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Abstract: Many devices contain more than one network interface. There is scope for multi-path
transfer to utilise these network interfaces simultaneously. Multi-path TCP (MPTCP) is designed
to provide improved resilience and resource utilisation through multi-path transfer. One of the
key goals of MPTCP is to preserve fair resource sharing with regular TCP at network bottlenecks.
Although the coupled congestion control algorithms can achieve this goal by coupling subflow
congestion windows, the algorithms always assume that the subflow paths will share a bottleneck.
As a consequence, MPTCP is unable to maximise throughput over all available paths at a non-shared
bottleneck. We present a survey about MPTCP and its coupled congestion control algorithms. We
then show that MPTCP coupled congestion control algorithms perform poorly when paths are disjoint
and/or do not have similar delay and/or bandwidth characteristics.
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1. Introduction

Where end devices have multiple network interfaces, the use of multiple paths in
the Internet is a promising approach to increase network throughput. Internet paths are
dynamic and diverse, these paths are very likely to have different characteristics. For
example, WiFi and cellular interfaces have different bandwidth and delay capabilities.
Additionally, the TCP/IP stack was designed based on a system in which nodes are
single-homed. As such, enabling multi-path utilisation in a network can be challenging.
The gap between the single-path and multi-path networks has been explored at different
TCP/IP layers. Various solutions have been proposed to allow multi-path transfer in some
capacity [1,2].

The Multi-path Transport Control Protocol (MPTCP) is an extension of the TCP
transport protocol that allows existing TCP-based applications to make use of multiple
paths where that option is available. MPTCP can allow simultaneous use of multiple
addresses/interfaces between source and destination hosts [3].

An MPTCP host can use multiple IP/port addresses to take alternate paths to a
destination host. MPTCP distributes data streams onto different paths using subflows.
Each subflow looks and behaves as an independent TCP flow. A subflow can dynamically
be added/removed from the MPTCP connection without terminating the connection [3].

MPTCP operates at the transport layer and is transparent to the application and
network layers. An MPTCP connection appears like a regular TCP and does not require
any modification to network applications. To the network layer, each MPTCP subflow
appears as a TCP flow [3].

Similar to TCP, MPTCP is connection-oriented and reliable, and is designed to work
with the Internet. MPTCP can provide the following major benefits, (1) higher throughput
from multiple bandwidth aggregation; (2) resilience improvement; and (3) better resource
utilisation [3].

In TCP, a mechanism is required to coordinate the transfer and to avoid congestion. In
this context, Congestion Control (CC) algorithms play an important role in decreasing the
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loss rate and stabilising the entire network. Each flow should meet certain requirements to
ensure that available network resources are fairly shared amongst all users [4,5].

Typically, CC algorithms monitor the incoming feedback signal to adjust the flow
sending rate. Packet loss and packet delivery delay are two common signals used in
CC algorithms. Both loss-based and delay-based CC use the Congestion Window (cwnd)
to indicate each path’s availability/capacity. TCP CC maintains a cwnd for each flow
which dynamically adjusts based on network conditions. The window increases when no
congestion event has occurred and decreases when congestion is detected. Overall, CC
aims to reduce congestion, maintain high link utilisation and provide a fair share of the
available resources [5].

MPTCP CC algorithms can be divided into two groups, uncoupled and coupled CC.
With uncoupled CC, each subflow deploys a separate/independent cwnd. The subflow
cwnd is not affected by loss events on other paths. Existing loss-based and delay-based CC
algorithms can be used as an uncoupled CC in MPTCP [1,3].

With coupled CC, a shared cwnd is used across all the subflows in a connection. Cur-
rently deployed coupled CC algorithms include Linked Increased Algorithm (LIA) [6],
Opportunistic Linked Increase Algorithm (OLIA) [7], Balanced Linked Adaption Conges-
tion Control Algorithm (BALIA) [8] and Weighted Vegas (wVegas) [9]. LIA, OLIA and
BALIA are considered loss-based while wVegas is delay-based.

The notion of “fairness” has been an ongoing topic of research in both MPTCP and
TCP. MPTCP uses multiple network paths simultaneously in order to improve overall
throughput performance. One of the design goals for MPTCP CC mechanisms is to
ensure fair coexistence of multi-path and single-path (sub)flows within the same network.
The protocol is considered fair if it behaves like a TCP connection under shared path
conditions. As such, the resources should be equally shared among all connections (TCP
and MPTCP) [1,3].

Uncoupled CC maintains a separate cwnd on each subflow independently. As an
example, three subflows sharing the same link occupy three times as much bandwidth as a
regular TCP flow. This would not be fair to TCP connections at shared bottlenecks [6].

Coupled CC focuses on the fairness of the overall connection instead of a single
subflow. All subflows share a coupled cwnd which shifts traffic between different subflows
to ensure the overall throughput is not more than a single TCP flow [6].

In this paper, we present a survey and analysis of MPTCP. In particular, we describe
the general principles of MPTCP. We give an overview of a fairness definition from different
perspectives and analyse existing MPTCP CC algorithms. In particular, the purpose of
the analysis is to investigate the performance of the currently deployed MPTCP coupled
CC algorithms under different scenarios. It is important to understand whether current
solutions to MPTCP CC function both when the subflows share a bottleneck and when the
subflows follow disjoint paths. We would also like to obtain a better understanding of the
performance of coupled CC algorithms when the characteristics of the subflow paths differ.

The paper is structured as follows. Section 2 gives an overview of the emergence of
multi-homed devices and the MPTCP protocol. In Section 3, we describe what a network
path is and the importance of path selection in multi-path networks. Section 4 discusses
a number of existing multi-homing solutions at each layer of the Internet protocol suite.
The MPTCP protocol is briefly discussed in Section 5. More detailed discussion of MPTCP
scheduling follows in Sections 6 and 7.

Finally, in Section 7, we discuss the currently deployed CC mechanisms for the
MPTCP protocol. We contribute to the ongoing MPTCP fairness discussion by providing
an overview of fairness from a flow level and network level perspective. In particular,
we discuss the definition of the concept of fairness for MPTCP, and use a simulation and
experiments to validate and compare the results with expected theoretical CC mechanisms.
A conclusion is presented in Section 8.
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2. Multi-Path Transport Control Protocol—An Overview

The Internet is made up of billions of connected devices world-wide. Until recently,
end-hosts connected to the Internet were typically single-homed. As an example, connected
via a single WiFi interface. More recently computing devices such as laptops and mobile
phones are more likely to be equipped with several network interfaces, for example WiFi
and cellular, while average Internet speeds have gradually increased over the years, the
transport protocols used for transferring data between devices have evolved more slowly.
The Transmission Control Protocol (TCP) [10] first originated in the 1970s to provide reliable
delivery between networks. Today, TCP remains the Internet’s default transport protocol
with few extensions [1,2].

Protocols established for single-homed devices are unable to realise the potential
network throughput performance that multi-homed devices are theoretically able to achieve.
For example, TCP can only use a single path between end-hosts per session, and the
connection has to be terminated and re-established when shifting from one interface to
another. As such, end-hosts cannot take advantage of redundant paths and additional
capacity that exists over multiple links [1,2].

To enable multi-homing at end-hosts, the Internet Engineering Task Force (IETF) de-
signed the TCP extension called Multi-path TCP (MPTCP) [3]. When multiple links are
concurrently available, MPTCP transfers traffic utilising all of the available paths (sub-
flows). This increases the potential for higher overall throughput and resiliency. MPTCP is
compatible with TCP-based applications and is already deployed on the Internet [3].

Each MPTCP connection needs to coordinate data transmission across its subflows.
Current implementations use a scheduler and congestion control (CC) to manage how the
end-hosts transfer data over the available paths. The role of the scheduler is to decide
which links to utilise (best path) based on path availability and specific criteria (e.g., RTT,
congestion window size). Once paths are selected, the MPTCP scheduler distributes the
data among the selected links. The scheduler must rely on the CC algorithm to make a
decision on the length of data to allocate to the subflows [1,3].

In a single-homed device, it is the task of CC to optimise performance while simul-
taneously not congesting the path. Traditionally, CC is applied to a single path between
two end-hosts. TCP CC dynamically modifies the sending rate of the path to ensure full
utilisation while reducing the sending rate in the case of a congestion event. Depending
on the CC algorithm, congestion events may have different responses. The CC algorithm
modifies the sending rate by setting the congestion window size of a TCP connection. The
window defines how much data is allowed onto the path [4].

Multi-path CC operates at either the connection-level or at the individual subflow level.
Two CC approaches in MPTCP are uncoupled and coupled CC. When using uncoupled
CC, each subflow manages its congestion window independently of the other subflows or
overall connection information. With coupled CC, the window of the entire connection is
shared between subflows. Each path congestion window is modified after considering the
current state of the overall connection [1,3].

3. Path Selection

A packet contains all the information required to reach a destination when it gets sent
into a network. Network links used by a packet to move between routers/hops and reach
a destination is referred to as a path. In the Internet, multiple paths can exist between a
sender and a receiver. A sender must select a path to transfer new data onto [1].

Originally, path selection took place at layer 3 (network layer). Path selection in layer
3 (routing) is made based on network conditions rather than endpoint and application
requirements. Such decisions carry the risk of decreasing transport-layer performance.
More recently, multi-homed devices have the ability to select the best path. For example, a
path can be selected using dynamic scheduling and flow-control techniques [1].

A multi-path scheduler can decide how much data and through which interface to
distribute an application data stream [1]. Figure 1 shows a simple scheduler sending data
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onto two different paths. As can be seen, the application sends data to the output queue.
The scheduling mechanism selects the path through which the data gets transmitted.

SchedulerOutput queueApplication

Path #1

Path #2

Figure 1. Simple Scheduler.

Having multiple paths can be beneficial depending on the available paths and their
condition, whether they are disjoint or share a common bottleneck. End-hosts gather
information about paths to help the scheduler make efficient decisions. Each layer might
provide different information to the scheduler. For example, a scheduler can integrate with
the transport layer and congestion-control algorithm to check available congestion on each
path as well as the RTT to select a transmission path [1].

3.1. Path Diversity

Internet paths are unpredictable and change dynamically. Both network and end-hosts
play a part in changing a paths characteristics. On a single path, it is possible for packets
to arrive out-of-sequence. This problem becomes more complex when multiple paths are
used to transfer data as each path can have different characteristics. For example, a flow
through a smartphone’s cellular interface often experiences higher RTT as compared to a
smart-phone’s Wi-Fi interface [11]. Some common issues include head-of-line blocking and
window limitation.

3.1.1. Head-of-Line Blocking

When packets are distributed through different paths, different path delay and loss
rates might contribute to out-of-sequence delivery at the receiver. For example, consider
two paths between nodes where one node has a lower delay than the other. Packets that
are transferred through the lower delay path need to wait at the receiver’s buffer until the
high-delay packets arrive.

The delay difference and out-of-order packets at the receiver buffer cause a problem
called head-of-line blocking. Head-of-line blocking can lead to a network burst which is
not desirable for certain types of traffic. For example, streaming applications since they
require a large amount of receive buffer for a good user experience [11].

3.1.2. Window Limitations

When using a transmission layer protocol such as TCP, a sender typically uses the
minimum of cwnd and the receiver buffer (rwnd) to transfer data. A problem called window
blocking can occur when a large portion of the receive buffer is occupied by out-of-order
packets. In such cases, the receive window is filled with out-of-sequence packets and
hence the sender shrinks its send window. The problem affects available paths with
higher performance (lower delay, higher bandwidth) since no data can be transferred until
head-of-line blocking data are positively received and acknowledged [1].

Another issue caused by a full receive buffer is called send buffer blocking. When
a sender transmits data, the segments stay in its buffer until the data are acknowledged.
This causes the sender to hold on to the out-of-order packets until the blocking packets are
received [1].
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4. Multi-Homing Solutions

It is becoming more common for end hosts to be connected via multiple interfaces to
the Internet. Similarly, ISPs offer multiple paths to allow routers to send traffic with the
same destination across different paths. In data centres, a large number of servers often
communicate with each other over redundant links [2].

Despite this, the protocols widely deployed today were not originally designed for
redundant, multi-path networks. The lack of multi-path aware protocols prevents the
potential benefits that multi-homing can provide. Over time, different solutions at each
layer have been proposed to fill the current gap with respect to the layers’ use cases.

4.1. Link Layer

At the link layer, link aggregation mechanisms have been introduced to aggregate the
capacity of switches’ multiple interfaces [2]. Generally, the interfaces are aggregated under
one logical interface and share the same MAC address. This results in the upper layers
being unaware of the link aggregation. The virtual interface aims to increase throughput,
provide redundancy and distribute traffic load between switches [2].

The Link Aggregation Control Protocol (LACP) [12] is part of the IEEE 802.3ad specifi-
cation which allows bundling of multiple physical ports into a single virtual interface. The
protocol provides automatic configuration and link aggregation as well as the ability to
dynamically detect link failure [12].

LACP exchanges LACP packets between LAN ports in active or passive modes. Active
mode starts the negotiation while passive mode responds to the packet negotiation. The
protocol identifies the capabilities of each port group dynamically and exchanges this
information between the LAN ports. The protocol requires synchronisation between
the switches. Further, the switch can only aggregate its links to the next-hop. If the
bottleneck is not the next hop, the aggregated links do not provide any benefit to the
network bottleneck [12,13].

4.2. Network Layer

There are different proposals to enable multi-homing in the network layer. Some of
the common methods are summarised in this subsection.

• Site-Wide Multi-homing: This method refers to when one LAN is connected to the
Internet via different transit providers (see Figure 2). Hosts in such a network tend to
be single-homed while the gateway router is responsible for multi-pathing. The router
can shift end-hosts TCP flows between different transit providers without breaking
any connection. Site-wide multi-homing provides redundancy, load balancing and
allows policy enforcement. However, the scheduler makes decisions based on the
current network condition and preferences rather than the hosts needs [1].

• Mobile IPv4 and IPv6 [14]: Mobile IP uses entities called the home agent and foreign
agent to create a tunnel to mobile hosts (see Figure 3). Mobile IP allows mobile hosts
to change IP addresses without disrupting/changing the connection. As can be seen
in Figure 3, when a mobile node connects to a new gateway (the foreign agent), the
mobile node registers a care-of address with the home agent. The care-of address
is usually assigned to the logical end point of the tunnel between the home and the
foreign network (mainly the foreign agent). The care-of address can be reused for
different visiting hosts. When a mobile device shifts from one foreign agent to another
one, the home agent will forward data to the foreign agent to end the data to the
mobile host.
However, the topology relies heavily on traffic passing through the foreign agent as
well as the home agent at least once. Further, while mobile nodes can change their own
IPs, there is no support for resource pooling and hence bandwidth remains unchanged.

• Site Multi-homing by IPv6 Intermediation (Shim6) [15] Shim6 is a pure end-host
based solution which allows IPv6 nodes to have multiple addresses. Shim6 improves
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load balancing and redundancy. However, it does not provide simultaneous use of
multiple paths and is restricted to IPv6 networks.

Figure 2. Site-Wide Multi-homing Example [1].

Figure 3. Mobile IPv4 [1].

4.3. Transport Layer

At the transport layer, we are able to take end-hosts requirements/metrics into account.
Different solutions have been proposed for this layer. This subsection covers the SCTP and
MPTCP protocols.

• Stream Control Transmission Protocol (SCTP) [16]: SCTP is an alternative transport
protocol that aims to transfer data in a non-strict reliable manner. This means that data
can be transferred in an ordered, partially ordered or an un-ordered manner. SCTP
can support multiple IPs per connection. Instead of one data stream per connection,
SCTP divides the stream into smaller chunks called associations.
To address the head-of-blocking issue, SCTP breaks down the data sequence concept
in TCP into so-called regions. Regions are basically an association distributed between
multiple sequence streams. Data can be transmitted through any path available to the
association.
SCTP CC is based on TCP CC. In the case of one association, all the paths share the
same CC metrics. If an association has multiple endpoints, then CC might be separate
on each path. One of the challenges of SCTP is that it uses a different socket API. This
means that applications need to be specifically developed to use SCTP [1,2]. SCTP
was not initially compatible with NAT and other middle boxes. Hayes and But, [17]
developed a NAT module, called SONATA, to support SCTP. However, SCTP has not
been widely deployed outside of niche applications [2].

• Multi-path TCP (MPTCP): In 2013, Multi-path TCP protocol (MPTCP) [3] was re-
leased as an extension to TCP to allow multi-homed devices to transfer data through
multiple paths simultaneously. MPTCP is compatible with existing TCP applications
and functions within the current Internet. The main difference between SCTP and
MPTCP is that each sub-flow in MPTCP behaves as an individual and independent
TCP flow. MPTCP will be discussed in detail in Section 5.
The connection performance of MPTCP is determined by the cooperation of the fol-
lowing [18,19]:



Telecom 2022, 3 587

– Path Manager: A path manager decides when to create/remove flows. The deci-
sion is made based on application requirements. Some applications might focus
on using multiple paths to avoid failover. In this case, the path manager switches
to the secondary path when the primary path fails. In other applications, load
balancing plays a crucial part in the performance. In this case, the path manager
establishes multiple paths to ensure data can be transferred simultaneously.

– Packet Scheduler: A scheduler is an algorithm that selects a path to transmit
packets on. The main MPTCP schedulers will be discussed further in Section 6.

– Congestion Control: The congestion window of each subflow and the overall
connection are taken into account based on different properties (e.g., fairness,
friendliness, responsiveness). Different MPTCP CC algorithms will be discussed
further in Section 7.

5. Multi-Path TCP

MPTCP can improve throughput by allowing devices to aggregate the bandwidth
of their available network interfaces when transferring data. For instance, some large
data centres use a dual-homed topology to transfer massive flows between servers and
end-points. This helps data centres to increase speed when migrating virtual machines,
large images/videos backup and replicating content [20–22].

Multiple routes can also provide mobility for users. Each end-host can handover traffic
from one network interface to another without disrupting the connection. For instance,
Apple users (e.g., iPhone or iPads) are able to shift from local Wi-Fi to 4G or vice versa
when downloading an important file without losing connectivity [1,22].

MPTCP can also improve network resilience by using available redundant paths in the
connection. For instance, when an ongoing session fails, the end-host can use alternative
routes while waiting to re-connect on the original path [23]. Similarly, MPTCP path diversity
allows users to utilise less congested paths in the case of severe congestion in the primary
path [24].

MPTCP in the Networking Stack

With regards to the protocol stack, all MPTCP operations occur at the transport layer.
MPTCP interaction with the application layer is identical to TCP. The application layer
communicates with MPTCP through a TCP stream socket which is connection-oriented,
reliable and bi-directional. MPTCP divides the data received from the application layer
into multiple subflows. At the network layer, each MPTCP subflow appears as a regular
TCP flow bound to a local IP address [3] (see Figure 4).

IP 3IP 1 IP 2

Sub-flow 3Sub-flow 2Sub-flow 1

Sockets API

MPTCP

ApplicationApplication Layer

Transport Layer

Network Layer

Figure 4. MPTCP in the Networking Stack.
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6. MPTCP Schedulers

Where multiple paths exist between end-hosts, it is the responsibility of the sender to
decide which path to use when transferring data. After establishing the connection, the
MPTCP scheduler segments the data in the sender buffer and selects the best available
subflow for each packet. A subflow is considered available when the three-way handshake
is completed. The scheduler policy is used to select the best path from all currently available
subflows [18].

Random selection of a path for data transfer can lead to poor performance, such as
head-of-line blocking (Section 3.1.1), window limitations (Section 3.1.2) and bufferbloat. As
such, the path selection policy can have a critical impact on ultimate MPTCP throughput.
Bufferbloat refers to having excessively large buffers in bottleneck routers. When paths are
congested, large buffers result in packets residing in the queue for a long time and causes
undesirable latency. Bufferbloat increases network delay and reduces throughput [2].

Since MPTCP became available in the Linux kernel in 2013, several multi-path sched-
ulers have been proposed for different purposes. Each scheduler can be selected based
on system and application requirements. Table 1 summarises some of the standard and
non-standard schedulers along with their approach in making scheduling decisions.

The default MPTCP scheduler in Linux is minRTT [25]. minRTT first sends data on
the subflow with the lowest RTT until its cwnd is full. Then, it starts sending data on the
subflow with the next highest RTT. The aim of the scheduler is to optimise throughput and
load balancing. minRTT benefits bulk transfer applications and heterogeneous networks.
Unfortunately, minRTT can introduce new issues in terms of performance, such as blinder
decision and biased-feeding phenomenon [18].

The blinder decision problem is caused by minRTT choosing the path solely based on
the path latency, regardless of the other metrics (e.g., transmission rate, packet loss). For
example, multiple subflows would choose a path with characteristics of 2 ms delay and
10 Mbps capacity in preference to a path with 3 ms delay and 100 Mbps capacity. Even
though subflows travel through the low delay path, there is a risk of packet loss as all the
subflows choose the same path which has a lower bandwidth [18].

Biased-feeding is due to the scheduler preferring the same path as long as it is available.
The other subflow is only selected when the first subflow is no longer available, most likely
due to a full cwnd or loss event. As soon as the first path becomes available, it is immediately
selected in preference to other paths [18].

The redundant scheduler sends the same packet over multiple subflows, the packet is
lkely to arrive first on the path with minimum latency. When the same packet arrives on
other subflows, it is discarded. The redundant scheduler is useful when the application
needs to achieve the lowest latency whilst sacrificing bandwidth. It also provides some
level of resiliency [25].

The round-robin scheduler simply cycles over subflow queues. The RR scheduler is
useful for testing/academic purposes. However, it tends to induce head-of-line blocking
and as such often results in drastically reduced performance [25].

Non-standard MPTCP schedulers discussed in the literature focus on improving a
single or various metrics to distribute data. Weighted round-robin [26] is an extension to
the round-robin scheduler providing optimal load-balancing using subflow weights. Each
subflow can be weighted differently Weighted method allows setting values unequally. As
such, WRR distributes data based on the specified weight values.

The Shortest Transfer Time First (STTF) [27] scheduler predicts the transfer time
on different paths. It then assigns unsent segments to the path with shortest transfer
time. STTF can be used in interactive applications which require low transmission time.
The Highest Send Rate (HSR) [28] scheduler chooses a subflow based on the highest
sending rate.
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Table 1. Main MPTCP Scheduling Solutions in Linux.

Schedulers Approach Goals Use-Cases

Minimum
Round-Trip-Time First

(minRTT) [25]

Default MPTCP scheduler in
Linux which chooses the

available subflow based on
the lowest RTT

Improve throughput Heterogenous networks

Round-Robin (RR) [25] Transfer data on available
subflows in round-robin

fashion

Equal data distribution Academic/Research/
Testing purposes

Redundant [25] Transfer data on all available
subflows in a redundant

manner

Provide redundancy Academic/Research/
Testing purposes

Weighted Round-Robin
(WRR) [26]

Extension to RR scheduler -
Allows sending data on

different paths depending on
the their weight
value/priority

Prioritised data
distribution/Optimise

load balancing

Research/General
applications

Shortest Transfer Time
First (STTF) [27]

Distribute data on the
subflows with shortest
predicted transfer time

Reduce completion time Web and interactive apps.

Highest Send Rate first
(HSR) [28]

Select subflows with high
sending rate

Improve throughput Bulk transfer applications

Forward delay aware
(DAPS) [29]

Uses RTTs to increase the
in-order arrival at the

receiver

Mitigate head-of-line
blocking

Wireless networks

Lowest-latency with
Retransmission and

Penalisation scheduler
(LL/RP) [11]

Penalising subflows that
cause head-of-line blocking

by

Mitigate head-of-line
blocking

General applications

Lowest-latency with
Bufferbloat Mitigation

(LL/BM)[30]

An extension of LL which
identifies subflows enqueued

in the large buffer

Mitigate bufferbloat General applications

Earliest Completion First
(ECF) [31]

Investigate whether slower
subflow affects faster subflow
performance. Furthermore,

assigns a packet to the faster
subflow.

Improve quality of service Video streaming
applications

Out-of- Order
Transmission for in order

arrival (OTIAS) [30]

Estimates arrival time on all
the paths and choose the

fastest subflow.

Mitigate jitter Real-time applications

The Forward Delay Aware Scheduler (DAPS) [29] uses the paths’ RTTs information
to improve the probability of in-order packet arrival at the receiver. DAPS main goal is to
reduce buffer blocking at the receiver. DAPS uses the Lowest Common Multiple (LCM) of
forward delays on all subflows. For example, if the forward delay on the slower subflow is
3 times that of the faster subflow, DAPS would transfer packets 1 to 3 on the faster subflow
and packet 4 on the slower subflow.

Lowest-latency with retransmission and penalisation scheduler (LL/RP) [11] is a
minRTT extension that retransmits head-of-line packets while penalising subflows that
cause head-of-line blocking. Lowest-latency with bufferbloat mitigation (LL/BM) [30]
is another minRTT extension that identifies subflows suffering from bufferbloat, and
then bounds their cwnd. LL/RP and LL/BM can be used by applications to address the
aforementioned issues.
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Earliest Completion First (ECF) [31] assigns packets to faster subflows and might not
use slower subflows at all. ECF can maximise the use of the fast subflows which is useful
for video streaming applications. Similarly, Out-of- Order Transmission for in order arrival
(OTIAS) [30] is used in real-time applications as it focuses on utilising the fastest subflow.

As MPTCP is designed to operate over the Internet, it is expected that the protocol
should provide good performance across a range of diverse paths where characteristics
can change over time. Congestion control and packet scheduling are two important
components which greatly impact the performance of MPTCP [1,2]. The existing literature
mainly focuses on individual performance evaluation of schedulers or CC algorithms.
However, the relationship between CC and the scheduler is vital.

As discussed, the default scheduler of MPTCP (minRTT), prefers the subflow with the
smallest RTT as long as their is capacity in the send window to transmit further packets.
Detection of when the window capacity is exhausted is performed by the CC algorithms.
MPTCP CC adjusts the send rate and balances the degree of congestion within each sub-
flow to improve throughput/resource utilisation. Path scheduling is used to distribute
data to different subflows to improve transmission efficiency [1]. As the default scheduler
is most likely to be deployed on the Internet, we will limit discussion to the interaction and
performance of CC algorithms when used with minRTT.

7. MPTCP Congestion Control

It terms of congestion control, using multiple subflows for one connection can be
complex. With regular TCP, congestion occurs on a single path between two end-hosts.
MPTCP uses different paths to transfer data. Generally, two paths tend to experience
different levels of congestion and delay [2,19]. For instance, nearly all smartphones are
equipped with at least WLAN and 4G/5G interfaces which each experience different RTTs.

A simple solution is to use a separate congestion control algorithm on each subflow
(uncoupled CC). Alternatively, new CC algorithms have been designed in which the total
congestion window is shared between all subflows (coupled CC). Figure 5 shows different
examples of a single-path TCP and multi-path CC algorithms.

Whether coupled or uncoupled, MPTCP CC algorithms should aim to achieve three
main goals [6]:

• Improve Throughput: Total throughput of subflows should be at least as good as a
regular TCP flow on the best available path.

• Do No Harm: Subflows should not use more capacity on a shared bottleneck than if
they were using a regular TCP flow over any of the paths.

• Balance Congestion: Subflows should aim to avoid congested paths while achieving
the first two goals.

The first two goals together ensure fairness at the shared bottleneck. Goal three is based
on the concept of resource pooling. When each subflow sends more data through the least
congested path, the traffic in the network will move away from congested areas [1,6,32,33].

To achieve fairness (goals one and two), a CC algorithm needs to detect when there
is a shared bottleneck or when the paths are separate. In case of a shared bottleneck, the
algorithm needs to estimate what a single TCP would get over the same path and split
the link’s capacity to that of a regular TCP flow. Similarly, when paths are disjoint, an
algorithm needs to ensure subflows achieve higher throughput than TCP.
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Figure 5. TCP Furthermore, MPTCP CC examples.

7.1. Uncoupled CC

With uncoupled CC, each MPTCP subflow behaves as an independent TCP flow, with
its own instance of a CC algorithm running independently. For each subflow, cwnd and
transmission rate are controlled separately to maximise the use of the path. Uncoupled
algorithms are the simplest form of MPTCP CC. Reno [34], NewReno [35], CUBIC [36],
and Vegas [37] are among the CC algorithms that can be deployed as uncoupled CC
within MPTCP. For example, CUBIC is the current default algorithm for TCP in Linux
distributions which is highly scalable and stable when the network bandwidth-delay
product is large. Using uncoupled CC makes performance and operation predictable. The
uncoupled algorithms are effective at increasing overall MPTCP throughput and are highly
responsive to path changes [1,6,32].

However, if N subflows in an MPTCP connection are competing against a single-path
TCP flow at a shared bottleneck, the compound MPTCP throughput will be approximately
N times higher than that of a single TCP flow. Therefore, uncoupled CC cannot achieve Goal
2 [6]. For example, if an MPTCP with 3 subflows transmits through the same bottleneck
as a regular TCP, the MPTCP connection will acquire approximately 75 percent of the
bottleneck’s capacity, effectively starving regular TCP.

If each MPTCP subflow uses its own instance of a TCP CC, a TCP flow competes fairly
over a shared link with a single MPTCP subflow. Let us consider a simple case of a TCP
connection and a single MPTCP subflow sharing a link with transmission rate R. Assuming
that the two flows have the same MSS and RTT and that no other TCP/UDP/MPTCP
connections traverse the shared link, they should achieve similar cwnd and throughput.

The amount of link bandwidth jointly consumed by the two flows is less than R. As
such, no loss will occur and both flows will increase their window by one MSS per RTT
as a result of the CA algorithm. When the link bandwidth jointly consumed by the two
flows exceeds R, packet loss will occur. The flows will then decrease their windows by
a factor of two. Because the joint bandwidth use is less than R again, the two flows will
resume increasing their cwnd and therefore throughput. Eventually, loss will again occur
and the two connections again decrease their cwnd. This process keeps going on and the
bandwidth realised by the two flows eventually fluctuates along the equal bandwidth
share line.
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7.2. Coupled CC

Coupled CC is a common approach to solve the TCP-friendliness issue of uncoupled
CC. MPTCP coordinates cwnd changes across subflows to avoid sending traffic through
congested bottlenecks. In the case of shared bottlenecks, MPTCP adjusts the cwnd at
different rates to ensure fairness to cross-traffic protocols.

While detecting common bottlenecks can be challenging, the more important decision
is how much bandwidth should an MPTCP connection get, even if no bottleneck exists[6].
The major proposed coupled CC algorithms are Linked Increased Algorithm (LIA) [6], Op-
portunistic Linked Increase Algorithm (OLIA) [7], Balanced Linked Adaption Congestion
Control Algorithm (BALIA) [8] and Weighted Vegas (wVegas) [9].

7.2.1. LIA

LIA was the first proposed coupled CC algorithm for MPTCP. In LIA, Slow Start
(SS), fast retransmit and fast recovery algorithms are unchanged from TCP-Reno. During
Congestion Avoidance (CA), the increase component of the Additive Increase Multiplicative
Decrease (AIMD) algorithm is coupled among subflows. Upon arrival of an ACK on each
subflow, cwnd is increased as a proportion of the total cwnd. The LIA algorithm increases
cwnd for subflow i as per (1) on receipt of an ACK, where α is defined as per (2) . Parameters
cwndi and cwndtotal are the cwnd size on each subflow and the sum of total cwnd of all
subflows, respectively. Parameter RTTi refers to RTT on subflow i. Here, we assume that
cwnd is maintained in packets.

LIA aims to ensure that an MPTCP subflow is no more aggressive than a regular TCP
flow in the same scenario (Goal 2). The increase Formula (1) returns the minimum of the
calculated increase for the MPTCP subflow (first argument) and the increase a TCP flow
would get in the same circumstances (second argument).

Min (
α

cwndtotal
,

1
cwndi

) (1)

Parameter α in (2) describes the aggressiveness of MPTCP. The parameter is calculated
in a way that the overall bandwidth of MPTCP is equal to the bandwidth a TCP flow would
get on the best available path. To estimate the bandwidth of a regular TCP flow, MPTCP
uses estimated loss rates and RTTs, and a computed target rate.

α = cwndtotal ∗
Max( cwndi

RTT2
i
)

(Σk
cwndk
RTTk

)2
(2)

When packet loss occurs on a subflow, cwnd is decreased as per (3). This formula is
unchanged from TCP-Reno.

cwndi/2 (3)

7.2.2. OLIA

Like LIA, OLIA [7] shares the increased state of CA algorithm among subflows and
does not modify TCP-Reno behaviour in the case of a loss. OLIA uses the TCP SS algorithm
with a slight modification. If there are multiple paths established, the SS threshold is set to
one MSS. When there is a single path, the threshold is the same as for TCP. The modification
is to prevent sending traffic over congested paths when multiple paths are available.

The OLIA increase algorithm is calculated in the following way. Here, L is the set of
subflows with largest cwnd, B is the set of subflows which have the highest throughput
(best path) but do not have largest cwnd, and N is the number of subflows. We assume that
cwnd is maintained in packets.

The increase algorithm in (4) uses two terms. The first term adapts a TCP compatible
version of Kelly and Voice’s [38] increase algorithm to provide resource pooling, fairness
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and congestion balancing. The second part provides responsiveness and non-flappiness by
using the parameter αi.

cwndi
RTT2

i

(Σk
cwndk
RTTk

)2
+

αi
cwndi

(4)

Parameter αi is defined as per Formula (5). If any best path with small cwnd exists,
then αi is positive for any best path with small windows and negative for the paths with
maximum cwnd. OLIA re-forwards traffic from fully used paths to paths with available
capacity. If all the best paths have the largest cwnd then αi is set to zero. The reason being
that the available capacity on the best paths is already in use.

αi =


1

N× |B\L| , i f i ε B\L 6= φ

−1
N× |L| , i f i ε L and B\L 6= φ

0 , otherwise

(5)

7.2.3. BALIA

Peng et al. [8] argue that there is an inevitable tradeoff among friendliness, respon-
siveness and window oscillation. As such, it is not possible to maximise the performance
of all three metrics simultaneously.

BALIA CC was proposed by Peng et al. [8] to generalise existing algorithms and
achieve a balanced performance in terms of friendliness and responsiveness. BALIA
modifies both increase and decrease phases (AIMD) of the CA algorithm. The minimum SS
threshold is set to one MSS when multiple paths are available.

The BALIA algorithm is based only on the subflow paths cwnd and RTT. The increment
cwnd for subflow i as per (6) on arrival of an ACK.

cwndi
RTTi

(Σk
cwndk
RTTk

)2
× αi + 1

2
× αi + 4

5
(6)

BALIA decreases TCP-Reno cwnd in the range of [1, 1.5] using Formula (7).

cwndi
2
× min(αi, 1.5) (7)

Parameter αi is defined in Formula (8). When BALIA uses a single path, αi is set to 1,
in which both increment and decrement algorithms become the same as for standard TCP.

αi =
maxk

cwndk
RTTk

cwndi
RTTi

(8)

7.2.4. wVegas

LIA, OLIA and BALIA all use packet loss as a signal to indicate congestion. This
means that traffic can shift away from congested paths after a loss event occurs. wVegas is
a delay-based coupled CC for MPTCP based on TCP-Vegas [9].

The algorithm is applied to the SS and CA phases of CC. When a path queueing delay
is larger than a user-defined threshold, cwnd is reduced and the queue begins to drain.
cwnd on other paths get an opportunity to increase based on their estimated capacity. This
makes wVegas more responsive to network changes when compared to other coupled CC.
Like all delay-based algorithms, wVegas will compete poorly against other loss-based CC
algorithms [9].
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7.3. Fairness Perspectives

There are different perspectives on “fairness” in the Internet. We define MPTCP fair-
ness from the two perspectives of flow level fairness and network level fairness. Coupling
the CC of subflows makes it possible to achieve the fairness when competing with TCP at
the flow level. The existing algorithms assume that all paths share the same bottleneck and
deliberately ensure that the window does not grow faster than TCP would across all paths.
The obvious inference is that it is possible that each separate path could be slightly less
aggressive in increasing cwnd. This has the potential to result in reduced throughput when
competing with TCP NewReno. The ultimate result is that if an algorithm assumes that
all paths share a bottleneck, coupled CC may be limited in its ability to achieve network
level fairness.

We expect this issue to be reasonably common. For instance, phone/tablet/IoT devices
are generally connected via both LAN/Wi-Fi and/or LoRa/4G/5G interfaces. As such,
a multi-homed user typically has access to multiple paths by paying different network
providers. Similarly, a wireless network provider might permit users to use multiple Access
Points (APs) using MPTCP.

An MPTCP user should expect to obtain the same bandwidth from each AP/network
provider as a regular TCP flow. Otherwise, additional payment and privilege are lost.
Consider a scenario where an MPTCP connection uses two separate links to transfer data,
with one link being shared with a single TCP connection and the second link having no
other traffic. Both subflows should be able to fairly compete for bandwidth on their own
link regardless of the other link conditions. In this way, the first subflow should gain
approximately same amount of bandwidth as the TCP connection while the second subflow
attains all of the available bandwidth.

To reach network level fairness, when paths are separated, each MPTCP subflow
should perform similar to a single TCP connection. The shared path should not affect
other MPTCP subflows ability to obtain bandwidth over their own paths. Otherwise, the
MPTCP application will unfairly attain less bandwidth from one path due to conditions on
an alternate-unshared-path.

7.4. Analysing How Coupled CC Algorithms Perform

LIA assumes that all subflows contain a shared bottleneck and therefore only increase
the cwnd across all subflows as quickly as for a single TCP flow. We would expect that in a
situation where the subflows are disjoint, that any situation causing one subflow to grow
more slowly (e.g., congestion, reduced bandwidth, increased RTT) would cause collateral
damage to the faster path. In this case, the performance of one subflow can cause the other
subflow cwnd to grow more slowly which would limit its ability to compete against a single
TCP flow.

In OLIA, (4) a subflow is “chosen” as preferred (based on current performance) and
resources will be shifted heavily towards one subflow. This has the potential to limit the
possibility for MPTCP to ever achieve all the available bandwidth on the alternate subflow.
As such, OLIA is not ideal in an environment where loss is not due to congestion but instead
is random. In this case OLIA will work to push traffic to the less lossy path. Shifting traffic
to the best path can lead to poor performance in the case where all paths are congested.
Further, when the best path is congested, OLIA might not be able to at least achieve the
throughput of the TCP flow on the best path.

BALIA increments the window by a factor of αi+1
2 × αi+4

5 to improve the performance
of the low rate path. However, it still uses a coupled cwnd which limits the higher rate
subflow when one path fails to meet the constraints. As such, the throughput achieved by
a subflow still depends upon the throughputs of all the other subflows.

Consider a scenario where two subflows follow disjoint paths. In this case, in LIA, we
would expect the cwnd on each path to grow at approximately half the rate of TCP New
Reno, given that the overall cwnd growth will be capped to a single TCP flow. In OLIA, the
α parameter is set to zero (both paths have similar capacity and hence are considered best
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path—see Equation (5)). As such, the total window would increase by
Max( cwndi

RTT2
i
)

(Σk
cwndk
RTTk

)2
which is

the same as in LIA. In BALIA, we expect a slightly higher growth rate on each path due to
the multiplication of α.

In the case of a shared bottleneck, this is the expected behaviour, however if the
paths are disjoint, then each subflow will be at a disadvantage when competing against
other - independent - flows sharing that path. In this case, we would expect MPTCP to
underperform and not attain its fair share of the bandwidth.

In order to further investigate these potential disadvantages, we wrote a simple event-
based simulation to observe the influence of CC algorithms on cwnd growth. For TCP, the
simulation code implemented the TCP NewReno CC algorithm (newcwnd = cwnd + 1/cwnd).
To simulate MPTCP connections, the LIA, OLIA and BALIA algorithms were implemented as
described in Equations (1), (4) and (6). A simple FIFO queue with a length of 80 packets was
modelled to create loss events for the CC algorithms to respond to.

Two scenarios were simulated, one where an MPTCP connection with two subflows
were executed over a disjoint path. The second scenario involved an MPTCP connection
with two subflows and a TCP connection with single flow. One of the MPTCP subflows
(subflow 1) and the TCP flow share a bottleneck link to the destination while the second
MPTCP subflow traverses a second, independant link. The simulator initialises all flows
with an initial window of 10 Assuming that both links are identical (share the same RTT)
and that no other traffic goes through any of the links, each connection/flow starts with the
initial window of 10 (initial cwnd = 10) and can simulate situations where the RTTs on
the two paths are integer multiples of each other. All simulations are run over 600 cycles.
The simulator outputs the cwnd values for all (sub-)flows over time for the duration of the
simulation.

We first examine the behaviour of the algorithms with regards to cwnd when not
competing against any other flows For the case when both paths experience the same
RTT, the cwnd for a single TCP flow is plotted against the cwnd for all MPTCP subflows in
Figure 6. As is evident from the graphs, we can see that the growth of cwnd for all MPTCP
flows is much less aggressive. Given the paths are disjoint, this would imply that MPTCP
would be unlikely to achieve it’s share of bandwidth when competing with TCP over the
first path.

We next modify the path RTT to understand CC behaviour when the path characteris-
tics differ, all the other simulation conditions stay the same. We consider window growth
when the first link is twice as fast as the second link as well as when the first link is three
times faster than the second link.

Figure 6. Window growth-Same RTT.
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When looking at cwnd growth for different RTTs (Figures 7 and 8), we can see that LIA
favours the faster subflow but is still much less aggressive than TCP NewReno. Algorithm
performance appears to decrease as the difference in RTT increases (subflow 2 RTT = 3x).
The subflow with larger RTT is more heavily impacted and this results in the faster subflow
being slightly less aggressive.

Figure 7. Window growth-Sub f low1RTT = x , Sub f low2RTT = 2x.

Figure 8. Window growth-Sub f low1RTT = x , Sub f low2RTT = 3x.

For OLIA, with the second subflow having larger RTT, the algorithm increased ag-
gressiveness on the faster path but massively decreased on the slower path. As the RTT
difference changes (subflow 2 RTT = 3x), the difference between the faster and slower
subflows also increases. BALIA tried to equalise the path loads, resulting in the faster sub-
flow being slightly less aggressive. As the difference in path RTT increases, the differential
between the faster and slower subflows also increases.

The simulation results show that MPTCP subflows are less aggresive for all CC
algorithms. Given the paths are disjoint, this would result in poor performance on the
faster, congested path as well as poor performance on the slower, uncongested path. This
outcome will not satisfy the fairness goals with MPTCP attaining less throughput than
expected. Even if the faster path is aggressive enough to properly compete with TCP (for
flow fairness), the other subflow path remains unused and full throughput will not be
achieved (network fairness).

The second scenario was then simulated where the MPTCP subflows continued to
traverse disjoint paths, but in this case the first subflow was competing against a single
TCP New Reno flow. The results for the case where the RTT for both paths are equal are
plotted in Figures 9–11.
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Figure 9. LIA—Competing Window Growth—Same RTT.

Figure 10. OLIA—Competing Window Growth—Same RTT.

Figure 11. BALIA—Competing Window Growth—Same RTT.

LIA and OLIA started by using both paths (with the second subflow being much
slower). However, the first subflow window quickly drops to zero while the second
subflow window grows to use the available resources. The outcome is that despite being
on a disjoint path where it is not competing with TCP, the MPTCP flow does not acquire
any bandwidth on the first path which it should equally share with TCP. BALIA tries to
use the first path’s capacity. However, it is much less aggressive as compared with TCP.
The outcome is that BALIA is somewhat more able to attain a fair share but will still accede
throughput to the TCP flow.
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We now revisit this scenario but consider the situation where the RTT on the second
path is twice the first path (RTT2 = 2 ∗ RTT1). In this case, after one RTT1, the cwnd on
the first path would grow but be limited in growth since no acknowledgements have been
received on the second path. As such, the first subflow grows much less aggressively than
TCP NewReno. The second subflow in all the algorithms were for half of the total cycles
then started to move the majority of the traffic to the shared subflow (see Figures 12–14).

Figure 12. LIA—Competing Window Growth—Sub f low1RTT = x , Sub f low2RTT = 2x.

Figure 13. OLIA—Competing Window Growth—Sub f low1RTT = x , Sub f low2RTT = 2x.

Figure 14. BALIA—Competing Window Growth—Sub f low1RTT = x , Sub f low2RTT = 2x.
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When the second path becomes much slower (RTT2 = 3 ∗ RTT1), the shared path
grows very slowly while the second path window grows faster than the previous simula-
tions. However, the second path is still much less aggressive (see Figures 15–17).

Figure 15. LIA—Competing Window Growth—Sub f low1RTT = x , Sub f low2RTT = 3x.

Figure 16. OLIA—Competing Window Growth—Sub f low1RTT = x , Sub f low2RTT = 3x.

Figure 17. BALIA—Competing Window Growth—Sub f low1RTT = x , Sub f low2RTT = 3x.

Delay-based CC algorithms are mostly used in a controlled environment where all
hosts use the same algorithm, such as data centres. For such algorithms, compatibility
with other widely used algorithms is not a priority. Loss-based CC is most common
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and actively used in TCP due to its simplicity [39]. As a result, we did not simulate the
wVegas algorithm.

CUBIC is the current default TCP algorithm in Linux and outperforms NewReno
in high bandwidth and long distance networks [40]. Given the current equation output,
we would expect MPTCP subflows would perform even worse when competing with
CUBIC CC.

In this context, it should be noted that the estimation of the available capacity of the
paths and their combination is simpler in this simulation than in the Internet where issues
such as packet loss, queues and delay exist. The congestion window is the allowable
amount of data to be transmitted in an RTT, which varies with the interval of ACKs. When
subflows with different conditions share the same congestion window, they experience
events that increase or decrease the window size with different intervals. Correlating
different RTTs and loss events is difficult since not all flows sharing a link would necessarily
experience loss during the same congestion episode.

Coupling the cwnd can potentially address the fairness issue (flow level) where MPTCP
and TCP connections share the same bottleneck. However, the throughput achieved by a
subflow depends on the throughput of all the other subflows. This affects the fairness of
CC to MPTCP itself (network level), especially when packets are sent via diverse paths.
Coupling the cwnd could negatively impact protocol resource utilisation. The balance
between how to allocate data to the disjoint subflows is difficult to achieve. Favouring
a flow with higher bandwidth or reduced RTT could result in underutilised bandwidth
if the chosen path is competing with other flows and the alternate - slower - path has no
competition. Alternatively, favouring the slower path could result in low aggresiveness on
the competitive path, leading to a reduced share of bandwidth.

Ideally, MPTCP needs to understand when paths are disjoint to apply uncoupled CC
in these cases, and utilise coupled CC only where paths share a bottleneck.

7.5. Experimental Validation of Simulation Results

In Section 7.4, an analysis and subsequent simulation provided some evidence that
MPTCP coupled CC would not work well when subflow paths are disjoint, or when
subflow path characteristics are not similar. To validate this idea, we run an experiment
based on the topology in Figure 18. This topology mirrors the second scenario from the
previous simulations. A single MPTCP connection with two subflows is competing against
a single TCP flow. The network is configured such that the two MPTCP subflows take
disjoint paths with the first subflow competing against TCP. All experiments are run for ten
minutes duration, with the first and last 30 s of data discarded to ensure that throughput
measurements reflect performance during steady state conditions.

Experiments are run for bandwidth limitations of 12 Mbps and 24 Mbps. In each case,
the set of path RTTs are {(10 ms, 10 ms), (10 ms, 20 ms), (10 ms, 30 ms), (50 ms, 50 ms),
(50 ms, 100 ms), (50 ms, 150 ms)}. This repeats the simulation scenarios where the RTT
of the second path is equal to, twice, and triple the RTT of first path. All three MPTCP
protocols (LIA, OLIA and BALIA) are tested.

172.16.12.0

172.16.10.0

TCP 
 Host 1

MPTCP 
 Host 1

Destination

TCP Flow

MPTCP Subflow 1

MPTCP Subflow 2

Switch 1

Switch 2

Figure 18. Experimental Topology for MPTCP Disjoint Path.
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As the paths are disjoint, MPTCP should attain all the available bandwidth over the
second path. Over the first path, MPTCP should attain half the available bandwidth, with
the TCP flow attaining the other half. For the case of 12 Mbps, the first MPTCP subflow
and the TCP flow should attain approximately 6 Mbps each, with the second MPTCP
attaining approximately 12 Mbps. For the case of 24 Mbps, the ideal scenario should see
these numbers doubled to 12 Mbps and 24 Mbps, respectively.

Figure 19 displays the box plot of throughput achieved for each of TCP, MPTCP
subflow 1 and MPTCP subflow 2 for a bandwidth of 12 Mbps and RTT of (50 ms, 150 ms).
As can be seen, for all three coupled CC algorithms, MPTCP completely backed off on the
path shared with TCP (RTT = 50 ms), instead utilising all of the available bandwidth on
the second path. This reflects the assumption by all three algorithms that the bottleneck
is shared, and that MPTCP should get no more bandwidth than TCP. Had the paths truly
been shared, then this is a reasonable outcome, however in the case of the disjoint paths,
MPTCP is not attaining a fair bandwidth share for the circumstances, while the coupled CC
algorithms behaved more aggressively where the RTTs were lower, the range of throughput
attained throughout the experiments were more variable.
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Figure 19. LIA, OLIA and BALIA Throughput Share—Disjoint Paths with RTT1 = 50 ms and
RTT2 = 150 ms.

We calculate the percentage of expected bandwidth achieved by dividing the average
attained throughput by the expected throughput. For ideal fairness, each (sub)flow should
score close to 100%. Results for all 18 experiments where the bandwidth is 12 Mbps are
listed in Table 2, Table 3 records the results where the bandwidth is 24 Mbps. In all cases,
MPTCP was successful in utilising all the available resources on the second path.

Table 2. Share of 12 Mbps bandwidth attained at Switch One-Disjoint Paths.

Path Bandwidth—12 Mbps

RTT Path 1 10 ms 50 ms

RTT Path 2 10 ms 20 ms 30 ms 50 ms 100 ms 150 ms

LIA
TCP 125.6% 107.4% 132.0% 183.2% 195.6% 195.8%

MPTCP Subflow 1 72.4% 90.7% 66.3% 14.6% 2.4% 2.4%

OLIA
TCP 188.0% 190.4% 188.8% 189.2% 195.4% 193.6%

MPTCP Subflow 1 10.0% 7.6% 9.4% 7.4% 2.8% 4.6%

BALIA
TCP 149.0% 134.6% 127.0% 184.0% 193.8% 193.6%

MPTCP Subflow 1 49.2% 63.2% 71.4% 13.4% 4.0% 4.6%
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Table 3. Share of 24 Mbps bandwidth attained at Switch One-Disjoint Paths.

Path Bandwidth—24 Mbps

RTT Path 1 10 ms 50 ms

RTT Path 2 10 ms 20 ms 30 ms 50 ms 100 ms 150 ms

LIA
TCP 151.3% 186.7% 192.3% 192.8% 196.8% 196.7%

MPTCP Subflow 1 46.8% 11.5% 5.8% 5.0% 1.4% 1.4%

OLIA
TCP 192.6% 192.8% 192.9% 191.9% 196.4% 196.0%

MPTCP Subflow 1 5.4% 5.4% 5.2% 6.0% 1.7% 2.1%

BALIA
TCP 171.5% 182.9% 198.1% 189.8% 194.9% 194.5%

MPTCP Subflow 1 26.4% 15.2% 12.2% 7.8% 3.2% 3.6%

LIA performs reasonably well when the path has a low bandwidth delay product (both
RTT and bandwidth is low). In this case MPTCP is almost able to fairly compete on the first
path and is able to attain more than two thirds of the bandwidth required for fair sharing.
BALIA is next best in attaining a reasonable proportion of the expected throughput. In
these cases, CC performance is not heavily degraded as the second path RTT increases.
This is primarily due to the queueing delay being larger than the path RTT, resulting in
the actual difference in path characteristics being less pronounced than those configured.
This is further evidenced with results for larger RTT (50 ms, 100 ms, 150 ms) and for larger
bandwidth configurations, where the queueing delay has less of an impact on the path RTT.

In all cases, the lack of aggression in growing cwnd of the coupled CC algorithm results
in the first subflow not being able to acquire its fair share of the available bandwidth. This
is particularly pronounced for large BDP and/or large RTT differences. In these cases, the
current coupled CC algorithms can result in the first subflow giving up almost all of its fair
share of bandwidth on the shared path.

Confirming the simulation results, the experiments show that MPTCP coupled CC
is unable to attain its share of bandwidth in disjoint path scenarios, particularly when
path characteristics are not similar. We next examine whether the problem of diverse
path characteristics is also problematic in shared bottleneck scenarios, a situation that the
coupled CC algorithms were particularly designed to address.

The experiments are repeated using the topology in Figure 20. All settings are the
same as for the previous set of experiments with regards to bandwidth and RTT configura-
tions, the only difference is that the two MPTCP subflows are now sharing a bottleneck
with the TCP flow. For this scenario, we would expect the TCP flow to attain half of
the available bandwidth, and the MPTCP subflows to share the remaining half of the
available bandwidth.

172.16.12.0

TCP 
 Host 1

MPTCP 
 Host 1

Destination

TCP Flow

MPTCP Subflow 1

MPTCP Subflow 2

172.16.10.0
Switch 1

Switch 2

Figure 20. Experimental Topology for MPTCP Shared Path.
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Figure 21 displays the box plot of throughput achieved for each of TCP, MPTCP
subflow 1 and MPTCP subflow 2 for a bandwidth of 24 Mbps and RTT of (50 ms, 100 ms).
In all cases we can see that the coupled CC algorithms preferred the path with lower RTT,
with minimal throughput attained on the larger RTT path. Despite this, the combined
throughput of both MPTCP subflows was still lower than that attained by TCP for all
three algorithms. In this case, loss events on the path with higher RTT are impacting on
the ability for cwnd growth on the path with lower RTT and therefore the opportunity for
MPTCP to attain a fair bandwidth share. This plot is similar for all throughput plots where
the RTT difference is high.
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Figure 21. LIA, OLIA and BALIA Throughput Share-Shared Paths with RTT1 = 50 ms and
RTT2 = 100 ms.

Results for all experimental configurations are recorded in Tables 4 and 5. When both
bandwidth and RTT are low, MPTCP coupled CC is too aggressive and outperforms TCP, in
some cases by a large margin. Despite being restricted through using a couple cwnd, MPTCP
is able to grow its window more aggressively than TCP and attain a higher share of the
bandwidth. When looking at higher bandwidth configurations in combination with lower
RTT values, the coupled CC algorithms do a reasonable job in attaining good bandwidth
sharing with the TCP flow. However, as the BDP increases, all of the MPTCP coupled CC
algorithms start deteriorating in performance, even when path characteristics are the same.
Compounding this is that as the path RTT difference increases, the coupled CC algorithms
are unable to keep up with the aggressiveness of TCP and give up a significant proportion
of their bandwidth to the TCP flow.

The results indicate that MPTCP coupled CC algorithms are only able to attain fair
bandwidth sharing under certain network configurations. A change in bandwidth or
RTT can lead to either a loss in throughput to MPTCP or high levels of aggressiveness
in utilising the available bandwidth. This demonstrates that even when operating in the
environment which matches the assumptions made by all MPTCP coupled CC algorithms
(i.e., all bottlenecks are shared), that the CC algorithms accede too much bandwidth to TCP
and therefore do not perform as designed.
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Table 4. Share of 12 Mbps bandwidth attained at Switch One-Shared Paths.

Path Bandwidth—12 Mbps

RTT Path 1 10 ms 50 ms

RTT Path 2 10 ms 20 ms 30 ms 50 ms 100 ms 150 ms

LIA

TCP 79.4% 87.6% 90.8% 105.6% 127.4% 138.0%

MPTCP Subflow 1 150.9% 181.4% 190.0% 112.8% 137.2% 115.2%

MPTCP Subflow 2 79.2% 34.8% 22.8% 65.2% 2.8% 4.4%

MPTCP Combined 115.0% 108.1% 106.4% 89.0% 70.0% 59.8%

OLIA

TCP 76.0% 72.6% 81.8% 105.8% 134.8% 137.5%

MPTCP Subflow 1 217.5% 236.8% 224.0% 162.4% 117.2% 114.0%

MPTCP Subflow 2 23.2% 13.6% 8.8% 9.6% 8.4% 8.4%

MPTCP Combined 120.3% 125.2% 116.4% 86.0% 62.8% 61.2%

BALIA

TCP 75.4% 89.2% 82.5% 107.0% 131.4% 140.0%

MPTCP Subflow 1 189.2% 175.1% 208.8% 91.6% 122.8% 108.8%

MPTCP Subflow 2 43.2% 34.4% 19.6% 83.6% 6.0% 5.6%

MPTCP Combined 116.2% 104.7% 114.2% 87.6% 64.4% 57.2%

Table 5. Share of 24 Mbps bandwidth attained at Switch One-Shared Paths.

Path Bandwidth—24 Mbps

RTT Path 1 10 ms 50 ms

RTT Path 2 10 ms 20 ms 30 ms 50 ms 100 ms 150 ms

LIA

TCP 88.5% 99.6% 104.8% 125.2% 136.3% 143.2%

MPTCP Subflow 1 85.6% 178.1% 175.4% 42.8% 116.8% 106.6%

MPTCP Subflow 2 123.4% 14.8% 10.0% 96.2% 4.6% 2.0%

MPTCP Combined 104.5% 96.5% 92.7% 69.5% 60.7% 54.3%

OLIA

TCP 92.4% 89.4% 98.4% 121.6% 137.2% 146.9%

MPTCP Subflow 1 46.0% 211.1% 195.0% 75.4% 108.2% 83.8%

MPTCP Subflow 2 143.3% 6.4% 4.4% 76.4% 10.2% 15.8%

MPTCP Combined 94.7% 108.8% 99.7% 75.9% 59.2% 49.8%

BALIA

TCP 86.8% 103.7% 105.1% 111.2% 136.8% 147.5%

MPTCP Subflow 1 78.1% 170.9% 173.2% 123.8% 109.3% 93.0%

MPTCP Subflow 2 139.3% 16.8% 10.4% 36.6% 5.2% 6.8%

MPTCP Combined 108.7% 93.9% 91.8% 80.2% 57.3% 49.9%

7.6. Alternative Approaches

As discussed, standard coupled CC algorithms were designed to use loss-based
or delay-based techniques to detect congestion over paths and ensure TCP-friendliness,
while coupling the subflow windows can potentially provide TCP-friendliness at shared
bottlenecks, it might affect maximisation of throughput over disjoint paths. In theory,
to achieve both goals, MPTCP needs to determine subflows that do not share a point of
congestion and subflows that do. Detecting the existence of a bottleneck shared between
different protocols, using end-to-end measurements, can be categorised as either using
active or passive techniques. Generally, in active detection techniques, the sender probes
paths to gather information. With passive techniques, existing data obtained through
normal protocol behaviour ( such as ACK packets) is used instead [41] .
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In this paper, we focus on some of the existing passive methods for the following rea-
sons. First, probing the network with traffic can cause unnecessary congestion and impact
the overall protocol performance. Second, inter-packet timing in the transport protocol
depends on the CC and flow control mechanisms and any attempt to control/modify flow’s
timing can lead to a negative impact on the connection’s performance [41].

Hassayoun et al. [41] developed a passive detection method called Dynamic Window
Coupling (DWC). In DWC, both loss and delay signals are used to detect shared bottlenecks.
In the algorithm, subflows that share a common bottleneck are grouped in the same set. A
centralised entity, called the Subflow Manager (SM), is used to manage the sets. Each set
has its own independent cwnd which is increased/decreased by the SM while operating in
the CA phase. Flows that do not share any bottleneck with other MPTCP flows of the same
connection behave as a regular TCP (NewReno CC).

The process of forming a set starts with a loss congestion event, following this, delay
or loss congestion events are examined to group the subflows into the set. When a subflow
experiences a packet loss, the SM alerts all the other subflows of the congestion event.
The subflow is then removed from its original set and a new active set is initiated. The
other subflows are inspected for any congestion indicator in the near past or future of
the congestion event. Any subflow that detects a packet loss or a large delay increase
is removed from its current set and gets added to the active set. Subflows without any
congestion signal remain in their original set. There can be no more than one active set at
any instance in time.

DWC showed better aggregated throughput than that for LIA over disjoint paths.
The algorithm occasionally failed to detect real shared bottleneck situations. For example,
packet loss may occur randomly over lossy networks. Alternatively, congestion events
may get synchronised and lead to false positive shared bottleneck detection as the paths
experience similar RTT or background traffic. Further experiments by Singh et al. [42]
showed that although DWC throughput is higher than that with LIA at distinct bottlenecks,
it is often unable to achieve fair bandwidth allocation when sharing a bottleneck with TCP
due to its erroneous bottleneck detection.

Ferlin and Hayes [43] designed a shared bottleneck detection (SBD) algorithm named
MPTCP-SBD. Where a shared bottleneck is detected, MPTCP subflows use OLIA CC and
in disjoint paths, the subflows use decoupled cwnd (Reno). The MPTCP-SBD algorithm
uses three key statistics of One Way Delay (OWD) to detect bottleneck.

The MPTCP Time Stamp (TS) is modified with microsecond precision. This new TS is
included in the data segment by the sender. At the receiver, the relative OWD is calculated
by subtracting the arriving TS from the host’s version of current time. The kernel stores the
statistics for the last N intervals. Every 350 ms, the SBD decision mechanism uses OWD
statistics collected over the last N intervals to group the flows. Flows are grouped into
non-congested flows and shared bottleneck flows. The mechanism repeats the process for
10 sets to ensure groupings are accurate. The grouping information is identified using a
group ID and is carried in the return ACK via the MPTCP option. The sender uses the SBD
feedback to decouple subflows that are in distinct bottlenecks during CA phase.

The SDB algorithm showed improvement in MPTCP throughput over disjoint bot-
tlenecks when compared to OLIA. However, the algorithm was also shown to be slightly
more aggressive than OLIA towards TCP flows over shared bottlenecks due to not group-
ing the same connection subflows, resulting in them acting as independent TCP flows.
Furthermore, the background noise on disjoint paths led to a decrease in bottleneck
detection accuracy.

Instead of using delay and loss, Wei et al. [44] designed a Shared Bottleneck based
CC (SB-CC) scheme based on Explicit Congestion Notification (ECN). The packets that
exceed the queue threshold at an intermediate router are marked and the receiver notifies
the sender of the ECN in a return ACK. Subflows with marked ACKs in the same time span
indicate a shared bottleneck and are grouped in a same set (coupled cwnd). The algorithm
uses similar concept to that in DCTCP and uses the subflow congestion degree to dynami-
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cally adjust cwnd and smooth any fluctuations in window size. The authors experimental
results showed that SB-CC, DWC, SBD, BALIA and OLIA achieved fair throughput over
a shared bottleneck. As for disjoint paths, SB-CC, DWC and SBD aggregated throughput
was much higher than BALIA and OLIA. Specifically, SB-CC and SBD throughput ratio
to TCP was close to one. Deployment of such a scheme requires both the end-hosts and
intermediary devices to properly react to ECN notifications.

Further, Barik et al. [45] argue that the existing coupled CC are grouped in CA state
while most TCP sessions in the Internet are short flows and are unlikely to leave the SS
state. MPTCP subflows in SS are uncoupled which results in the compound overall MPTCP
cwnd being larger than that of a TCP flow. The authors proposed a new CC called Linked
Slow-start Algorithm (LISA) which is applied to the subflows if and only if they are in SS.
In LISA, the minimum initial window is set to 3 packets to ensure TCP-friendliness and a
maximum of 10 packets to allow full bandwidth achievement in disjoint paths.

When a new subflow joins the connection, LISA finds the subflow with the largest
sending rate within the last RTT period, and depending on the subflow cwnd size, [3,10]
packets are taken away by the new subflow. LISA also hinders the existing subflow cwnd
from increasing for every ACK.

However, LISA could not provide any gains for small file transfers (smaller than
200 KB) and added more weight to the CA phase and reduced overall performance for
large file sizes (larger than 500 KB) at shared bottlenecks. Yu et al. showed that the MPTCP
CC algorithms do not affect the overall performance of mice flows in high-speed paths.
Mice flows operate in SS phase for the entire transmission and they tend to only last for a
fraction of a second [46].

The discussed works have not been deployed in the real-network (e.g., Internet). The
current simulation/experimental results showed that using a bottleneck detection system
at the transport layer could bring some advantages to the current MPTCP coupled CC
in some cases. However, none of the proposed solutions fully address the conservative
behaviour of coupled CC in various conditions (e.g., different RTTs and bandwidth).

8. Conclusions

Recent developments in Internet applications have increased the need for higher
network bandwidth. In an environment where multi-homed hosts are becoming more
common, the limitations of TCP in being able to only use a single path to transmit data are
becoming more apparent. Where multiple paths exist between end-hosts on the Internet,
these paths can be used to provide robustness, higher throughput and load-balancing
benefits to applications.

MPTCP was designed to take advantage of these benefits to provide increased through-
put, balancing congestion and improving resiliency in the event of failure. MPTCP performs
these functions through both scheduling and congestion control algorithms. It’s compat-
ibility with TCP means that MPTCP can be more easily deployed on the Internet where
middle-boxes can often interfere with flows that are not TCP or UDP.

However, MPTCP needs to co-exist with existing TCP traffic on the Internet. Current
MPTCP congestion control implementations can be divided into uncoupled CC and cou-
pled CC. With uncoupled CC, the CC algorithm on each subflow is independent of the
performance of other subflows. This allows each subflow to achieve maximum throughput
and behave as an independent TCP connection. However, this leads to unfairness in band-
width allocation when multiple subflows compete with a TCP connection over the same
shared link. As each subflow is independent, each subflow achieves similar throughput to
a single TCP flow, leading to MPTCP achieving a multiple of the throughput a TCP flow
can attain. An MPTCP connection with N subflows (hence N cwnd) will approximately
grow the overall connection window N times faster than a single TCP flow over a shared
bottleneck. As such, when the path is shared, using uncoupled CC cannot provide fairness
towards TCP flows.
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With coupled CC, a shared congestion window is used across all the subflows in a
connection. As such, the overall throughput of an MPTCP connection cannot be higher
than that of a single TCP on the best end-to-end path. As MPTCP is designed to operate
over the Internet. It is expected that MPTCP CC should provide good performance across a
range of diverse paths.

However, all current coupled CC algorithms assume that subflows always share a
bottleneck, even if the paths are fully separated. As such, an MPTCP subflow tends to
increase its cwnd much less aggressively than a TCP connection on the same path. If the
paths are disjoint, this puts MPTCP at a disadvantage and can lead to reduced throughput.
Further, if the path characteristics (RTT and/or bandwidth) differ significantly, the shared
congestion window can also result in the subflows being less aggressive in growing their
window size.

An analysis and simulation of these scenarios indicate that the performance of current
coupled CC algorithms might not perform well if the network topology diverges from a
simple topology of a shared bottleneck and paths with similar characteristics. This outcome
was verified through experimental validation of MPTCP running over disjoint paths. If
being deployed over complex networks such as the Internet, current MPTCP proposals
may not achieve the potential benefits of using multiple paths. It is likely that MPTCP
might not even perform as well as TCP. Further work is required on MPTCP CC to provide
better outcomes over these diverse network conditions.

To address the shortcoming of the coupled CC algorithms, some researchers explored
the benefits of implementing a shared bottleneck detection mechanism at the transport
layer. The idea is to use network feedback to detect bottlenecks and couple/decouple
the subflows cwnd accordingly. However, these proposals are yet to be tested in a real
implementation with a variety of settings (e.g., different delay and bandwidth).
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