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Abstract: This study describes an experimental realization using digital predistortion (DPD) for a
fifth generation (5G) multiband new radio (NR) optical front haul (OFH) based Radio over Fiber (RoF)
link. For the performance enhancement and complexity reduction of RoF links, a novel Convolutional
Neural Network (CNN) based DPD technique is proposed, followed by comparisons with the
generalised memory polynomial (GMP) based DPD method. To support enhanced mobile broad band
scenario, the experimental testbed uses the 5G NR waveforms at 10 GHz with 20 MHz bandwidth
and a flexible-waveform signal at 3 GHz with 20 MHz bandwidth. For 10 km of typical single
mode fiber, a Mach Zehnder Modulator with two distinct radio frequency waveforms modulates a
1310 nm optical carrier utilizing distributed feedback laser. The error vector magnitude and number
of estimated coefficients, and multiplications are all used to describe the experimental outcomes. The
goal of the research is to see if CNN-based DPD improves performance while lowering complexity
levels to meet 3GPP Release 17 criteria.

Keywords: digital predistortion; convolutional neural network; radio over fiber; convolutional neural
network; error vector magnitude

1. Introduction

With major developments in the fifth generation known as 5G and beyond 5G, the
centralization of radio access network (RAN) has been established due to the ever increasing
rate of base stations (BS) [1], which decreases capital expenditure by simplifying network
management [2]. An optical fronthaul (OFH/FH) simply connects the base band units
(BBU) to remote radio heads (RRH) to facilitate C-RAN (see Figure 1). Due to unlimited
benefits and increase in wireless link reach for all kinds of applications such as short to long
link applications, microwave photonics-based solutions such as Radio over Fiber (RoF)
have a higher significance connecting the BBUs with RRUs [1,2] with 5G in the operational
stage in most parts of the world [1,2].

Various RoF variants have been proposed in recent years, including Analog Radio over
Fiber (A-RoF) [1-5], Digital transport over Fiber (D-RoF) [6-9], Sigma Delta transport/Radio
over Fiber (SD-RoF) [10-12], and others (see Figure 2). A-RoF links are, to some extent,
the simplest and most cost-effective option; nonetheless, they suffer from nonlinearities
generated from signal impairments and components such as laser modules, fiber, and
photodiodes. Using D-RoF or SD-RoF is one of the alternative options.

When it comes to D-RoF systems, the analogue to digital (ADC) and digital to analogue
(DAC) required make the process exceedingly costly. Furthermore, common public radio
interface (CPRI) restrictions exist due to high data rate capacity and limited bandwidth.
The SD-RoF can be used to bypass the CPRI bottleneck. ADCs and DACs aren’t needed
because the method is based on sigma-delta modulation, which only uses one bit of ADC.
However, the method is difficult, thus it’s not recommended. Furthermore, because the
quantization noise is significant for 1 bit, an extra band pass filter (BPF) at the RRH is
required. However, this added complexity is not the only issue that needs to be addressed
for S-DRoF implementation; the addition of BPF introduces additional noise in amplitude
and phase, which necessitates a second method to remove these nonlinearities [13].
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Figure 1. Schema of RAN 5G covering the back and fronthaul with application scenarios such as
houses, sports fields and transportation, etc.
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Figure 2. RoF system block diagram with Radio over Fiber and CNN based DPD system. Trans-
mission of I/P and O/P across the general RoF link yields the RoF NN model [. After that, we
backpropagate error through I to train I~!. The DPD-RoF model is then linearized by linking it to an
RoF link. DPD is done in the digital baseband, which eliminates the need for DACs and ADCs The
link that how CNN is made and trained is shown in Algorithm 1.

It is clear that utilising alternative techniques (D-RoF/SD-RoF) is time, resource and
power consuming. As a result, the A-RoF systems are the preferable alternative for optical
fronthaul due to their legacy, infrastructure, and cost-effectiveness (OFH). Mitigating
nonlinearities in RoF transmission is critical for maximising the system’s potential and has
become worthy of discussion. To address the widespread challenges in all of these distinct
fields, a variety of strategies have been employed. The ones widely used are mentioned in
Section 2 under the literature review.

As transmission quality diminishes, the laser nonlinearities become more significant.
When it comes to long-range networks, however, nonlinearities caused by a combination of
fiber dispersion and laser chirp are frequently the primary cause of impairments and degra-
dation [7]. Due to the high peak-to-average power ratio (PAPR), Orthogonal Frequency
Division Modulated (OFDM) signals, such as the highlighted 5G transmission, are also
susceptible to similar distortions, i.e., PAPR.

This study introduces nonlinear behavior and signal degradation compensation for
OFH based RoF systems using 5G NR based RoF technology, to the best of the authors’
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knowledge. The novelty of this study is numerous, following a thorough literature assess-
ment on nonlinearity mitigation in Section 2:

1.  Inthe experimental testbed, multiband 5G NR signals are used to cover enhanced mo-
bile wide band (eMBB) scenarios and small cells for 3 GHz and 10 GHz, respectively.

2. Anabled DPD method based on a Convolutional Neural Network (CNN) is proposed
and demonstrated. In comparison to existing learning architectures, the proposed
DPD identification approach has a better performance and lower complexity than our
previous machine learning approach.

3.  Finally, a simple CNN-based DPD algorithm is proposed as an upgrade to our previ-
ously published DPD-based technique based on deep learning for 20 MHz with 5G
New Radio (NR) based RoF links. A new sort of training is used to implement the
CNN DPD technique, which does not use In-direct Learning Architecture (ILA). We
first use an RoF CNN to simulate the generic RoF connection and then use this to train
the proposed DPD CNN by backpropagating the mistakes.

4. A comparative experimental investigation was conducted in which the previously
proposed ILA-based GMP method was benchmarked against the CNN technique and
compared utilising a 5G NR multiband signal. Error Vector Magnitude (EVM) and
multiplications and coefficients required measuring complexities are used to evaluate
the performance.

2. Literature Review

In this section, only Machine Learning Methods are used to discuss the linearization
methodologies that have been inferred for the RoF systems. Linearization of OFH has been
a significant research area as summarized below in Table 1. There has always been a drive
to have better linearization to get higher performance that has shifted the focus towards
Machine Learning (ML). ML being the new avenue is the core discussion of this work so
a recent literature review has been discussed for all methods with specific importance to
machine learning methods. For the reduction of the RoF system impairments, a thorough
literature review is described in Table 1. The table outlines the method used, the type of
linearization used, the category, the parameters examined, and the benefits and drawbacks
of each method.
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Table 1. Nonlinearity mitigation methods employed (Dig = Digital, Elec = Electrical, Opt = Optical, ML = Machine Learning, ACLR = Adjacent Channel Leakage

Ratio, EVM = Error Vector Magnitude are used to abbreviate in the table).

No. Author Type Subcategory Parameter Linearization Advantages Disadvantages
1 Wang et al. [14] KNN ML BER Fiber nonlinearity 0.6 dB improvement  Large training data required
2 Cui et al. [15] SVM Deep Learning BER Modulation Impairments 1.3 dB improvement High Complexity
3 Lietal. [16] SVM ML EVM Fiber nonlinearity 1.5 dB improvement High data training and
complexity
4 Gonzalez et al. [17] ML Al BER, OSNR Cross Modulation Detection N/A N/A
5 Fernandez et al. [18] ML ML OSNR Phase Modulatlon 1.4 dB improvement N/A
Impairments
6 Hadi et al., Liu et al. [19-24] ML ML EVM, ACLR Laser Chirp 10 dBs improvement Limited to small link lengths
7 Liu et al., Hadi et al. [25-28] Dig ML-NN based EVM Laser Learns nonlinearities Limited to LTE framework.
Safari et al. Xu et al Limited to 20 MHz
8 aarea., e a Dig DNN ACLR, EVM Black Box approach N/A bandwidth and 256 QAM
Hadi et al. [29-32] .
modulation
Suppression of second order
9 Draa et al.; Chen et al. [33,34] Elec Analog Predistortion IMD3 Complete RO.F system (Laser, IMD.?’ for phase nonlinear distortion for high
photodiode, LNA) maintenance . . .
bandwidth is perplexing.
. Suppression of second .
10 Hass et al. [35] Opt Mixed Polarization Secoln d/thl?d 0r<.ier Complete RoF system and third order To some extent, linear
nonlinear distortion . " components are compressed.
nonlinearities
Transmission is wavelength
. Suppression of second dependent, i.e., nonlinear
11 Zhu et al. [36] Opt .Dual. walvelength Seco.n d/thlrd orc}er Complete RoF system and third order components are suppressed
linearization (DWL) nonlinear distortion . " . .
nonlinearities exclusively at anti-phased
wavelengths.
12 Ghannouchi et al. [37] Dig DPD Thl?d or(.i(.er Power Amplifier . Wideband . The DSI.) pecessary 1s
nonlinearities improvement possible difficult.
13 Duan et al. [38] Dig DPD ACLR, EVM Laser Added accuracy with The amount of energy
less DSP requirements consumed is enormous.
. . Higher suppression in .
14 Pei et al. [39] Dig DPD ACLR Modulator ACLR by 15 dB Feedback complexity.
Digital Post distortion components  P1B7er with high speed i
15 Lam et al. [40] Dig gHat ACLR, BER RoF Jon comp required.Uplinks are the
Distortion significantly

compressed.

only ones that apply.
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Table 1. Cont.
No. Author Type Subcategory Parameter Linearization Advantages Disadvantages
Deployment of DPP at the RRH
16 Hekkala et al. [41] Di DPD ACLR. EVM Laser onl Less complexity and over  level, so that the prototype price is
' & ! y head passed on to the client, adding to
the RRH’s complexity.
. . Combination of fiber Linearizes links up to tens Limited to sinusoidal
7 Hadi etal. [42] Dig DPD C/HD2, P2, IIP3 dispersion and laser chirp of km (single/dual) I/P tones.
- . . — RoF link is not generic, contains
18 Vieira et al. [43] Dig DPD EVM Laser OFDM signal utilzation 10'dB attenuator.
. . The magnitude (AM/AM)
. OFDM signal with . Lo
19 Hekkala et al. [44] Dig DPD ACLR, BER Laser 12.5 MHz bandwidth hnearlzatlcs)}rll Oljv trllle only one
20 Carlos et al. [45] Dig DPD EVM, ACLR RoF LTE 20 MHz signal Unrealistic feedback.
To test the predistorter’s efficacy,
1 Carlos et al. [46] Dig DPD NMSE, ACLR RoF LTE 20 MHz w1t‘h 16 QAM the distributed feedback (DFB)
modulation laser was not pushed to greater RF
I/P powers.
The findings are attenuation
dependent, meaning that with
22 Carlos et al. [47] Dig DPD ACLR, EVM RoF Ideal and no feedback correct att.enuatlon.and different
optimization algorithms, results
similar to the ideal case can be
produced.
Large-scale manufacture is
23 Roselli et al. [48] Electrical Analog IMD3 RoF Fixed phase for IMD3 probl.ematlc stee each RoF
components transmitter requires a different
predistorter.
24 R. B. et al. [49] Electrical DPD IMD3 RoF Fixed correction entanglement between various
pathways.
In the frequency domain, to
25 Veiga et al. [50] Electrical DPD IMD3 RoF Phase maintenance is easy compensate for arbitrary
bandwidth limitations.
Only requires transient . .
26 MU. Hadi et al. [51] Dig Direct DPD ACLR, IMD RoF chirp coefficient, no Limited to OI‘llg’nfetV}‘i kilometers of
exhaustive training. st
27 MU. Hadi et al. [52] Dig DPD ACLR RoF Feasible closed loop DPD High complexity.
28 MU. Hadi et al. [53] Dig DPD ACLR, EVM RoF DVR, GMP, MP Training is time consuming.




Telecom 2022, 3

108

3. Convolutional Neural Network Architecture

Convolution Neural Networks (CNN) are advanced networks that, like the recom-
mended NN-based DPD model, require a large amount of training data. The RoF link
is then cascaded with this model, but the outcome is unknown. However, because the
output of an RoF connection is known, we create an RoF NN model and train it to mimic
the original RoF link. We can now backpropagate through this RoF CNN and adjust the
parameters in the recommended CNN DPD model after we have formulated it.

The convolutional layer is the first layer of a CNN. With the help of a kernel, it extracts
features from input data and outputs a feature map (convoluted data).

The kernel or filter (kernel matrix), input data (input matrix), and feature map are all
components of a convolutional operation.

Assuming the examined RoF link has H(n) function and y(n) as an output signal, and

that a baseband signal x (1) must be delivered over it where H(n) = %, DPD tries to

calculate the inverse transfer function of this RoF link, represented by I~!, whose output is
then indicated by % ().
This can be written as:
2(n) = I (x(n)) ©)
while,
y(n) = Gx(n) = I(%(n)) 2

as G represents the gain. The CNN here finds out the [~ utilized for predistortion. A direct
training cannot be done for establishing the CNN for DPD as the ideal £(n) is not known
as illustrated in Figure 2.

Initially, the second CNN simulates the RoF link. Here, £(#) is an input and Lg) as
output for a generic RoF link. This leads to the CNN learning, and it can now identify an
approximate transfer function I. The model weights are fixed once the RoF CNN model
is formed, and then it is connected to the CNN DPD model. To calculate error using a
loss function, we now use the original input, x(n) and output as training data. We then
backpropagate it through [ to train 1.

3.1. CNN Model Salient Features

This section will go through all the characteristics of CNN that are required for use
in a DPD-based RoF system. The characteristics that make a CNN model are discussed
in this section one by one. These characteristics serve as a foundation of the successful
implementation of the CNN.

3.1.1. Optimizer

The Adam algorithm amalgamates the Momentum and RMS functions, which means
that it keeps an exponentially decaying average of prior squared gradients as well as an
exponentially decaying average of previous gradients. Due to the component of speed and
the ability to adjust gradients, Adam is an effective optimizer. This is also why it is the most
commonly utilised optimizer. ADAM has outperformed the competition, particularly in
terms of convergence speed, which is why it is the most widely used and efficient optimizer.

3.1.2. Activation Functions

A node’s capacity is not defined apriori. The activation helps to deduce it. It accom-
plishes this by establishing a relationship between the node’s various weights and biases
and then applying the relationship to the node as a function, so generating responses. It
also assists it in learning complex data patterns. They convert the node’s incoming signals
into an output signal that will either be used in the network’s next layer or will be the
output. In contrast to the gradient of sigmoids, which grows smaller as the absolute value
of gradient increases, the chance of a vanishing gradient is lesser when considering ReLu.
ReLu has a constant gradient, which aids learning and makes it the better choice.
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3.1.3. Regularization

CNN with high learning parameters and sparse or noisy training data are prone
to overfitting problems. Overfitting occurs when a model improves its performance on
training data but fails to classify fresh test instances that are part of the same domain
problem. We employed an L2 regularization approach to avoid this problem.

In this method, a regularization term is taken into account when updating the cost
function. This regularization term reduces the value of the weight matrices by resulting in
a simpler model, minimizing the problem of overfitting greatly.

In L2, we have:

N
Loss = error + A Z‘wlz 3)
i=1

where w is weight and A is the regularization parameter (which is adjusted for more exact
results). The L2 method is known as a decay approach for updating weights because it
forces the weights to decay towards zero, though they never reach zero exactly.

We have developed a foundation of all components of a CNN, the DPD CNN, which
was used to distort the RoF system, and the replicated RoF CNN, which is needed for
training this DPD CNN, based on the conversation so far. The CNN used here is a feed-
forward fully connected network with N hidden layers and K neurons per hidden layer.
Figure 3 depicts the symbolic structure of the employed CNN. Due to the complex nature
of baseband signals, which represent both the real and imaginary components of the signal,
the CNN has two inputs and two outputs. At least one of the several hidden levels has
been activated using the ReLu function (owing to its lower complexity).

INPUT LAYER HIDDEN LAYER OUTPUT LAYER

R t) — k)

S6) —5)

Figure 3. N number of hidden layers has K neurons per hidden layer, as shown in the schematic
picture of the feedforward fully connected NN structure utilised.

The O/P for the primary layer (hidden) is represented:
_ R(x)
i =7 (wi[ 36 | +1) @

where, /1 represents the primary hidden output layer, f is the nonlinear function of activa-
tion and W is the weight and b; is the bias for the first output layer in the network.
The general output for the ith layer is represented as:

li(n) = f(Wihi—1(n) + b;) )

where,ie N :2 <i<N.
After N hidden layers, the ultimate result will be:

A

2(n) = Wni1hn + byt (6)

3.1.4. Training Algorithm

The CNN DPD model was trained using the following algorithm. Mean Square Error
(MSE) is employed as the loss measuring function, ADAM is used for the optimization,
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ReLu is used as activation function and backpropagation is used to update the weights. To
improve the performance, Z number of iterations are used.

As previously stated, we use the input and the output of the original RoF connection
to train our emulated RoF CNN model, and after this model is acquired, we connect the
CNN DPD model to it. Then, once this training is complete, we attach the actual RoF link
to this DPD CNN and begin the predistortion process (see pseudocode in Algorithm 1). It
is shown in the algorithm that the CNN is made on I(£(n)) with updates on [ followed by
the pre-distortion functionality usage in terms of I~!(x(n)) as shown in Figure 2.

Algorithm 1. Training for linearization (DPD)

%(n) < x(n)

fori <Zdo

y(n) < I(%(n)): / /Radio over Fiber -Transmission

[ < Train on £(n), %") / /Update Radio over Fiber CNN
/ /Fixed NN weights of I

[ < Train on x(n). //Utilize [=Y(I(x(n)))
2(n) + 71 (x(n)): / /Predistort

end for

4. Experimental Setup

A scenario comprising of multiband 5G NR at 3 GHz (20 MHz) and 10 GHz (20 MHz),
which was mentioned in our prior work [54], was used to validate this technique, but
no DPD was used. As an upgrade to this architecture, a multiband DPD block has been
added to this arrangement to improve the speed of this link. A dual drive Mach Zehnder
Modulator (MZM) operating with two separate RF-driven signals, and a 1310 nm DFB laser
is used in the system depicted in Figure 11. The Vector Signal Generator (VSG) labelled as
VSGI1 transmits RF1, a 5G NR waveform at 10 GHz, while the 5G transceiver transmits RF2,
a 3 GHz flexible waveform signal. The DPD process can be broken down into three stages.

At first, these signals undergo up-conversion one by one at their respective carrier
frequencies of 3 and 20 GHz, respectively, before passing them through 10 km of Standard
Single-Mode Fiber (SSMF) and receiving them with a photodetector (0.71 A/W) that
receives the signal and converts it back to the electrical domain. An amplification step is
introduced since the multiband needs to be separated independently. The 10 GHz and
3 GHz signals are separated using a diplexer (DPX). After that, the signals are sent to
several vector signal analyzers (VSA). For performance evaluation, each VSA output is
passed to the post-processing block. This phase is done without DPD, which means the
output is evaluated without going through the DPD process.

The DPD method represented in Figure 4 is used in the second phase, referred to as
the DPD training phase, and training is used until the error converges.

To put it another way, DPD validates the theory behind inverting the amplitude and
phase responses obtained at electrical amplifiers EA1 and EA2. CNN methods can be used
depending on the user’s needs and comparative requirements.

We use the PRS (positioning reference signal) given in the 5G NR architecture to
accomplish synchronization for the received waveforms (both, input and output). PRS is
assumed to have a bandwidth of 20 MHz /106 resource blocks. In the time domain, the
received and output reference broadcast signals are correlated, and the PDP (power delay
profile) is processed through the maximum block to determine the strongest path of arrival.

In the third step, the pre-distorted baseband signals are fed into the DPD block, where
they are upconverted to their carrier frequency by their respective VSGs before being fed
onto the optical connection. The signal obtained at the photodiode is then transmitted
through a diplexer DPX to isolate the various multi-bands before being sent to the DPD
training step. We flip the switches in the opposite direction during the DPD validation step.
The evaluation for 5G NR frames is completed by predistortion and then transferring the
frames to the VSG. Because the nonlinearities of the RoF link slowly change due to thermal
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impacts and component ageing, we conclude that real-time operation in the adaptation is
unnecessary. Table 2 summarizes the parameters employed, which have previously been
used in [1,2] and other state-of-the-art [54,55] studies.

10 GHz (RF)

SMF 10 km

Photodiode

*'; -

_\‘,-.Z} 5G )
' Transceiver _\

5GNR o0 4 DPD Methodology

5G NRge;
(PRS) i >

Performance Train. [~ Sync. EAl
ACPR/EVM) ......
EA2 DPX |sssssnnssnnnnnnnnnn
Post Processing @ l —Optical
e N Y e e Electrical

Figure 4. Experimental block diagram for analog multiband 5G NR system. The functions: A:
Choose between VSA 1 and VSA 2. B: Choose between a performance post-processing block and a
synchronisation block. C: Synch is connected. The synchronisation block is followed by training. D:
DPD disables the training DPD disables the training DPD disables the training DPD disables the
training DPD disable E: Time synchronisation (TS) technique is required. F: Required for validating
DPD inputs before sending them to the VSGs. For the DPD training CNN has been chosen.

Table 2. Optical Link Parameters.

Parameters Values
fe=3and 10 GHz
5G NR Waveforms Flexible O/G/F OFDM waveform
Modulation = 256 QAM
. A =1310 nm
Laser Diode DD-MZM
SSMF
. . . pS
Fiber Optical Fibre Dispersion = 16 " —
Length =10 km
. _ dB
Attenuation = 0.44 £~
Photoreceiver R =069 A/W

Table 3 displays the CNN parameters that result in NN performance that is optimised.
Table 3 lists the parameters that define the architecture of the intended Convolutional
Neural Network. The parameter selection is done by a trial-and-error test [1]. The ta-
ble’s final section assesses the NN’s complexity by computing its expressions in terms of
its coefficients.
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Table 3. CNN parameters.

Framework Parameters
Optimiser ADAM
Type of activations function ReLu
O/P layer type function Softmax
Loss type Mean Square Error (MSE)
Hidden Layers N 15
Neurons per layer K 20
Regularization method L2
Regularization factor 0.001
Number of epochs 100
Validation split 0.4
Learning rate 0.01
Batch size 16, 32, 64, 128, 256, 512, 1024
Training specimens 300,000
Testing specimens 300,000
Involution
(N-1DK*+(4+N)K+6 5986

5. Results and Discussion

The results for the experimental setup outlined in the previous part are discussed
in this section. The Mean Square Error (MSE) is one of the methods for estimating the
accuracy of coefficient estimation for various architectures. From our previous work, GMP
and Magnitude Selective Affine (MSA) DPD methods results are used to compare with
our proposed CNN method. When no DPD is used, the MSE is 27 dB, while GMP has
30 dB. For Canonical Piecewise Linearization (CPWL) and MSA, the value drops to 35 dB,
whereas CNN has an MSE of 39 dB.

The proposed approach is compared and reported in the form of Error Vector Magni-
tude (EVM). From our recent work [2], we just use GMP methods as a baseline architecture
to compare with our proposed CNN method.

Error Vector Magnitude

The most common performance indicator utilised in 3GPP for this research item’s
performance evaluation is Error Vector Magnitude. The difference between the symbol’s
demodulated ‘anticipated’ value and the demodulated received symbols ‘real” value is
determined by EVM. EVM can be expressed as [5,55]:

2
% Z%:ﬂsm B SO,m |

1 M 2
Mzm:ﬂsm ‘

EVM (%) = @)

where M is the number of constellation symbols, S,; denotes the constellation’s real symbol
associated with the symbol “m” and S ,, is the real symbol associated with S;,;. The EVM
limit for 3GPP using 256 QAM is 3.5% [56].

In Figure 5a, the Error Vector Magnitude EVM is represented for flexible waveforms
compared for the case when there is no DPD improvement procedure employed when
GMP DPD method is employed, and the CNN DPD method is utilized. It is observable
that the CNN DPD method results in a better reduction as compared to GMP for all the
flexible waveform architectures. Similarly in Figure 5b, it can be seen that when the RF
input power is varied, the reduction in EVM due to the proposed CNN method is much
better as compared to GMP method. For a high RF input power of 5 dBm, DPD CNN
reduces EVM to approximately 2% while GMP has EVM around 5% so EVM reduction is
about 9% with the CNN method bringing the performance within the limits set by 3GPP.
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~
T

»
T
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w
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1
2 [
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(b)

Figure 5. EVM performance comparison (a) for CNN and No DPD case for flexible 5G NR waveforms.
(b) 5G NR performance DPD efficacy in terms of EVM for proposed CNN DPD method vs GMP
method and without DPD for varying RF input power.

6. Complexity Considerations

By lowering complexity and attaining equivalent performance to the DNN approach
outlined in prior work [2], CNN-DPD achieves a significant improvement. Table 4 depicts
the difficulty of creating a DPD model, which is mostly determined by the number of actual
multipliers necessary, as multipliers use the majority of the hardware resources. MSA
DPD (220 multiplications) is significantly less complicated than CPWL, as seen in Table 4.
(880 multiplications). More complex versions can be constructed by increasing the memory
depth Q and nonlinearity order K in the Volterra series. However, the computational
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complexity must be considered. This means that while choosing the DPD model and its
complexity, a reasonable trade-off between complexity and performance may be made.

For a comprehensive review of CNN and Volterra techniques in the manner of complex-
ity, Table 4 summarizes the complexities for the methods. CNN complexity is a challenging
problem to solve, however as shown in this work, it can be reduced by employing a minimal
number of N and K.

Table 4. Comparisons of complexity.

DPD

Coefficients # Coefficients Arithmetic Operations

GMP

CPWL

MSA
CNN

Ko(Qe +1DRe 4+ Kp(Qp + )Ry + Ko (Qp +1) 84 244

(4M+1) (K+1)L 260 (K+1) (14M +2) L = 880
24M +1) (K+1) L 520 (14M +2) (K + 1) = 220
(N- 1)K+ (4 +N)K+6 5986 4K +4+ (N —1)K? = 5684
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Indeed, with the higher modulation format and higher bandwidth similar to multiple
LTE carriers or 5G new radio (NR) waveforms as discussed, they would lead to higher
complexity of DPD operation due to stronger PAPR. Concomitantly, the elevation in
bandwidth will lead to an overall increase in the base-band memory of the system model.
Nevertheless, the evaluated models are still valid. However, higher values of the Q and K
will be indispensable as compared to the considered case.

In Table 5, the values of MSE and EVM @ 5dBm are summarized for the proposed method.

Table 5. Results summary for EVM and MSE.

Methodology E.VM (%) MSE (dB)

No-Digital Pre-distortion 11 =27
GMP Digital Pre-distortion 5 —30
CNN Digital Pre-distortion 2.1 -39

7. Conclusions

This paper describes the effective implementation of 5G NR multiband OFH utilising
Convolutional Neural Networks to reduce RoF nonlinearities. To begin, a novel CNN
approach was developed that not only has less complexity than conventional machine
learning methods but also performs better with a 75% decrease in complexity overheads
and multiplications. The theoretical foundations and pieces needed to design a Neural
Network are also explained in the article. To a distance of 10 km, 5G New Radio multiband
transmissions at 3 GHz and 10 GHz are used. The proposed CNN-DPD approach reduces
EVM by 8% to 2.1% bringing the performance within 3GPP limits.
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