Yang, K.; Yang, N.; Ye, N.; Jia, M.; Gao, Z.; Fan, R. Non-orthogonal multiple access: Achieving sustainable future radio access.
IEEE Commun. Mag. 2018, 57, 116–121. [CrossRef]

32. Di, B.; Bayat, S.; Song, L.; Li, Y. Radio resource allocation for downlink non-orthogonal multiple access (NOMA) networks using
matching theory. In Proceedings of the 2015 IEEE Global Communications Conference (GLOBECOM), San Diego, CA, USA, 6–10
December 2015; pp. 1–6.

33. Zhang, H.; Zhang, D.K.; Meng, W.X.; Li, C. User pairing algorithm with SIC in non-orthogonal multiple access system.
In Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 22–27 May 2016;
pp. 1–6.

34. Venturino, L.; Zappone, A.; Risi, C.; Buzzi, S. Energy-Efficient Scheduling and Power Allocation in Downlink OFDMA Networks
with Base Station Coordination. IEEE Trans. Wirel. Commun. 2015, 14, 1–14. [CrossRef]

35. Ismail, S.; Sun, L. Decentralized hungarian-based approach for fast and scalable task allocation. In Proceedings of the 2017
International Conference on Unmanned Aircraft Systems (ICUAS), Miami, FL, USA, 13–16 June 2017; pp. 23–28.

36. Kuhn, H. The hungarian method for the assignment problem. Nav. Res. Logist. Q. 1955, 2, 83–97. [CrossRef]
37. Masaracchia, A.; Nguyen, L.D.; Yin, C.; Dobre, O.A.; Garcia-Palacios, E. The concept of time sharing noma into uav-enabled

communications: An energy-efficient approach. In Proceedings of the 2020 4th International Conference on Recent Advances in
Signal Processing, Telecommunications & Computing (SigTelCom), Hanoi, Vietnam, 28–29 August 2020; pp. 61–65.

38. Xie, X.; Fang, F.; Ding, Z. Joint optimization of beamforming, phase-shifting and power allocation in a multi-cluster IRS-NOMA
network. IEEE Trans. Veh. Technol. 2021, 70, 7705–7717. [CrossRef]

39. Fu, Y.; Shum, K.W.; Sung, C.W.; Liu, Y. Optimal user pairing in cache-based NOMA systems with index coding. In Proceedings
of the ICC 2019—2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; pp. 1–6.

40. Vucic, N.; Shi, S.; Schubert, M. DC programming approach for resource allocation in wireless networks. In Proceedings of the 8th
International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, Avignon, France, 31 May–4
June 2010; pp. 380–386.

41. Zhai, D.; Zhang, R.; Cai, L.; Li, B.; Jiang, Y. Energy-efficient user scheduling and power allocation for NOMA-based wireless
networks with massive IoT devices. IEEE Internet Things J. 2018, 5, 1857–1868. [CrossRef]

42. Yuille, A.L.; Rangarajan, A. The concave-convex procedure. Neural Comput. 2003, 15, 915–936. [CrossRef] [PubMed]
43. Schittkowski, K.; Zillober, C. Nonlinear programming: Algorithms, software, and applications. In Proceedings of the IFIP Conference

on System Modeling and Optimization; Springer: Boston, MA, USA, 2003; pp. 73–107.
44. Ben-Tal, A.; Nemirovski, A. Lectures on Modern Convex Optimization; Society for Industrial and Applied Mathematics: Philadelphia,

PA, USA, 2001. [CrossRef]
45. Boyd, S.; Boyd, S.P.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004.
46. Bertsekas, D.P. Nonlinear programming. J. Oper. Res. Soc. 1997, 48, 334. [CrossRef]
47. Ng, D.W.K.; Lo, E.S.; Schober, R. Energy-efficient resource allocation in OFDMA systems with large numbers of base station

antennas. IEEE Trans. Wirel. Commun. 2012, 11, 3292–3304. [CrossRef]
48. Jain, R.K.; Chiu, D.M.W.; Hawe, W.R. A Quantitative Measure of Fairness and Discrimination for Resource Allocation in Shared Computer

Systems; Eastern Research Laboratory, Digital Equipment Corporation: Hudson, MA, USA, 1984.
49. Al-Wani, M.M.; Sali, A.; Noordin, N.K.; Hashim, S.J.; Leow, C.Y.; Krikidis, I. Robust beamforming and user clustering for

guaranteed fairness in downlink NOMA with partial feedback. IEEE Access 2019, 7, 121599–121611. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/MCOM.2018.1800179
http://dx.doi.org/10.1109/TWC.2014.2323971
http://dx.doi.org/10.1002/nav.3800020109
http://dx.doi.org/10.1109/TVT.2021.3090255
http://dx.doi.org/10.1109/JIOT.2018.2816597
http://dx.doi.org/10.1162/08997660360581958
http://www.ncbi.nlm.nih.gov/pubmed/12689392
http://dx.doi.org/10.1137/1.9780898718829
http://dx.doi.org/10.1057/palgrave.jors.2600425
http://dx.doi.org/10.1109/TWC.2012.072512.111850
http://dx.doi.org/10.1109/ACCESS.2019.2936911

	Introduction
	Related Works and Motivation
	System Model
	Problem Description
	The Sub-Optimal Solution
	User Sub-Channel Fair Matching Algorithm
	Power Allocation by DC Programming

	Performance Analysis
	Conclusions
	References

