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Abstract: In many industries, analog gauges are monitored manually, thus posing problems, espe-
cially in large facilities where gauges are often placed in hard-to-access or dangerous locations. This
work proposes a solution based on a microcontroller (ESP32-CAM) and a camera (OV2640 with a 65°
FOV lent) to capture a gauge image and send it to a local computer where it is processed, and the
results are presented in a dashboard accessible through the web. This was achieved by first applying
a Convolutional Neural Network (CNN) to detect the gauge with the CenterNet HourGlass104
model. After locating the dial, it is segmented using the circle Hough transform, followed by a polar
transformation to determine the pointer angle using the pixel projection. In the end, the indicating
value is determined using the angle method. The dataset used was composed of 204 gauge images
split into train and test sets using a 70:30 ratio. Due to the small size of the dataset, a diverse set of
data augmentations were applied to obtain high accuracy and a well-generalized gauge detection
model. Additionally, the experimental results demonstrated adequate robustness and accuracy for
industrial environments achieving an average relative error of 0.95%.

Keywords: computer vision; gauges; object detection; CNN; image processing; IoT

1. Introduction

Automation not only reduces human intervention in processes that often are monotonous
and repetitive to humans but also increases productivity, accuracy, and quality of products and
processes. Moreover, automated systems that use vision to implement human-like capabilities
are present in fields such as medicine, inventory control and management, product traceability,
commerce, agriculture, and production processes monitoring, which are usually connected
to a cloud-based system [1]. Due to this reality, the Internet of Things (IoT) is increasingly
important for enabling communication between devices through the internet; therefore,
camera sensors can be a good tool to extract relevant information about the environment and
communicate with different devices in real time using IoT technologies.

However, in many industrial fields, workers measure physical process values such
as pressure, temperature, or voltage by manually reading analog gauges. Due to costs
and technical issues, the upgrade to digital gauges that can communicate using wireless
or wired connections is often not feasible. Moreover, the analog gauge has the advantage
of a simple structure, strong anti-interference ability, and good water, dust, and freeze
resistance [2]. Therefore, this topic of research is relevant to automate the monitoring of
analog gauges in real-world situations.

These solutions can be divided into traditional approaches or Neural Network (NN)
approaches. The traditional approaches to automatic gauge reading, as represented in
Figure 1, are normally divided into pre-processing the images, finding the gauge in the

Telecom 2022, 3, 564–580. https://doi.org/10.3390/telecom3040032 https://www.mdpi.com/journal/telecom

https://doi.org/10.3390/telecom3040032
https://doi.org/10.3390/telecom3040032
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/telecom
https://www.mdpi.com
https://orcid.org/0000-0001-5253-0140
https://orcid.org/0000-0003-3879-6908
https://orcid.org/0000-0003-4254-1879
https://orcid.org/0000-0002-3022-5644
https://orcid.org/0000-0003-0256-1488
https://doi.org/10.3390/telecom3040032
https://www.mdpi.com/journal/telecom
https://www.mdpi.com/article/10.3390/telecom3040032?type=check_update&version=1


Telecom 2022, 3 565

image, and segmenting it, detecting the pointer, detecting the scale marks, and reading the
final value.

Figure 1. Flowchart of conventional approaches to automatic gauge reading.

For gauge segmentation, most of the traditional approaches were based on fitting
the gauge shape. The most common method used through the years has been the Hough
transform applied to circles. For example, in 2013, Gellaboina et al. [3] applied a local
contrast normalization to deal with uneven lighting and the Canny edge detector to execute
the final circle detection using the Hough transform. Region growing has also been applied
in some research articles [4,5], taking advantage of the contrast between the white dial and
background. This technique can perform poorly if the contrast is low or if there are glares
in the dial, which can make the border of the gauge noisy. More recently, in 2019, Li et al. [6]
proposed a technique to detect gauges by first using the Sobel filter to extract edges and
then finding the border of the gauge by combining a line fitting algorithm with the Random
Sample Consensus (RANSAC) method. With the information on the remaining edge points,
they proposed a RANSAC ellipse algorithm to find the most fitted ellipse. This method
showed to be especially good with images of gauges captured under angled viewpoints.

Straight-line fitting methods were also proposed by many researchers to detect the gauge
pointer; these methods include the Hough transform and the least square method. The first
method can achieve good results for the dials of gauges that have words and symbols but can
be challenging in difficult light conditions [4,7,8]. However, the second method, in general,
yields better results with less computational power [9–11]. Moreover, the image subtraction
method has also been used to segment the region of the pointer [12,13]. This method is often
performed before the straight-line fitting method to increase the robustness of the pointer
detection by eliminating the background interference. This is achieved by subtracting images
with roughly the same backgrounds with the pointer in different positions. The resulting
image can have a lot of noise and produce unreliable results. In 2008, Zhao et al. [9] proposed
a noble method to detect the pointer using image subtraction with a dynamic threshold
to segment the image. For the scale marks and pointer recognition, the article introduces
a technique named region-segmentation to partition the dial image and only process the
desired area. Then, the least-squares and the central projection methods were used to detect
the pointer and scale marks and determine the gauge value. This central projection method
performs a projection from the feature points to the known gauge center, which results in
projecting values associated with an angle. The angles that correspond to the largest number of
projection points represent the pointer or even the scale marks. Furthermore, region growing
has also been applied to segment the pointer [14], but as is the case for the segmentation of the
gauges, the performance of this method is shown to be influenced by the lighting conditions
and contrast between the pointer and the dial.

For the more difficult task of detecting scale, Yi et al. [15], in 2017, used the K-means
clustering method to recognize the tick mark on the scale of an automobile dashboard
based on attributes such as area, contour length, and the distance between the centroid
of tick marks and pointer rotation center, but this is susceptible to noise. Two years later,



Telecom 2022, 3 566

Lauridsen et al. [10] expanded this idea by using parametric distributions to recognize the
pointer and scale marks. The parameters were the mass of the objects (number of pixels),
the distance to the gauge center, the orientation inaccuracy, and the rotated bounding
box ratio. Moreover, Gellaboina et al. [3] presented a method to detect the scale marks
and pointer by unwinding the circular gauge, which is achieved by applying the polar
coordinates transformation. By using the technique of column projection of the pixels, they
detected a bigger spike that represented the pointer and small spikes that were the scale
marks. This method was made more robust by Zheng et al. [7] by using color correction and
perspective transformation to obtain the front view of the image taken from an arbitrary
camera angle. Chi et al. [4] also used the polar coordinates system with an improved
central projection to detect the circular scale region.

The final step to automate the reading of analog gauges is determining the gauge
value. There are two main techniques: the angle method and the distance method. The
angle method determines the value of the gauge by the deflection between the zero-scale
mark and the pointer. This technique is simple to use but cannot be applied to non-linear
scales. The distance method uses the distance between the nearest scale mark and the
pointer to determine the gauge value. This method can be applied to non-linear scales but
requires the definition of all the scale marks.

In the last few years, the fast development of deep neural networks has led to the
research and development of systems capable of reading gauges using this technology. For
example, Liu et al. [16] used a Faster R-CNN model to localize gauges in an image captured
by an inspection robot; then, if needed, the camera was adjusted according to the detection
box. After this, they used more conventional methods, such as the Hough transform, to read
the final value. More recently, end-to-end approaches based on CNNs have been proposed,
such as by Cai et al. [17], who described a novel method that generated synthetic images by
separating the dial and pointer of the gauge image. The pointer is rotated to combine with
the dial, creating a synthetic image labeled with the reading value to train the CNN model.
Furthermore, Zuo et al. [18] proposed a method by first using a Mask-RCNN algorithm
to classify the gauge and segment the pointer to later use the line fitting algorithm called
Principal Component Analysis (PCA) and read the gauge value. In general, end-to-end
approaches are promising but are still limited due to the difficulty of generalization.

In this article, a method was proposed based on traditional computer vision techniques
complemented with new neural network approaches to read circular gauges even in
challenging conditions. Therefore, the primary aim was to develop a robust algorithm
capable of reading a large variety of circular gauges.

This article is organized into four sections. Section 1 is the introduction where the
context is explained and the state-of-the-art work is analyzed. Section 2 details the proposed
solution as well as some tests performed in gauge images of well-known computer vision
techniques to help select the best performing. Subsequently, in Section 3, the solution
was evaluated in different scenarios to emulate real-world applications. The results are
analyzed and compared to some state-of-the-art solutions. Additionally, an IoT application
with a camera sensor was tested as a proof-of-concept. Finally, Section 4 provides a final
discussion about the work developed and addresses the limitations.

2. Methodological Approach

The proposed solution to automatic read gauges follows the main steps shown in
Figure 2. First, the image is captured, and the gauges are detected using a TensorFlow
object detection algorithm [19]. After this, traditional approaches of computer vision are
used, such as pre-processing and segmentation. These were applied to find the circular dial
region and the gauge pointer. In the end, the gauge value was calculated.
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Figure 2. Flowchart of the proposed steps to read analog gauges.

2.1. Object Detection Based on CNN

The first step of the algorithm is the detection of the gauge in an image using a trained
CNN. Therefore, a dataset was created with a small number of images—204 images from
3 different sources. Due to the limited number of available datasets, most images were
taken from a phone camera in the shop floor of the Institute of Science and Innovation in
Mechanical and Industrial Engineering (INEGI) and the other two sources, as shown in
Table 1. The dataset was composed of different types of circular gauges, such as gauges
with two pointers, multiple scales, multi-color dials, and gauges with different ranges of
scale values. There were also images with long-distance and short-distance shots, various
shooting angles, and even some with reflections in the dial. Moreover, to create a consistent
dataset, all the images were modified to obtain a 1:1 aspect ratio and a resolution of
800 × 800 pixels, then they were manually split into a train and a test set using a 70:30 ratio.

Table 1. Dataset composition.

Source Nr. of Images Types of Gauges

INEGI 118 21
AWS [20] 37 1

Jjcvision [21] 49 3

Total 204 25

Several data augmentation techniques were applied while training the CNN models
to mitigate the problems of a small dataset. These augmentations can be divided into
position and color augmentation. In position augmentation, the pixel position of an image
is changed, such as cropping and padding images, which helps to imitate the zoom in
and out effects. Another example is the common augmentation of flipping the image. On
the other hand, color augmentation only alters the values of the pixels, maintaining the
same position. Good examples of this are the manipulation of the contrast, saturation,
hue, and brightness of the image but also adding noise, which is considered a powerful
augmentation method that improves robustness without compromising accuracy [22].
The augmented images show notable changes from the original images, as illustrated in
Figure 3, which help to create a diverse set of training images from a small dataset.

The model used to detect gauges was selected from a tensorFlow collection of object
detection models pre-trained on the COCO 2017 dataset [19]. First, a selection was made by
choosing only models with an input image resolution close to the resolution of the dataset
(800 × 800 px), and the ones with the highest Mean Average Precision (mAP). Afterward,
the models selected were trained until 7000 steps with the target dataset to determine
the best-performing model. To avoid overfitting, the evaluation and train loss functions
were continuously monitored to verify their convergence. These functions are shown in
Figure A1, where it is noticeable that the training and the evaluation loss stay close and
decrease over time, which indicates that the models do not have overfitting problems.
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Figure 3. Examples of the data augmentation applied to some dataset images.

The results in Figure A2 demonstrate that most of the models reached close to peak
performance in as early as 1000 steps, which can be explained by the small dataset that these
models were trained on. Furthermore, the maximum mAP and recall for most models were
above 90 % and very close to each other, which indicates that choosing any of these gauge
detection algorithms would yield good results. However, for the proposed algorithm, the
model selected was the CenterNet HourGlass104, which yielded the best performance out
of all the models tested; these results are shown in Figure 4. Therefore, this model was
implemented as the first step in the algorithm to find the Regions of interest (ROIs), as
shown in Figure 5.

Figure 4. CenterNet HourGlass104 model Training. (a) Loss functions, (b) performance graphs.

2.2. Dial Segmentation and Center Localization

After gauge detection, the next step is to segment the dial region and determine its
center. Therefore, two methods were analyzed for this purpose: the Hough transform
and the region growing. Some relevant results of these tests are shown in Figure 6, which
indicates that the region growing is sensitive to interferences such as reflections, shadows
or even characters in the dial. On the contrary, the Hough transform performed better,
especially in images with high interference, so this was the method applied in the algorithm
to segment the dial, which also determines the center of the dial. To implement the Hough
transform, the RoI needs to be pre-processed to increase its quality; therefore, the Contrast
Limited Adaptive Histogram Equalization (CLAHE) algorithm was used to enhance the
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illumination. Then, to eliminate some of the noise, the bilateral filter was applied, which
also facilitates the circle detection of by preserving object edges.

Figure 5. Gauge detection implementation.

Figure 6. Dial gauge segmentation. (a) grayscale, RoI (b) region growing, (c) Hough transformation.

2.3. Image Uniformization

In order to make the algorithm more robust, a method to deal with the gauges with
tell-tale pointers and black dials was applied. First, if the gauge has a tell-tale pointer, a
segmentation method is applied by taking advantage of the color red or orange of these
pointers. Therefore, a mask for these colors is created using the image in the Hue, Saturation,
Value (HSV) color space. This segmentation, as shown in Figure 7, yields good results
because these colors do not typically appear in the rest of the gauge. To uniformize these
gauges images, the segmented tell-tale pointer is extracted from the original image to
emulate a gauge with only the main pointer.
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Since the following steps in the algorithm use the binarized RoI, the problem of black
dial gauges can be solved by using this binarization process applied to the original RoI
and its inverted colors image, as shown in Figure 8. This process results in two binarized
images, but only one is correct, so the number of white pixels inside the dial region is
calculated for both images, and the one with the highest number is considered the correct
binarization and used for the next steps in the algorithm.

Figure 7. Tell-tale pointer segmentation. (a) original image, (b) tell-tale pointer segmented.

Figure 8. Binarization of the RoI and the inverted colors RoI.

2.4. Pointer Detection

In order to extract the pointer information, the gauge image often needs to be binarized.
Experiments were performed by binarizing some dataset images with challenging condi-
tions such as gauges with reflections and shadows in the dial, and even with a multi-color
dial. One global and one local threshold method were performed, the Otsu method and the
adaptive threshold method, respectively. These tests were performed after the images were
transformed to grayscale and a median filter was applied. As shown in Figure 9, the Otsu
method lost a lot of critical information about the image and was affected by uneven light-
ing and colors in the dial; on the contrary, the adaptive threshold was able to binarize the
image the best in all analyzed situations. Therefore, the method applied was the adaptive
threshold, even with the disadvantage of being more computationally expensive.

To compare the performance, three commonly used methods to detect pointers were
applied. The first method was the region growing algorithm to segment the pointer; this
method can be used before thinning and/or line fitting to determine the pointer direction.
To test this method, the seed point was set as the center of the gauge. As shown in Figure 10,
the algorithm applied was unreliable with a light color center gauge and uneven lighting,
which makes the region expand beyond the pointer if its contrast is low compared to the
dial’s background.
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Figure 9. Application of different Binarization techniques. (a) Original image, (b) Otsu method,
(c) adaptive threshold.

Figure 10. Application of the region growing. (a) Original image, (b) region growing segmentation.
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An alternative is the line Hough transform, which takes advantage of the linear edges
of the gauge pointer. First, some dataset images were binarized to apply the Canny edge
detector, and then the line Hough transform was performed. The results, as shown in
Figure 11, indicate that the edge detection is influenced by shadows and uneven lighting,
and it has difficulty distinguishing the pointer lines and other lines, such as the ones from
characters and scale lines.

Figure 11. Application of the Hough line transform. (a) Original image, (b) Canny edge detection,
(c) Hough line transform.

The third test was based on the characteristic that the pointer has an elongated tip
going out from the gauge center. Therefore, a pixel projection was performed after the polar
transformation of the binarized image. This method showed to be less affected under bad
lighting but was still affected by interference in the dial, such as characters, scale marks,
and even chromed bezels. This problem was minimized by removing some interference
with image cropping by removing 10 % of the outer and inner circles. The angle of the
maximum white pixels projection was defined to be the angle of the pointer. Some results
of this method are shown in Figure 12.

After analyzing the methods tested, pixel projection achieved the best performance;
therefore, this method was the one implemented after the adaptive threshold binarization,
as illustrated in Figure 13. Moreover, this method was also applied to the tell-tale pointers
using its segmented region, as represented in Figure 14. In order to have a more robust
algorithm, a value that indicates the certainty of the pointer detection was developed,
which indicates the percentage of the image height that the maximum projection occupies;
this is especially important for gauges with a tell-tale pointer because they can cover the
main pointer, making it impossible to read the gauge. A threshold of 70% for the certainty
value was applied to detect the pointer, so only pointers above this value were considered
correctly detected.
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Figure 12. Application of the pointer detection using pixel projection. (a) RoI, (b) polar transformation,
(c) pixel projection, (d) pointer detection.

Figure 13. Flowchart of the pointer detection implementation.

Figure 14. Flowchart of the detection of the pointer and tell-tale.

2.5. Determination of the Indicating Value of the Gauge

In this project, additional information was provided to the algorithm to read the gauge
value. The information was related to the gauge scale (angle, value and linearity) and
whether or not the gauge had a tell-tale pointer. Since these are fixed and specific to each
individual gauge, the information was linked to a QR code placed close to the gauge.

Finally, the gauge indicating value was calculated using the angle method because it
is simple to apply and it works for most gauges in the market. With the information about
the scale and pointer angle, the final value is determined using Equation (1).

IndicatingValue = R× β

α
, (1)
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where R is the range of values of the scale, β is the angle between the pointer and the
minimum scale mark, and α is the angle between the minimum and maximum scale marks.

2.6. Proposed Final Solution

With all the methods explored, a final solution was proposed for automatic gauge
reading, as shown in Figure 15. The algorithm begins with a trained CNN object detection
to localize different gauges in an image. These RoIs are cropped, and a specific QR code is
identified to read the needed information. The next step is the dial segmentation, which
begins with the grayscale transformation and the bilateral filter application. Then, the circle
Hough transform is applied. Since there are a lot of variations among gauges, the following
steps help to uniformize gauge images. First the tell-tale pointer, if existent, is segmented
using a mask in HSV color space with the red and orange colors. Then, to correct black
dials, the RoI and its inverted colors image are binarized using the adaptive threshold, but
only the image with the highest number of white pixels inside the dial is used. With this
binarized image, the pointer angle is determined by first performing a polar coordinate
transformation, followed by a pixel projection. In the end, the gauge indicating value is
calculated using the angle method.

Figure 15. Proposed solution for automatic gauge reading.
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3. Experimental Tests and Results Analysis

To evaluate the algorithm, first of all, some images were chosen from the dataset al-
ready created combined with extra images captured using an ESP32-CAM with a OV2640
camera and a FOV 160° lent to obtain images in different conditions, such as harsh lighting,
reflections, and angled shots. As a result, these images were grouped, making it possible to
compare the results and analyze the influence of the different shooting environments. The
first group was named the ideal conditions, which only has images with good lighting and
front-facing gauges, making it easier to read the indicating value. The other two groups
were composed of images with bad lighting conditions and different shooting angles. Since
some of the gauges present scale takeup (the portion of the scale between the position
where the pointer is stopped and its true zero pressure position), the definition of the angle
for the first scale mark was set in the true zero pressure position to avoid reading errors.

Furthermore, to make the tests consistent, only gauges with the same accuracy class
were used, as these gauges followed the standard EN 837-1 [23]. Since most of the gauges
in the images had an accuracy of 2.5%, these were the ones tested. For each gauge, the
evaluation metric used was the relative error, Ei, between the read indicated value and the
value determined by the algorithm, and then the average relative error, Ē, was determined
for all images and each group of shooting environment. These metrics are calculated using
Equations (2) and (3).

Ei =
|ri − Ri |

S
× 100 % , (2)

Ē =
∑n

i=0 Ei

n
, (3)

where ri is the reading value from the algorithm, Ri is the reading value determined visually,
S is the range of the values, and n is the number of images.

Out of the 20 images tested, only one was read incorrectly, which demonstrates the
capability of the algorithm even in difficult conditions. However, for one image, the
algorithm did not perform correctly because the Hough transform detected the dial circle as
slightly deviated, which affected the polar transform and consequently the pixel projection;
therefore, the maximum projection value was incorrect at the tale of the pointer. The
accuracy was generally high, with an average relative error of 0.67% in ideal conditions.
In challenging conditions, the algorithm almost doubles the error, which indicates that
the bad lighting and angled gauges negatively affect the algorithm; nevertheless, the error
calculated was still relatively low, with a value of 0.95%, as shown in Table 2. Therefore, the
accuracy, especially in ideal conditions, is suitable for less critical commercial uses, which
cover a wide range of current analog gauges.

Table 2. Average relative error for different shooting environments.

Shooting Environment Average Relative Error (%)

Ideal conditions 0.67
Bad lighting conditions 1.28

Different shooting angles 1.23

All images 0.95

Furthermore, comparing the proposed solution with some state-of-the-art algorithms,
the proposed algorithm performs relatively well, having a slightly better performance
than most methods analyzed in Table 3. However, the Zuo et al. [18] solution performs
the best out of all, which achieved high accuracy in difficult conditions of lighting and
tilting gauges, but the tests were performed for only one gauge, which could result in
low generalization and algorithm overfitting. This can explain the much better results in
comparison with the other methods.
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Table 3. Average relative error for state-of-the-art methods.

Methods Average Relative Error (%)

Zheng et al. (2016) [7] 0.95
Wang et al. (2019) [2] 1.35
Zuo et al. (2020) [18] 0.17

Proposed solution 0.95

In addition, an experiment that was only focused on the robustness was executed.
It used the same 20 images from the previous experiment with some defined image ad-
justments to observe if the proposed solution was capable of reading gauges correctly.
Therefore, four different adjustments were made by altering the values of gamma, contrast,
Gaussian noise, and brightness. For each, a set of 20 values were uniformly selected, where
gamma was varied between 0.1 and 4, contrast and Gaussian noise between 0.05 and 1 and
brightness between 0.1 and 2. In total, the algorithm was performed on 1600 images. The
results shown in Figure 16 demonstrate that the proposed solution is capable of adapting
to different environmental conditions but is most affected by the Gaussian noise. Table 4
shows that only the Gaussian noise had a low proportion of correctly read gauges, with a
result of 43.3 %, and the other adjustments all show results above 75 %.

Figure 16. Algorithm robustness assessments with image adjustments.

Table 4. Proportion of gauges correctly read for each image adjustment.

Gamma (%) Contrast (%) Gaussian Noise (%) Brightness (%)

81.5 77.3 43.3 78.5

Implementation of an IoT Solution

Furthermore, an IoT implementation was developed as a proof-of-concept using an
ESP32-CAM with a OV2640 camera and a 65° FOV lent to capture images and send them to
a local computer that has the processing power to run the algorithm. Then, the information
is sent to a web application to display the data as an interface for visualization. The
communications are made via Wi-Fi using the Hypertext Transfer Protocol (HTTP), and the
architecture is illustrated in Figure 17.
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Figure 17. Architecture of the IoT implementation.

The camera was installed inside a cabinet pointing to two gauges of a gas cylinder.
One of the gauges was selected to be monitored, so it was set with a QR code, as shown
in Figure 18. Finally, a dashboard was developed to indicate the gauge value and tell-tale
pointer value, if applied.

Figure 18. Setup of the IoT application.

4. Conclusions

The foremost purpose of this work was to digitize analog gauges, which was achieved
by first applying a CNN gauge detection using the available pre-trained models of the
TensorFlow API. Some of these models were trained with the target dataset to compare the
results and choose the model with the best performance, which achieved a maximum mAP
of 92.5% and recall of 94.8%. The following steps were based on conventional computer
vision techniques, so after finding the RoI, the gauge dial is segmented using the circle
Hough transform, and then the pointer angle is extracted using pixel projection subsequent
to the RoI’s polar transformation. In the end, the indicating value is determined using the
angle method.

After choosing the methodology, some experiments were made to evaluate the algo-
rithm performance, which resulted in an overall average relative error of 0.95%. The results
also showed that bad lighting conditions and angled gauges have a negative impact on
the algorithm performance since the average error practically doubled in these conditions.
However, the solution proved to have sufficient accuracy for most noncritical applications.
Moreover, the robustness evaluation demonstrated that, for wide values range of gamma,
contrast, and brightness, the solution has high adaptability; the only exception was the
Gaussian noise, which had a significant detriment on the image quality and, in turn, in
the algorithm performance. Additionally, a proof-of-concept IoT implementation was
developed, and it demonstrated the feasibility of this solution in a real-world application.

However, the solution has some limitations, such as the small-sized dataset that
can contain personal biases and negatively affect the gauge detection even with data
augmentation. Furthermore, the final solution is dependent on external information that
could be extracted directly from the gauge image, if robust enough. Nevertheless, these
limitations will be explored in future work.
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Appendix A

Figure A1. Evaluation and training loss functions of the CNN models trained.
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Figure A2. Recall and mAP evaluation graphs of the trained CNN models.
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