
Citation: Maharjan, R.; Chy, M.S.H.;

Arju, M.A.; Cerny, T. Benchmarking

Message Queues. Telecom 2023, 4,

298–312. https://doi.org/10.3390/

telecom4020018

Academic Editor: Sotirios K. Goudos

Received: 30 March 2023

Revised: 30 May 2023

Accepted: 8 June 2023

Published: 13 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Benchmarking Message Queues
Rokin Maharjan , Md Showkat Hossain Chy, Muhammad Ashfakur Arju and Tomas Cerny *

Department of Computer Science, Baylor University, Waco, TX 76706, USA; rokin_maharjan1@baylor.edu (R.M.)
* Correspondence: tomas_cerny@baylor.edu

Abstract: Message queues are a way for different software components or applications to commu-
nicate with each other asynchronously by passing messages through a shared buffer. This allows a
sender to send a message without needing to wait for an immediate response from the receiver, which
can help to improve the system’s performance, reduce latency, and allow components to operate
independently. In this paper, we compared and evaluated the performance of four popular message
queues: Redis, ActiveMQ Artemis, RabbitMQ, and Apache Kafka. The aim of this study was to
provide insights into the strengths and weaknesses of each technology and to help practitioners
choose the most appropriate solution for their use case. We primarily evaluated each technology
in terms of latency and throughput. Our experiments were conducted using a diverse array of
workloads to test the message queues under various scenarios. This enables practitioners to evaluate
the performance of the systems and choose the one that best meets their needs. The results show that
each technology has its own pros and cons. Specifically, Redis performed the best in terms of latency,
whereas Kafka significantly outperformed the other three technologies in terms of throughput. The
optimal choice depends on the specific requirements of the use case. This paper presents valuable
insights for practitioners and researchers working with message queues. Furthermore, the results of
our experiments are provided in JSON format as a supplement to this paper.

Keywords: message queue; Redis; ActiveMQ Artemis; RabbitMQ; Apache Kafka; events; latency;
throughput

1. Introduction

In the ever-evolving landscape of distributed systems, the demand for robust, scal-
able, and asynchronous communication among their intricate components is paramount.
Asynchronous messaging allows system elements to interact without the immediate need
for responses, empowering components to dispatch messages and proceed with other
tasks concurrently. This not only enhances the overall system throughput but also reduces
response times, enabling systems to tackle complex workloads effectively and deliver
real-time results [1]. At the heart of distributed computing lie message queues, pivotal in
providing such capabilities. By decoupling services and fostering resiliency, fault tolerance,
and responsiveness, message queues play a vital role in modernizing and optimizing
distributed systems. Nonetheless, selecting the optimal message queue remains a daunting
challenge.

The vast array of available options, each with its own unique strengths and weak-
nesses, necessitates a thorough understanding of these systems to ensure the performance
and efficiency of the overall architecture. Choosing the right message queue is critical
for cost optimization, improved system performance, versatility, and scalability. It en-
ables significant cost savings in infrastructure and operational expenses while enhancing
system responsiveness through reduced latency, high throughput, and timely message
delivery. Message queues with advanced features facilitate the implementation of complex
messaging patterns, workflow orchestration, and seamless integration of components.

This manuscript delves into a comprehensive benchmarking study that meticulously
compares and evaluates four popular message queues: Redis, ActiveMQ Artemis, Rab-

Telecom 2023, 4, 298–312. https://doi.org/10.3390/telecom4020018 https://www.mdpi.com/journal/telecom

https://doi.org/10.3390/telecom4020018
https://doi.org/10.3390/telecom4020018
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/telecom
https://www.mdpi.com
https://orcid.org/0009-0009-4372-1717
https://orcid.org/0000-0002-5882-5502
https://doi.org/10.3390/telecom4020018
https://www.mdpi.com/journal/telecom
https://www.mdpi.com/article/10.3390/telecom4020018?type=check_update&version=2


Telecom 2023, 4 299

bitMQ, and Apache Kafka. These message queues represent leading solutions in the field,
each with its own distinctive characteristics and strengths. Redis, widely recognized as an
open-source in-memory data store, not only excels in its primary role but also serves as a
versatile and efficient message broker. ActiveMQ Artemis, specifically designed to cater to
enterprise-level applications, offers high-performance and reliable messaging solutions,
ensuring seamless communication in demanding and complex environments. Lastly, Rab-
bitMQ, with its extensive developer community and broad adoption, stands as a robust
and feature-rich message broker, supporting multiple messaging protocols and providing a
solid foundation for scalable and flexible communication infrastructures.

The goal of this study was to equip developers and system architects with valuable
insights for making informed decisions when selecting a message queue that aligns with
their unique use cases. It is essential to note that a message queue that excels in one scenario
might falter in another. To address this challenge, we meticulously designed a series of
experiments encompassing a diverse spectrum of workloads and scenarios. Our evaluation
revolves around two fundamental performance metrics: latency and throughput. Latency
measures the time taken for a message to traverse from sender to receiver, whereas through-
put quantifies the number of messages processed within a given timeframe. By thoroughly
examining the performance of each message queue across various conditions, we gain
comprehensive insights into their respective strengths and weaknesses, empowering us
to make well-informed decisions. Moreover, the findings of this study contribute to the
evolution and optimization of message queue systems at large, highlighting potential areas
for future development and refinement.

To conduct our experiments, we utilized the OpenMessaging Benchmark Frame-
work [2], a performance testing tool created by The Linux Foundation. This tool was
specifically designed to measure the performance of messaging systems across various
workloads and scenarios. Notably, it supports multiple messaging protocols and mes-
sage queues, providing a unified testing framework for comprehensive evaluation. The
tool offers detailed metrics for latency and throughput, allowing for precise performance
analysis.

Our choice of this benchmarking tool was based on several compelling reasons. Firstly,
it allowed us to maintain consistency by supporting the benchmarking of all four message
queues in our study. This ensured that the evaluation process was unbiased and devoid
of any favoritism toward specific technologies. Secondly, the OpenMessaging Benchmark
Framework was developed by The Linux Foundation, a widely respected organization
known for its contributions to open-source technologies. This factor ensured the tool’s
reliability and credibility. Lastly, the popularity of the tool among developers was evident
from its impressive statistics on GitHub, including 295 stars, 183 forks, and contributions
from 47 contributors at the time of writing.

The remaining sections of this manuscript are structured as follows: Section 2 provides
an introduction to the four message queues that we benchmarked. Section 3 discusses
related works and how they compare to our study. The methodology that we used to
benchmark the message queues is presented in Section 4. Sections 5 and 6 describe the
experiments conducted and their results. In Section 7, we discuss our results. Lastly,
Section 8 summarizes our findings.

2. Background

In this section, we introduce the four message queues that are evaluated in this
manuscript. We selected ActiveMQ Artemis, RabbitMQ, and Apache Kafka because they
are three of the most popular message queues. We chose Redis because although Redis can
be used as a message broker, it is not primarily used for that. We wanted to see how Redis
would perform as a message broker because, if it performed well, it could be used to serve
multiple purposes.



Telecom 2023, 4 300

2.1. Redis [3]

Redis is a widely used in-memory data store that can act as a cache or a database. How-
ever, it also has the capability to serve as a message broker, which is a crucial component
in message-driven architectures. A message broker serves as a central hub for receiving,
storing, and forwarding messages between producers and consumers. By implementing the
publish–subscribe pattern through its Pub/Sub feature, Redis can act as a message broker.

In Redis Pub/Sub, a publisher sends a message to a specific channel, and all the sub-
scribers who have subscribed to that channel will receive the message. Clients can subscribe
to one or more channels and receive messages whenever they are published to those chan-
nels. This enables messages to be broadcasted to a large number of subscribers in real-time,
allowing for efficient and scalable communication between producers and consumers.

To implement Redis as a message broker, one can simply use the PUB/SUB commands
to send and receive messages. Publishers can send messages to specific channels using the
PUBLISH command, while subscribers can listen for messages by subscribing to specific
channels using the SUBSCRIBE command. Redis clients can also be configured to listen for
messages using the message callback function that is triggered when a message is received.

2.2. ActiveMQ Artemis [4]

ActiveMQ Artemis is an open-source message broker that can be used to send, receive,
and store messages. It provides a messaging system that is designed to be scalable and
high-performing and can be deployed in a variety of environments, including standalone
applications, microservices, and cloud-based systems.

ActiveMQ Artemis is built using a modular architecture that allows it to be easily
extended and customized to meet specific messaging requirements. It is written in Java and
supports multiple messaging protocols, including AMQP (Advanced Message Queueing
Protocol) [5], MQTT (Message Queuing Telemetry Transport) [6], STOMP (Simple Text
Oriented Messaging Protocol) [7], and OpenWire [8].

As a message broker, ActiveMQ Artemis acts as an intermediary between producers
and consumers of messages. It receives messages from producers and stores them until
they can be delivered to the appropriate consumers. This allows applications to commu-
nicate with each other in a decoupled manner without the need for direct point-to-point
communication.

ActiveMQ Artemis supports several messaging patterns, including point-to-point
and publish–subscribe. Point-to-point messaging involves sending a message to a specific
destination, such as a queue, whereas publish–subscribe messaging involves sending a
message to multiple destinations, such as topics. ActiveMQ Artemis also provides support
for advanced messaging features, including durable subscriptions, message grouping, and
message routing. It also supports clustering, which allows multiple brokers to be connected
together to form a single, highly available messaging system.

2.3. RabbitMQ [9]

RabbitMQ is a popular open-source message broker that is widely used in distributed
systems. It is written in the Erlang programming language and is based on the Advanced
Message Queuing Protocol (AMQP) standard.

As a message broker, RabbitMQ acts as an intermediary between applications that
need to send and receive messages. Producers send messages to RabbitMQ, which stores
them until they are consumed by consumers. This decouples producers and consumers,
allowing them to operate independently of each other and ensuring reliable message
delivery even if one of the systems is down.

RabbitMQ supports a variety of messaging patterns, including point-to-point, publish–
subscribe, and request–response. It also provides advanced features such as message
routing, message acknowledgments, and dead-letter queues.



Telecom 2023, 4 301

RabbitMQ uses exchanges and queues to route messages between producers and
consumers. An exchange receives messages from producers and routes them to one or
more queues based on a set of rules called bindings. Consumers then subscribe to specific
queues to receive messages.

2.4. Apache Kafka [10]

Apache Kafka is an open-source distributed streaming platform that is designed
for high-throughput, fault-tolerant, and scalable real-time data streaming. It provides a
messaging system that allows applications to publish, subscribe, and process streams of
records in a fault-tolerant and distributed manner.

At its core, Kafka is based on a publish–subscribe model, where producers send
records to topics and consumers subscribe to those topics to receive the records. Kafka
stores the records in a distributed and fault-tolerant manner, enabling them to persist and
be replicated across multiple nodes or clusters.

One of the key features of Kafka is its ability to handle large volumes of data and a
high message throughput. It is known for its horizontal scalability, allowing it to handle
millions of messages per second. Kafka achieves this high throughput by leveraging a
distributed architecture that partitions data across multiple brokers and allows for parallel
processing.

Kafka uses topics to categorize and organize messages. Producers publish records on
specific topics, and consumers can subscribe to one or more topics to consume the records.
Topics can be divided into multiple partitions, which allows for parallel processing and
enables high scalability. Additionally, Kafka retains messages for a configurable period of
time, allowing consumers to consume messages at their own pace.

3. Related Works

In the realm of benchmarking message queue systems, several studies have con-
tributed valuable insights into their performance characteristics. Piyush Maheshwari and
Michael Pang [11] conducted a benchmarking study comparing Tibco Rendezvous [12] and
Progress Sonic MQ [13] using SPECjms2007 [14], focusing on evaluating message delivery
latency, throughput, program stability, and resource utilization. While their study provided
insights into specific message-oriented middleware (MOM), it differs from our research by
not encompassing the comparative analysis of Redis, ActiveMQ Artemis, RabbitMQ, and
Apache Kafka. While informative for specific message-oriented middleware (MOM), their
study differs from ours as we compare Redis, ActiveMQ Artemis, RabbitMQ, and Apache
Kafka, providing a broader comparative analysis.

In a related study, Kai Sachs et al. [15] conducted a performance analysis of Apache
ActiveMQ using SPEC JMS 2007 [14] and jms2009-PS [16], comparing its usage as a per-
sistence medium with databases. In contrast, our research expanded the scope to include
Redis, ActiveMQ Artemis, RabbitMQ, and Apache Kafka, providing a comprehensive
evaluation of these message queue technologies. We extensively assessed their latency and
throughput performance across a diverse range of workloads, enabling practitioners to
make informed decisions based on specific use cases. Furthermore, Stefan Appel et al. [17]
proposed a unique approach for benchmarking AMQP implementations, whereas our
study focused on a comparative analysis of different message queue technologies, offering
valuable insights into their respective strengths and weaknesses.

Due to the closed-source nature of SPECjms2007 and jms2009-PS, several benchmark-
ing solutions have been developed to provide a fair comparison between message queues,
with the OpenMessaging Benchmark Framework standing out as a notable choice. Souza
et al. [18] focused on evaluating the performance of Apache Kafka and RabbitMQ in terms
of throughput, latency, and resource utilization using the OpenMessaging Benchmark
(OMB) tool. Their findings reveal that Apache Kafka outperformed RabbitMQ in terms
of throughput and scalability, particularly under heavy workloads with large messages.
Additionally, RabbitMQ showcased lower latency and resource utilization, suggesting its



Telecom 2023, 4 302

suitability for low-latency and resource-constrained environments. However, our study
further performed a comparative analysis by incorporating Redis and ActiveMQ Artemis
alongside Apache Kafka and RabbitMQ. Through comprehensive evaluations of latency
and throughput across diverse workloads, we aim to provide practitioners with valuable
insights into the strengths and weaknesses of these four message queue technologies,
facilitating informed decision-making in choosing the most suitable solution for their
specific needs.

Fu et al. [19] proposed a framework used to compare the performance of popular
message queue technologies, including Kafka, RabbitMQ, RocketMQ, ActiveMQ, and
Apache Pulsar [20]. Their research focused on evaluating factors such as message size, the
number of producers and consumers, and the number of partitions. The study highlighted
Kafka’s high throughput due to optimization techniques but noted its latency limitations
with larger message sizes. In our study, we specifically examined Redis, ActiveMQ Artemis,
RabbitMQ, and Apache Kafka, providing a comparative analysis of their performance
across diverse workloads.

John et al. [21] conducted a performance comparison between Apache Kafka [10] and
RabbitMQ in terms of throughput and latency. Their study explored scenarios involving
single and multiple publishers and consumers using the Flotilla [22] benchmarking tool.
The results indicate that Kafka exhibited a superior throughput, whereas RabbitMQ prior-
itized reliability, especially in scenarios where data security was crucial. Our research is
more extended since we considered including Redis and ActiveMQ Artemis and assessing
the performance of these message queues under various workloads and scenarios.

Valeriu Manuel Ionescu et al. [23] conducted an analysis of RabbitMQ and ActiveMQ,
specifically focusing on their publishing and subscribing rates. Their study employed
different-sized images as a real-world comparison instead of traditional byte string loads
and considered both single and multiple publisher–consumer scenarios. While their re-
search highlighted performance differences between RabbitMQ and ActiveMQ, our study
extended the comparative analysis to include Redis and Apache Kafka. Additionally, we
evaluated the latency and throughput of these message queues, presenting more detailed
results, including percentile-based end-to-end latency metrics.

Marko et al. [24] conducted a study focusing on message queueing technologies for
flow control and load balancing in the IoT scenario. They specifically evaluated RabbitMQ
and Apache Kafka within a smart home system cloud, assessing their performance with
different numbers of consumers. The results highlight that Kafka exhibited stable data
buffering and a lower average CPU usage, with no instances of reaching maximum CPU
usage during testing. In comparison, our work extended beyond their scope by examining
additional message queue technologies, including Redis and ActiveMQ Artemis. Further-
more, we provided a comprehensive analysis of latency and throughput across a diverse
range of workloads.

Our study examined Redis, ActiveMQ Artemis, RabbitMQ, and Apache Kafka, shed-
ding light on their respective performance characteristics. We assessed Redis’s pub-
lish/subscribe operations and evaluated the enhanced ActiveMQ Artemis rather than
the traditional version. Notably, our findings highlight ActiveMQ Artemis’ advantageous
latency performance in scenarios with low throughput, distinguishing it from RabbitMQ.
Additionally, we provided comprehensive results featuring distinct graphs for throughput
and latency, encompassing various percentiles. To ensure unbiased and consistent results,
we utilized the OpenMessaging Benchmark tool from The Linux Foundation, a trusted and
popular open-source solution.

The comparison between our study versus the existing studies is shown in Table 1.



Telecom 2023, 4 303

Table 1. Comparison: our study vs. existing studies.

References
Message Queues Metrics

Redis Kafka Active MQ RabbitMQ Pulsar Latency Throughput Persistence Other
Metric

Piyush et al. [11] X
Sachs et al. [15] X X
Souza et al. [18] X X X X X
Fu et al. [19] X X X X X X X
John et al. [21] X X X X
Valeriu et al. [23] X X X
Marko et al. [24] X X X
Our study X X X X X X

4. Methodology

This section describes the two metrics that we considered and why they play a crucial
role in choosing a message queue. This section also outlines the process of installing the
technologies, creating the experiments, and running them.

The two metrics considered in this study were latency and throughput. They are
critical metrics to consider when benchmarking message queues because they provide
insights into the system’s performance and reliability. Latency refers to the time it takes for
a message to be sent from the producer to the consumer. It is a measure of the system’s
responsiveness and can have a significant impact on user experience. High latency can
cause delays and make the system feel sluggish, whereas low latency means that messages
are delivered quickly, which can enhance the user experience. Throughput, on the other
hand, is the number of messages a system can process over a specified period of time. It is a
measure of the system’s efficiency and capacity. A high throughput means that the system
can handle a large volume of messages efficiently, whereas a low throughput indicates that
the system may struggle to keep up with the demands placed on it.

The end-to-end latency graphs are typically used to understand the amount of time it
takes for a request to be processed from the time it is initiated to the time it is completed.
We represent the end-to-end latency in four different forms: 50th percentile, 75th percentile,
95th percentile, and 99th percentile latency. The 50th percentile (also known as the median)
represents the maximum latency for the fastest 50% of all requests to complete. For instance,
if the 50th percentile latency is 1 s, then the system processed 50% of requests in less than
1 s. Similarly, the 75th percentile, 95th percentile, and 99th percentile represent the time it
takes for the fastest 75%, 95%, and 99% of all requests, respectively, to complete. When one
has end-to-end latency graphs for these percentiles, one can use them to understand the
overall performance of their system. If the latency for the 50th percentile is low, it means
that the majority of requests are completed quickly. However, if the latency for the 99th
percentile is high, it means that a small percentage of requests are taking a very long time
to complete, and this could be a sign of a bottleneck or issue that needs to be addressed.
Additionally, if one notices that the latency for the 75th percentile is increasing over time, it
could be an indication that their system is becoming overloaded and needs to be scaled up.

We represent the throughput data in two different forms: in terms of megabytes per
second (MBps) and the number of events per second. The MBps metric refers to the amount
of data that can be transferred per second, and it provides a measure of the message queue’s
overall network performance. This metric is particularly useful in scenarios where the
size of the data being transferred is large, such as when transferring multimedia files or
large datasets. It also helps to measure the efficiency of network bandwidth utilization,
and it can help to identify bottlenecks or limitations in the network infrastructure. On the
other hand, measuring throughput in terms of the number of events per second provides
insights into the message queue’s performance in processing and delivering messages.
This metric is particularly relevant in applications where real-time data processing and
low latency are critical. For instance, in high-frequency trading systems or real-time data
streaming applications, the number of events processed per second is a crucial factor in



Telecom 2023, 4 304

determining the system’s overall performance. Therefore, having throughput data in two
different forms provides a more comprehensive view of the message queue’s performance,
taking into account both network bandwidth and message processing efficiency. This can
help developers, system architects, and decision-makers to make more informed decisions
when selecting or optimizing message queues for specific use cases.

For the purpose of running the experiments, all four message queues were installed
locally following the official documentation. We used Redis server 7.0.9 [25], RabbitMQ
3.11.10 [26], ActiveMQ Artemis 2.28.0 [27], and Apache Kafka 3.4.0 [28]. We forked [29]
the OpenMessaging Benchmark to customize the workloads (data size and the number of
messages per second) according to the needs of our experiments.

In order to benchmark the four message queues, we used the OpenMessaging Bench-
mark tool created by The Linux Foundation. It is a highly versatile benchmarking tool
written in Java that supports multiple popular message queues and data streaming tech-
nologies such as RabbitMQ, ActiveMQ Artemis, Redis, Apache Kafka, Pravega, Pulsar, and
many more. It provides a range of pre-built payloads of sizes 100 B, 200 B, 400 B, 1 KB,
2 KB, and 4 KB. Besides these, it also provides the ability to create payloads of other sizes
programmatically. Using this tool, we generated detailed metrics for latency and through-
put, which are the metrics that we used to compare the four message queues. We used
this tool because we wanted a common tool to benchmark the four technologies so as to
maintain consistency and eliminate any biases that may arise if we had used benchmarking
tools specific to each technology.

Using the feature provided by OpenMessaging, we generated data of various sizes.
The specifics of how these data sizes were used and how the experiments were conducted
are explained in detail in Section 5 (Experiments). After conducting multiple sets of experi-
ments for both throughput and latency, we generated JSON [30] documents containing the
results of the experiments. We built Python [31] scripts using the Matplotlib [32] library in
order to represent the JSON documents in charts. The scripts can be found under /bin/charts
in our forked version [29] of OpenMessaging.

We adopted this benchmarking approach for the message queues in our study due
to several compelling reasons. Firstly, latency and throughput are crucial metrics that
determine the performance of a message queue, making them essential aspects to evaluate.
Secondly, the OpenMessaging Benchmark tool, developed by The Linux Foundation, was
selected for its credibility in the field of computer science. By utilizing the same tool,
we ensure consistent and reliable benchmarking across the four message queues under
examination. This approach is vital as using different tools may yield inconsistent results,
and some benchmarking tools may exhibit biases when developed by the message queue
developers themselves. Furthermore, our benchmarking process generated comprehensive
results encompassing various metrics. These metrics include throughput, measured in both
the number of events per second and megabytes per second. Additionally, we evaluated
the end-to-end latency across different percentiles, such as the 50th, 75th, 95th, and 99th
percentile. To enhance data usability, our results were generated in JSON format, facilitating
the representation of data in diverse forms for further analysis and interpretation.

The flow diagram of the methodology is shown in Figure 1.

Results

Throughput JSON Latency JSON

Message Queues Benchmarking System

Configuration Files

Open Messaging

Figure 1. Flow diagram of the methodology.



Telecom 2023, 4 305

5. Experiments

All of the experiments were conducted using a 2020 MacBook Air equipped with an
Apple M1 chip, 16 GB of RAM, and a 512 GB SSD. In all four technologies, the experiments
were carried out for a single producer and a single consumer.

In order to accurately measure the throughput of each message queue, we conducted
a total of 18 experiments. For each message queue, we ran the experiment 6 times, with
varying message sizes of 10 B, 100 B, 1 KB, 10 KB, 50 KB, and 100 KB. Each experiment
was run for a duration of 5 min. This approach allowed us to capture a comprehensive
set of data points for each message queue under different conditions, ensuring that we
can evaluate their performance more accurately. To capture the throughput data, we
recorded both the megabytes per second (MBps) and the number of events per second. The
throughput in megabytes per second was calculated by multiplying the maximum number
of events captured by the message size used. After collecting the data for each message
queue, we then plotted collective graphs that show the maximum throughput in terms of
megabytes per second and the maximum throughput in terms of the number of events
per second.

To measure the latency, we conducted a total of 15 experiments. For each message
queue, we ran the experiment 5 times, with varying throughputs of 1MBps, 3MBps, 6MBps,
10MBps, and 15MBps. In order to achieve these throughputs, we used the same data size
of 32KB but varied the number of events per second. To achieve 1MBps, 3MBps, 6MBps,
10MBps, and 15MBps, we set the number of events per second to 32, 96, 192, 320, and 480,
respectively. Each experiment was run for 5 min, providing ample time to collect reliable
latency data. We recorded the data for the end-to-end latency for the 50th (median latency),
75th, 95th, and 99th percentile. Finally, we plotted four different latency graphs that merged
the data from all four message queues, providing a comprehensive overview of latency
performance across different percentiles and message queues.

6. Results

The results of the experiments can be divided into two subcategories: throughput and
latency. The results for each subcategory are shown in their own subsection below. For
ease of comparison, a graph is provided, enabling a visual assessment of the four message
queues. Additionally, for precise information, the exact values are displayed in a table
located below the graph, providing concrete data. The y-axis in all of the graphs has been
scaled logarithmically so as to compensate for the huge difference between some of the
values. For consistency, we have used the same colors to represent each of the message
queues across all of the graphs: green for ActiveMQ Artemis, yellow for RabbitMQ, blue
for Redis, and red for Apache Kafka.

6.1. Throughput

The comprehensive results of the experiments for throughput are shown in Figures 2 and 3.
Figure 2 shows the maximum throughput in terms of the number of events per second
whereas Figure 3 shows the maximum throughput in terms of megabytes per second.



Telecom 2023, 4 306

10B 100B 1KB 10KB 50KB 100KB
Artemis 7652.99 8006.72 5872.98 1400.05 389.26 21.34
RabbitMQ 92,658 91,326 83,400 56,692 25,342 18,221
Redis 34,347 29,111 27,734 12,624 3298.67 2157.69
Kafka 666,517 599,794 427,361 333,145 298,590 255,285

10B 100B 1KB 10KB 50KB 100KB
Data Size

16.00

32.00

64.00

128.00

256.00

512.00

1024.00

2048.00

4096.00

8192.00

16,384

32,768

65,536

131,072

262,144

524,288
666,517

Th
ro

ug
hp

ut
 in

 E
ve

nt
s/

Se
co

nd

Figure 2. Throughput in terms of events per second.

10B 100B 1KB 10KB 50KB 100KB
Artemis 0.07 0.76 5.74 13.67 19.01 2.08
RabbitMQ 0.88 8.71 81.45 553.64 1237.41 1779.45
Redis 0.33 2.78 27.08 123.29 161.07 210.71
Kafka 6.36 57.2 417.34 3253.37 14,579 24,930

10B 100B 1KB 10KB 50KB 100KB
Data Size

0.06

0.12

0.25

0.50

1.00

2.00

4.00

8.00

16.00

32.00

64.00

128.00

256.00

512.00

1024.00

2048.00

4096.00

8192.00

16,384
24,930

Th
ro

ug
hp

ut
 (

M
B/

s)

Figure 3. Throughput in terms of megabytes per second.



Telecom 2023, 4 307

When it comes to measuring the throughput of message queues in terms of the number
of events processed per second, Apache Kafka emerged as the clear winner among the four
technologies. It demonstrated a remarkable performance, leaving the other three systems
far behind. RabbitMQ, on the other hand, secured the second spot, but the gap between
Apache Kafka and RabbitMQ was still significant. Redis secured the fourth spot. Finally,
ActiveMQ Artemis ranked fourth with an even larger difference in performance when
compared to the top three. A common trait noticed between all four technologies was that
the number of events per second decreased when increasing the message size.

The results regarding which message queue performed the best and worst were the
same for throughput in terms of megabytes per second and throughput in terms of the
number of events per second. This is expected since the throughput in megabytes per
second is just another method of representing throughput, as these data were calculated
by multiplying the maximum number of events by the message size. However, having
throughput data in these two forms could be beneficial for the reasons stated in the Method-
ology section. We also noticed that the throughput increases with respect to an increasing
message size for Apache Kafka, RabbitMQ, and Redis. However, for ActiveMQ Artemis,
when increasing the message size, the throughput increases up to a certain point and then
starts to drop.

To summarize the results, Apache Kafka outperformed the other three message queues
in terms of throughput by a significant margin. While RabbitMQ came in second place, the
gap between RabbitMQ and Apache Kafka was still substantial. Redis lagged behind both
Apache Kafka and RabbitMQ. ActiveMQ Artemis had the lowest throughput and lagged
significantly behind the other message queues.

6.2. Latency

Figures 4–7 show the end-to-end latency for the 50th, 75th, 95th, and 99th percentiles
for the throughputs of 1 MBps, 3 MBps, 6 Mbps, 10 MBps, and 15 Mbps. Based on the data
presented in the four graphs, it is evident that Redis outperformed all other systems across
all the tested throughputs. This is attributed to Redis storing data in memory instead of on
a disk, resulting in faster data access times. Apache Kafka slightly lagged behind Redis. As
we can see from the 50th percentile end-to-end latency graph, the difference between the
latency of Redis and Apache Kafka is only 3 ms. On the other hand, ActiveMQ Artemis
showed a better performance than RabbitMQ for lower throughputs. However, when
the throughput was increased, the latency for ActiveMQ Artemis increased significantly,
and was even higher than RabbitMQ. It is worth noting that Redis, Apache Kafka, and
RabbitMQ demonstrated consistent latency across all the throughputs tested. In contrast,
the latency for ActiveMQ Artemis seemed to steadily increase with each subsequent
increase in throughput.



Telecom 2023, 4 308

1MBps 3MBps 6MBps 10MBps 15MBps
Artemis 20.0 31.0 31.0 36.0 360.0
RabbitMQ 507.0 501.0 500.0 501.0 500.0
Redis 1.0 1.0 1.0 1.0 1.0
Kafka 4.0 4.0 4.0 4.0 5.0

1MBps 3MBps 6MBps 10MBps 15MBps
Throughput

1.00

2.00

4.00

8.00

16.00

32.00

64.00

128.00

256.00

657.00

La
te

nc
y 

in
 M

ill
is

ec
on

ds

Figure 4. The 50th percentile end-to-end latency.

1MBps 3MBps 6MBps 10MBps 15MBps
Artemis 21.0 36.0 36.0 53.0 1702.01
RabbitMQ 757.0 750.0 750.0 750.0 750.0
Redis 1.0 1.0 1.0 1.0 1.0
Kafka 4.0 4.0 5.0 5.0 5.0

1MBps 3MBps 6MBps 10MBps 15MBps
Throughput

1.00

2.00

4.00

8.00

16.00

32.00

64.00

128.00

256.00

512.00

1024.00

1852.00

La
te

nc
y 

in
 M

ill
is

ec
on

ds

Figure 5. The 75th percentile end-to-end latency.



Telecom 2023, 4 309

1MBps 3MBps 6MBps 10MBps 15MBps
Artemis 26.0 57.0 60.0 145.0 3234.01
RabbitMQ 950.0 951.0 950.0 950.0 950.0
Redis 2.0 2.0 2.0 1.0 2.0
Kafka 5.0 5.0 6.0 6.0 6.0

1MBps 3MBps 6MBps 10MBps 15MBps
Throughput

1.00

2.00

4.00

8.00

16.00

32.00

64.00

128.00

256.00

512.00

1024.00

2048.00

3384.00

La
te

nc
y 

in
 M

ill
is

ec
on

ds

Figure 6. The 95th percentile end-to-end latency.

1MBps 3MBps 6MBps 10MBps 15MBps
Artemis 44.0 87.0 111.0 225.0 3894.01
RabbitMQ 984.0 990.0 990.0 990.0 990.0
Redis 2.0 2.0 2.0 2.0 2.0
Kafka 5.0 5.0 6.0 6.0 6.0

1MBps 3MBps 6MBps 10MBps 15MBps
Throughput

2.00

4.00

8.00

16.00

32.00

64.00

128.00

256.00

512.00

1024.00

2048.00

4044.00

La
te

nc
y 

in
 M

ill
is

ec
on

ds

Figure 7. The 99th percentile end-to-end latency.



Telecom 2023, 4 310

7. Discussion

Our study fairly compared the four message queues using a benchmarking tool created
by a well-respected organization. We found that the different message queues have their
own advantages and drawbacks. One message queue that performs well in a certain
scenario might not perform well in another. To give an example of this, Redis performed
the best in terms of latency. However, Apache Kafka had a significantly higher throughput
than Redis. It is up to the developer or the system architect to decide which technology
best suits their specific use case.

The results of this study can be used as a guideline to make an informed decision on
when to use a specific technology. Below, we have outlined four different use cases and the
technologies best suited for them.

7.1. High Throughput

If throughput is the most important to us, Apache Kafka is the technology that should
be chosen. Our study showed that it significantly outperforms the other three message
queues when it comes to throughput both in terms of the number of messages per second
and the total size of the data. Due to its capability in achieving a high throughput, it can
even be used as a data stream.

7.2. Latency

If our use case requires us to have a very low latency, Redis would be the obvious
choice as our results show that Redis far outshines the other two technologies in terms of
latency. Although we did not consider persistence in this study, it should be noted that
Redis is mostly an in-memory data store with limited persistence features.

7.3. Low Throughput and Low Latency

In cases when storing data in memory is not an option, it is wiser to go with either
ActiveMQ Artemis or RabbitMQ. Additionally, if we are certain that we will not require a
high throughput, ActiveMQ Artemis would make a very good option since its latency is
lower than RabbitMQ for low-throughput scenarios.

7.4. Low Latency and High Throughput

Redis performed the best in terms of latency. Even though Apache Kafka lagged
behind Redis slightly in terms of latency, the difference was not significant. On the other
hand, Apache Kafka significantly outperformed the other three message queues in terms of
throughput. Hence, for this scenario, Apache Kafka would be the optimal choice.

8. Conclusions and Future Works

In this study, we conducted an extensive benchmarking analysis to evaluate the
performance of four popular message queue systems: Redis, ActiveMQ Artemis, RabbitMQ,
and Apache Kafka. Our goal was to gain deep insights into the strengths, limitations, and
relative performance of each technology. To ensure consistent and unbiased evaluations,
we employed the OpenMessaging Benchmark tool developed by The Linux Foundation.
We focused on two key metrics: latency and throughput, to compare the message queue
systems. The results of our study provide valuable insights for practitioners working with
message queues.

In terms of latency, Redis emerged as the top performer, exhibiting an exceptional
performance with consistently low latency. Apache Kafka closely followed Redis, with a
negligible difference of approximately 4 milliseconds. ActiveMQ Artemis outperformed
RabbitMQ for lower-throughput scenarios, showcasing its strengths in specific use cases.
However, as the throughput increased, the latency of ActiveMQ Artemis escalated signifi-
cantly, surpassing that of RabbitMQ.

Regarding throughput, Apache Kafka demonstrated remarkable capabilities, securing
the first position by a considerable margin. RabbitMQ secured the second spot, displaying



Telecom 2023, 4 311

a commendable throughput performance. Redis followed closely behind, although its
throughput capabilities were comparatively lower than RabbitMQ and Apache Kafka.
ActiveMQ Artemis performed the least efficiently in terms of throughput, highlighting its
limitations in handling high-volume message traffic.

These findings provide practitioners with valuable guidance in selecting the most
suitable message queue system based on their specific requirements. It is important to
consider not only the raw performance metrics but also the trade-offs and considerations
associated with each technology. Additional factors such as ease of use, community support,
and integration capabilities should also be taken into account to make informed decisions.

In conclusion, this benchmarking study contributes to the body of knowledge in the
field of message queue systems by providing a comprehensive evaluation of Redis, Ac-
tiveMQ Artemis, RabbitMQ, and Apache Kafka. The insights gained from this research can
guide practitioners in selecting the most appropriate message queue technology for their use
cases, considering factors such as latency, throughput, and other relevant considerations.

In future research, it would be valuable to expand upon the findings presented in this
paper. Firstly, exploring additional performance metrics beyond latency and throughput
would provide a more comprehensive understanding of the strengths and weaknesses of
Redis, ActiveMQ Artemis, RabbitMQ, and Apache Kafka. This could include factors such
as persistence, scalability, fault tolerance, and resource utilization. Additionally, conducting
experiments with larger and more diverse workloads, spanning various use case scenarios,
would further validate and refine the performance comparisons. Moreover, investigating
the impact of different deployment architectures, such as cloud-based or containerized
environments, on the message queues’ performance would provide insights into their
adaptability and suitability in modern computing infrastructures. Lastly, considering the in-
tegration and interoperability aspects of these message queues with other technologies and
frameworks commonly used in distributed systems would be beneficial for practitioners
seeking to leverage them in real-world applications.

Author Contributions: Conceptualization, R.M. and T.C.; methodology, R.M.; software, R.M. and
M.S.H.C.; validation, R.M.; formal analysis, R.M. and M.S.H.C.; investigation, R.M.; resources, R.M.;
data curation, R.M. and M.S.H.C.; writing—original draft preparation, R.M. and M.A.A.; writing—
review and editing, R.M., M.A.A. and T.C.; visualization, R.M. and M.S.H.C.; supervision, R.M. and
T.C.; project administration, R.M. and T.C.; funding acquisition, T.C. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by the National Science Foundation under grant no. 1854049 and
a grant from Red Hat Research https://research.redhat.com (accessed on 7 June 2023).

Data Availability Statement: The results in JSON format can be found under results folder of
the GitHub repository https://github.com/rokinmaharjan/openmessaging/tree/master/results
(accessed on 7 June 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Goel, S.; Sharda, H.; Taniar, D. Message-Oriented-Middleware in a Distributed Environment. Innov. Internet Community Syst.

2003, 2877, 93–103. [CrossRef]
2. The Linux Foundation. OpenMessaging Benchmark Framework. Available online: https://openmessaging.cloud/docs/

benchmarks/ (accessed on 17 December 2022).
3. Redis. Available online: https://redis.io (accessed on 20 January 2023).
4. Apache Software Foundation. ActiveMQ Artemis. Available online: https://activemq.apache.org/components/artemis/

(accessed on 31 January 2023).
5. Advanced Message Queueing Protocol (AMQP). Available online: https://www.amqp.org/ (accessed on 31 January 2023).
6. Message Queuing Telemetry Transport (MQTT). Available online: https://mqtt.org/ (accessed on 31 January 2023).
7. Simple Text Oriented Messaging Protocol (STOMP). Available online: https://stomp.github.io/ (accessed on 31 January 2023).
8. OpenWire. Available online: https://activemq.apache.org/openwire.html (accessed on 31 January 2023).
9. Pivotal Software. RabbitMQ. Available online: https://www.rabbitmq.com/ (accessed on 10 February 2023).
10. Apache Software Foundation. Apache Kafka. Available online: https://kafka.apache.org/ (accessed on 24 May 2023).

https://research.redhat.com
https://github.com/rokinmaharjan/openmessaging/tree/master/results
http://doi.org/10.1007/978-3-540-39884-4_8
https://openmessaging.cloud/docs/benchmarks/
https://openmessaging.cloud/docs/benchmarks/
https://redis.io
https://activemq.apache.org/components/artemis/
https://www.amqp.org/
https://mqtt.org/
https://stomp.github.io/
https://activemq.apache.org/openwire.html
https://www.rabbitmq.com/
https://kafka.apache.org/


Telecom 2023, 4 312

11. Maheshwari, P.; Pang, M. Benchmarking message-oriented middleware: TIB/RV versus SonicMQ. Concurr. Comput. Pract. Exp.
2005, 17, 1507–1526. [CrossRef]

12. TIBCO Software Inc. TIBCO Rendezvous. Available online: https://www.tibco.com/products/tibco-rendezvous (accessed on 7
June 2023).

13. Progress Software Corporation. SonicMQ messaging System. Available online: https://docs.progress.com/bundle/openedge-
application-and-integration-services-117/page/SonicMQ-Broker.html (accessed on 10 January 2023).

14. Samuel Kounev, K. SPECjms2007 Benchmark Framework. Available online: https://www.spec.org/jms2007/ (accessed on 10
January 2023).

15. Sachs, K.; Kounev, S.; Appel, S.; Buchmann, A. Benchmarking of Message-Oriented Middleware. In Proceedings of the DEBS ’09,
Third ACM International Conference on Distributed Event-Based Systems, Nashville, TN, USA, 6–9 July 2009; Association for
Computing Machinery: New York, NY, USA, 2009. [CrossRef]

16. Sachs, K.; Appel, S.; Kounev, S.; Buchmann, A. Benchmarking Publish/Subscribe-Based Messaging Systems. In Proceedings of
the Database Systems for Advanced Applications, Tsukuba, Japan, 1–4 April 2010; Yoshikawa, M., Meng, X., Yumoto, T., Ma, Q.,
Sun, L., Watanabe, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 203–214.

17. Appel, S.; Sachs, K.; Buchmann, A.P. Towards benchmarking of AMQP. In Proceedings of the Fourth ACM International
Conference on Distributed Event-Based Systems, DEBS 2010, Cambridge, UK, 12–15 July 2010; Bacon, J., Pietzuch, P.R., Sventek,
J., Çetintemel, U., Eds.; ACM: New York, NY, USA, 2010; pp. 99–100. [CrossRef]

18. De Arajui Souza, R. Performance Analysis between Apache Kafka and RabbitMQ. Available online: http://dspace.sti.ufcg.edu.br:
8080/jspui/bitstream/riufcg/20339/1/RONAN%20DE%20ARAU%CC%81JO%20SOUZA%20-%20TCC%20CIE%CC%82
NCIA%20DA%20COMPUTAC%CC%A7A%CC%83O%202020.pdf (accessed on 7 June 2023).

19. Fu, G.; Zhang, Y.; Yu, G. A fair comparison of message queuing systems. IEEE Access 2020, 9, 421–432. [CrossRef]
20. Apache Software Foundation. Apache Pulsar. Available online: https://pulsar.apache.org/ (accessed on 11 January 2023).
21. John, V.; Liu, X. A survey of distributed message broker queues. arXiv 2017, arXiv:1704.00411.
22. John, V. Flotilla. Available online: https://github.com/vineetjohn/flotilla (accessed on 11 January 2023).
23. Ionescu, V.M. The analysis of the performance of RabbitMQ and ActiveMQ. In Proceedings of the 2015 14th RoEduNet

International Conference—Networking in Education and Research (RoEduNet NER), Craiova, Romania, 24–26 September 2015;
pp. 132–137. [CrossRef]

24. Milosavljevic, M.; Matic, M.; Jovic, N.; Antic, M. Comparison of Message Queue Technologies for Highly Available Microservices
in IoT. Available online: https://www.etran.rs/2021/zbornik/Papers/105_RTI_2.6.pdf (accessed on 7 June 2023).

25. Redis Installation Guide. Available online: https://redis.io/docs/getting-started/installation/install-redis-on-mac-os/ (accessed
on 20 January 2023).

26. RabbitMQ Installation Guide. Available online: https://www.rabbitmq.com/install-homebrew.html (accessed on 10 February
2023).

27. ActiveMQ Artemis Installation Guide. Available online: https://activemq.apache.org/getting-started (accessed on 31 January
2023).

28. Kafka Installation Guide. Available online: https://kafka.apache.org/quickstart (accessed on 24 May 2023).
29. Maharjan, R. Open Messaging Benchmark Framework Fork. Available online: https://github.com/rokinmaharjan/openmessaging

(accessed on 7 June 2023).
30. Bray, T. The JavaScript Object Notation (JSON) Data Interchange Format. RFC Editor. 2014. Available online: https://www.rfc-

editor.org/info/rfc7159 (accessed on 7 June 2023).
31. Van Rossum, G.; Drake, F.L. Python 3 Reference Manual; CreateSpace: Scotts Valley, CA, USA, 2009.
32. Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1002/cpe.881
https://www.tibco.com/products/tibco-rendezvous
https://docs.progress.com/bundle/openedge-application-and-integration-services-117/page/SonicMQ-Broker.html
https://docs.progress.com/bundle/openedge-application-and-integration-services-117/page/SonicMQ-Broker.html
https://www.spec.org/jms2007/
http://dx.doi.org/10.1145/1619258.1619313
http://dx.doi.org/10.1145/1827418.1827438
http://dspace.sti.ufcg. edu.br:8080/jspui/bitstream/riufcg/20339/1/RONAN%20DE%20ARAU%CC%81JO%20SOUZA%20-%20TCC%20CIE%CC% 82NCIA%20DA%20COMPUTAC%CC%A7A%CC%83O%202020.pdf
http://dspace.sti.ufcg. edu.br:8080/jspui/bitstream/riufcg/20339/1/RONAN%20DE%20ARAU%CC%81JO%20SOUZA%20-%20TCC%20CIE%CC% 82NCIA%20DA%20COMPUTAC%CC%A7A%CC%83O%202020.pdf
http://dspace.sti.ufcg. edu.br:8080/jspui/bitstream/riufcg/20339/1/RONAN%20DE%20ARAU%CC%81JO%20SOUZA%20-%20TCC%20CIE%CC% 82NCIA%20DA%20COMPUTAC%CC%A7A%CC%83O%202020.pdf
http://dx.doi.org/10.1109/ACCESS.2020.3046503
https://pulsar.apache.org/
https://github.com/vineetjohn/flotilla
http://dx.doi.org/10.1109/RoEduNet.2015.7311982
https://www.etran.rs/2021/zbornik/Papers/105_RTI_2.6.pdf
https://redis.io/docs/getting-started/installation/install-redis-on-mac-os/
https://www.rabbitmq.com/install-homebrew.html
https://activemq.apache.org/getting-started
https://kafka.apache.org/quickstart
https://github.com/rokinmaharjan/openmessaging
https://www.rfc-editor.org/info/rfc7159
https://www.rfc-editor.org/info/rfc7159
http://dx.doi.org/10.1109/MCSE.2007.55

	Introduction
	Background
	Redis redis
	ActiveMQ Artemis artemisbook
	RabbitMQ rabbitmq
	Apache Kafka kafka

	Related Works
	Methodology
	Experiments
	Results
	Throughput
	Latency

	Discussion
	High Throughput
	Latency
	Low Throughput and Low Latency
	Low Latency and High Throughput

	Conclusions and Future Works
	References

