
����������
�������

Citation: Tsipi, L.; Karavolos, M.;

Vouyioukas, D. An Unsupervised

Machine Learning Approach for

UAV-Aided Offloading of 5G Cellular

Networks. Telecom 2022, 3, 86–102.

https://doi.org/10.3390/

telecom3010005

Academic Editor: Michał Aibin

Received: 6 December 2021

Accepted: 17 January 2022

Published: 20 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

An Unsupervised Machine Learning Approach for UAV-Aided
Offloading of 5G Cellular Networks
Lefteris Tsipi , Michail Karavolos and Demosthenes Vouyioukas *

Department of Information and Communication Systems Engineering, School of Engineering,
University of the Aegean, 83200 Samos, Greece; ltsipis@aegean.gr (L.T.); mkaravolos@aegean.gr (M.K.)
* Correspondence: dvouyiou@aegean.gr

Abstract: Today’s terrestrial cellular communications networks face difficulties in serving coexisting
users and devices due to the enormous demands of mass connectivity. Further, natural disasters
and unexpected events lead to an unpredictable amount of data traffic, thus causing congestion
to the network. In such cases, the addition of on-demand network entities, such as fixed or aerial
base stations, has been proposed as a viable solution for managing high data traffic and offloading
the existing terrestrial infrastructure. This paper presents an unmanned aerial vehicles (UAVs)
aided offloading strategy of the terrestrial network, utilizing an unsupervised machine learning
method for the best placement of UAVs in sites with high data traffic. The proposed scheme forms
clusters of users located in the affected area using the k-medoid algorithm. Followingly, based
on the number of available UAVs, a cluster selection scheme is employed to select the available
UAVs that will be deployed to achieve maximum offloading in the system. Comparisons with
traditional offloading strategies integrating terrestrial picocells and other UAV-aided schemes show
that significant offloading, throughput, spectral efficiency, and sum rate gains can be harvested
through the proposed method under a varying number of UAVs.

Keywords: 5G; machine learning; UAV placement; offloading

1. Introduction

The new generation of mobile communications networks, e.g., 5G and beyond, along
with the abundance of technologies and the support of high transmission rates and re-
liability, bring a massive increase in mobile devices, sensors, and services ranging from
high-throughput multimedia applications to ultra-reliable Internet of Things (IoT). Hence,
mobile operators should consider exploiting novel and efficient offloading schemes to
alleviate the stress on cellular networks. In this context, the employment of unmanned
aerial vehicles (UAVs) as flying base stations, is expected to be a promising solution offering
several degrees of freedom and flexibility in the network [1,2].

Traditionally, fixed cells, e.g., picocells and femtocells, are employed to offload the ex-
isting terrestrial cellular networks. This approach requires design and analysis to efficiently
integrate the fixed small cells in high data traffic demand areas. However, this strategy
significantly restricts the degrees of freedom of the network and cannot cope with future
on-demand changes in other regions covered by the terrestrial infrastructure [3,4].

In addition, in case of user hot spots formed for a limited period, e.g., sports events
and festivals, offloading the terrestrial network would require installing a fixed terrestrial
infrastructure, e.g., picocells. Moreover, following this approach, various small base stations
will probably be inactive in the long term due to the continuous mobility of the users’ hot
spots. In other words, if future demand increases in another region within the coverage area
provided by the terrestrial infrastructure, it will require re-analysis, design, and installation
of fixed cells. Hence, this solution is both cost and time ineffective for the operators.
Preferably, it would be better to utilize a network entity capable of moving from region
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to region on-demand and efficiently offloading the terrestrial network; therefore, various
studies have been proposed in the literature, using UAVs as flying base stations, which,
unlike the ground-fixed picocells, can on-demand move to the area of interest and offload
the terrestrial network [5].

1.1. Background

The employment of fixed small cells to enhance cellular networks’ performance
through offloading has been studied in the past. O. Chabbouh et al. [6], have presented
an energy-efficient offload decision process for macro base stations using fixed small cells.
The proposed technique can provide an adequate user quality of experience by reducing
the application response time. Furthermore, simulation results have shown that the pro-
posed algorithm assures the computation of all the applications, subject to both latency
and battery lifetime constraints. Moreover, L. Xu et al. [7] have proposed a self-optimized
joint traffic offloading (JTO) scheme to offload traffic between picocells and macrocells and
achieve mobility load balancing among macrocells. Through computer simulations, it has
been proved that the JTO scheme can effectively deal with the cell exacerbation problem
regarding handover failure and call dropping.

As an alternative way to offload cellular networks, the exploitation of UAV technology
where UAVs act as flying base stations has stimulated many researchers. The work in [8]
deals with the 3D UAVs deployment for on-demand offloading in an area where a damaged
or overloaded base station operates. To determine the optimal UAVs 3D locations, the au-
thors have proposed the k-means algorithm associated with the pattern search technique to
cover the users experiencing a service outage and maximize the operator’s profit. The com-
puter simulation results clarified that both operators’ profit and load balancing are highly
achieved. Furthermore, Y. Qin et al. [9] have studied the performance of a UAV-enabled
cellular network, consisting of limited battery drones that stay in operation for a limited
time and then must fly back to a dedicated charging station. The authors used stochastic
geometry tools to derive the probability of UAV-enabled cellular network coverage as a
function of battery size, charging station density, and time required to recharge the battery.
Thereinafter in [10], the authors have investigated the spectrum trading problem in the
case of a network where UAVs are temporarily deployed for data offloading in regions
where macro base stations cover. Considering both the selfish macro base station (MBS)
manager and the selfish UAV operators, the authors have modeled the utilities and the
costs of spectrum trading and formulated the problem of designing the optimal contract for
the MBS manager, utilizing the contract theory. More specifically, they derived the optimal
pricing strategy based on fixed bandwidth assignment and proposed a dynamic program-
ming algorithm to calculate the optimal bandwidth with reduced complexity. Computer
simulation results revealed that a selfish MBS manager sells less bandwidth to the UAV
operators. Lastly, J. Lyu et al. [11] have proposed a hybrid network architecture consisting
of UAVs and ground base stations to maximize the minimum throughput of all mobile
terminals (MTs) by jointly optimizing the UAVs’ trajectory, bandwidth allocation, and user
partitioning. The UAVs mainly act as an aerial mobile base station, which flies cyclically
along the cell edge to offload data traffic for cell-edge users. Numerical results show that
the proposed hybrid network with optimized spectrum sharing and cyclical multiple access
designs significantly improves the spatial throughput over the conventional ground base
station (GBS) network. Further, performance evaluations showed that the proposed UAV
offloading scheme outperforms the traditional small cell offloading strategies in terms
of throughput.

UAVs as flying base stations have been considered as the best candidate for offload-
ing the new generation terrestrial networks; however, there are some questions on how
many UAVs should be deployed in the affected area and in which location. Utilizing
machine-learning-based methods can answer these questions and determine the best possi-
ble placement of the UAV base stations (UAV-BSs) to enhance the traffic offloading of the
existing macro base station network. The deployment process of UAVs was studied in the
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past utilizing unsupervised machine learning methods. More specifically, J. He et al. [12]
have proposed an unsupervised machine learning method for emergency drone deploy-
ment. The authors utilized a modified k-means clustering algorithm which identifies the
number of drones that should be deployed in the area of interest and determines the
height and the minimum transmit power of them. The proposed scheme aims to mini-
mize the total transmit power of drones with all users’ coverage while maintaining their
rate requirements, with constraints on drones’ coverage area, capacity, and limited power.
Computer simulation results revealed that all users can be served through the proposed
technique and the minimum transmit power of drones is ensured. In another approach [13],
a variation of the k-means algorithm that considers users’ bandwidth requirements is
presented for clustering them and determining the total number of UAVs that should
be deployed based on the bandwidth that each UAV can offer. Performance evaluation
results have shown that, through the proposed scheme, both the number of UAVs and
the maximum deployment delay can be reduced. In [14], the application of simultane-
ous wireless information and power transfer (SWIPT) to millimeter-wave non-orthogonal
multiple access (mmWave-NOMA) based aerial networks is studied and, the k-means
and k-medoids algorithms are used to group the users into clusters for exploiting the full
advantages of NOMA. The simulation results revealed that the proposed unsupervised
learning-based clustering framework for mmWave-NOMA enabled aerial SWIPT networks
can achieve considerable improvements in terms of the harvested energy compared to
conventional aerial SWIPT networks. Moreover, Qi et al. [15], have presented a user-based
modified k-means clustering algorithm to solve the offloading issues in heterogeneous
networks (HetNets). Simulation results showed that the proposed method could increase
the offloading factor from 15% to the required 50%. D. Mandloi et al. [16], have introduced
a machine-programming-based approach for building a 5G-enabled UAV-BSs network
in mmWave. The unsupervised machine learning (ML) methods such as the k-means,
the k-medoids, and the fuzzy cluster means (FCM) algorithm were proposed to determine
the optimal 2D placement of UAV-BSs. The three different ML methods were compared in
terms of received power, signal-to-interference-plus-noise ratio (SINR), and path loss per
active user equipment (UE). Computer simulated results showed that the k-means-based
deployment approach outperforms the other two methods when the UEs are uniformly
distributed in the region of interest. Finally, F. Tang et al. [17], have presented a novel
distributed reinforcement-learning-based traffic offloading system that utilizes a novel
network state information gathering protocol, for usage in space–air–ground integrated
(SAGIN) networks. Through computer simulations, it has been proved that the proposed
method outperforms conventional offloading schemes regarding the signaling overhead,
dynamic adaptivity, packet drop rate, and transmission delay.

1.2. Contributions

In this paper, we consider a two-tier 5G heterogeneous cloud radio access network (H-
CRAN) [18], which is configured to cope with events of exponential increase in data traffic.
The first tier consists of macrocells providing coverage to the whole region of interest, while
UAV-BSs form the second tier to maximize macrocells’ traffic offloading. The primary
objective of this work is to identify the minimum number of UAV-BSs that should be
deployed, as well as their best placement within the coverage area of the macrocells, aiming
to maximize traffic offloading. Towards this end, we partition the users in the affected area
into clusters utilizing the k-medoid algorithm [19]. Then, we identify the number of UAV-
BSs that should be deployed, considering both the number of the formed clusters and the
maximum number of users that a UAV-BS can serve. Given that the number of the available
UAV-BSs may be less than the minimum UAV-BSs required to cover the formed clusters, we
also propose a cluster selection process scheme. The proposed cluster selection technique
is formulated as an optimization problem, which its objective function is to maximize the
traffic offload subject to the constraint that the deployed number of UAV-BSs should be
less or equal to the available one. The proposed cluster selection scheme will provide the
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clusters that the available UAV-BSs should be deployed to achieve the maximum traffic
offload. Furthermore, computer simulations are carried out to evaluate the performance of
the proposed scheme in terms of percentage offloading, average received signal strength,
throughput, spectral efficiency, sum rate and the effectiveness of localization inaccuracy.
Further, we compare the proposed system with a two-tier 5G H-CRAN consisting of either
random or planned picocells and other unsupervised machine-learning-based methods for
UAV-BS best placement. More specifically, the following contributions are provided:

• A novel UAV-aided offloading framework is proposed, in the context of an overloaded
terrestrial 5G network. The offloading procedure can be regarded as a cluster formula-
tion problem that can be dealt with unsupervised machine learning-based methods.
To the best of the authors’ knowledge, this is the first time that the k-medoid algorithm
is utilized in this context.

• A clustering selection scheme is proposed, which is formulated as an optimization
problem to further enhance the offloading procedure under a limited number of
available UAV-BSs.

• The proposed scheme mainly increases the offloading percentage as well as the spectral
efficiency and, at the same time, improves the received signal strength, as compared
to random or planned picocells deployment strategies and the k-means algorithm for
the cluster formulation problem.

• The impact of the increased localization inaccuracy of the UEs on the proposed frame-
work is evaluated. Also, comparisons concerning the performance of the proposed
method with another state-of-the-art unsupervised machine learning method are
illustrated and discussed.

1.3. Structure

The rest of this paper is organized as follows. In Section 2 the considered system
model is described, while the proposed scheme is presented in Section 3. Performance
evaluation results are given in Section 4, followed by conclusions and future directions in
Section 5.

2. System Model

As depicted in Figure 1, a typical 5G two-tier heterogeneous cloud radio access net-
work (H-CRAN) is configured in the event of an exponential increase in data traffic. First,
as it can be observed in Figure 1a, we consider an area of interest W covered by M macro
base stations (MBSs) with their corresponding coordinates B = {b1, b2, ..., bM} ∈ W, where
bi = (xb

i , yb
i ). Due to some frequent events (sports, cultural festivals, etc.), hotspots of

users with exponential demand of data traffic are established within the coverage area
of these MBSs. The total number of users in the region of interest is N with coordinates
U = {u1, u2, ..., uM} ∈W, where ui = (xu

i , yu
i ); therefore, in order to maximize the offload-

ing of the existing network for the duration of the event, it is planned to develop a set of
unmanned aerial vehicle base stations (UAV-BSs) as wireless access points to further assist
the existing terrestrial communications, as depicted in Figure 1b.

From system’s point of view, each MBS and UAV-BS consists of a remote radio head
(RRH), connected to the baseband unit (BBU) pool through optical fiber link and free-
space optical or microwave fronthaul links, respectively [20,21]. Each BBU controls one or
multiple RRHs, under the restriction of the maximum data volume limit that a BBU can
handle. The virtualization of BBUs in a centralized cloud architecture provides increased
flexibility in network upgrades and adaptability to non-uniform traffic. Moreover, direct
communication between BBUs is enabled due to the virtualization of BBUs in a centralized
cloud architecture. All the MBSs are equipped with an antenna with transmitting gain
Gm

t , operating frequency fm and maximum transmit power Pm. Additionally, we assume
that all the UAV-BSs are equipped with an antenna with transmitting gain Gd

t , operating
frequency fd 6= fm, and maximum transmit power Pd. Furthermore, the UEs are equipped
with a single antenna with reception gain denoted as Gr.
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The UEs can be served only from the MBSs or equally from the MBSs and the UAV-BSs.
Before the start of an event, there is not a lot of user traffic, so the demand for services
from the users does not burden the existing terrestrial infrastructure; therefore, all UEs
can be served from the MBSs, as shown in Figure 1a. On the contrary, in the case of an
unexpected event, which increases the mobility in the region of interest and grow user
hotspots, the deployment of UAV-BSs over the existing infrastructure is needed to offload
the traffic of the existing cellular system. In this case, the UEs can be served from the MBSs
or the UAV-BSs, as illustrated in Figure 1b.

Virtual BBU Pool

Fronthaul

Backhaul

Virtual BBU Pool

Fronthaul

Backhaul

(a) (b)

Wired Optical Fronthaul Link

Wireless Optical / Microwave Fronthaul Link

Figure 1. The configuration of the considered 5G two-tier heterogeneous cloud radio access network
(H-CRAN): (a) Operating under normal traffic load and before the placement of UAV-BSs. (b) A
heavily loaded scenario caused by an unexpected event and network offloading via the deployment
of UAV-BSs.

The deployment of the UAV-BSs is controlled by the UAV-BS deployment process
(UDP) executed at the cloud. UDP intelligently integrates the UAV network into the existing
macro network to offload the terrestrial infrastructure and improve the quality of service
(QoS) of the UEs in the temporary hotspots. Due to the unobstructed vantage position of
the UAV-BS over the air, we assume that each UAV-BS maintains its height to ensure line of
sight (LOS) condition with the terrestrial UEs; therefore, the challenge that the UDP scheme
has to face is the optimal placement of the UAV-BSs under the limitation of the available
number of UAV-BSs.

3. UAV-BS Deployment Process (UDP)

The UDP scheme targets to maximize the number of offloaded UEs from the MBSs
to the UAV-BSs and it consists of two subprocesses. The first subprocess is named as
user clustering process (UCP) and partitions the N UEs into K subsets. Through UCP,
the maximum number of required UAV-BSs, as well as their corresponding positions in
the 2D plane, are derived. Subsequently, the second subprocess is called the clustering
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selection process (CSP), which determines the D ≤ K subsets to be offloaded from the M
MBSs into the D available UAV-BSs.

3.1. User Clustering Process (UCP)

The UCP subprocess utilizes the k-medoids machine learning algorithm [19,22].
The aim of the k-medoid method is to partition N UEs into K (1 ≤ K ≤ N) disjoint subsets
S = {S1, S2, ..., SK}, such that the within-cluster squared error is minimized. The total
within-cluster dissimilarity can be expressed as follows:

A =
K

∑
k=1

∑
ui∈Sk∩U

‖ui − µk‖2, (1)

where µk is the candidate medoid of the cluster Sk. The objective function of the k-medoid
algorithm is to minimize (1) across the K clusters and it can be expressed as follows:

min
S

A =
K

∑
k=1

∑
ui∈Sk∩U

‖ui − µk‖2, (2)

The maximum number of the formed clusters K is given by the ceiling function of
K =

⌈
N
C

⌉
, where C represents the maximum number of UEs that a single UAV-BS can

serve simultaneously.
The operation of the UCP subprocess is summarized in Algorithm 1.

Algorithm 1 User Clustering Process (UCP).

1: input: Total number of UEs N, Maximum number of UEs that a single UAV-BS can
serve C, and the set of coordinates of UEs U

2: Convergence tolerance ε = 10−6

3: Calculate the total number of clusters K =
⌈

N
C

⌉
4: Randomly choose initial medoids µ1, . . . , µK ∈ U for the clusters S1, . . . , SK ∈ S
5: for i← 1 to N do
6: Find the closest medoid µc to user ui via the expression: c = arg min

j=1...K

∥∥ui − µj
∥∥

7: Allocate ui to the cluster Sc with medoid µc
8: end for
9: Calculate the total within-cluster dissimilarity using (1) and store it to A[1]

10: repeat
11: A[0] = A[1]

12: for k← 1 to K do
13: for i← 1 to N do
14: Swap the role of µk and ui
15: Allocate each uj ∈ U to the cluster with the closest medoid under this new

configuration
16: Calculate the total within-cluster dissimilarity using (1) and store it to B
17: if B < A[1] then
18: Keep the swap
19: A[1] = B
20: end if
21: end for
22: end for
23: until A[0] − A[1] < ε
24: output: The formed clusters S1, . . . , SK ∈ S along with the corresponding medoids

µ1, . . . , µK ∈ U, where the UAV-BSs should be deployed
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3.2. Clustering Selection Process (CSP)

At this point, the exact K candidate 2D locations for the placement of UAV-BSs have
been identified by the UCP subprocess. The second subprocess of the UDP is called
the cluster selection process (CSP). CSP determines which of the D out of K subsets of
UEs should be offloaded from the macro-cell infrastructure onto the D available UAV-
BSs; therefore, for the best selection of (K

D), the following weighted score (WS) function
is considered:

WSk = ank + (1− a)dk (3)

where dk is the distance between the medoid of cluster k and the nearest macro cell, nk is the
number of users belonging to cluster k, and a (0 ≤ a ≤ 1) is the weighting factor [23]. Since
dk and nk are disparate and in most cases dk is quite larger than nk, their corresponding
values considered for the WS function are normalized using the following expression:

Xnorm =
X− Xmin

Xmax − Xmin
, (4)

where X is a value of the corresponding feature under normalization, Xmax and Xmin are
the maximum and the minimum value of this feature, respectively, and Xnorm ∈ [0, 1] is the
final normalized value [24]; therefore, the final expression of WS function used in CSP is:

WSk
norm = ank

norm + (1− a)dk
norm. (5)

Finally, CSP can be formulated as a maximization problem expressed as follows:

max
Z

K

∑
k=1

zkWSk
norm,

s.t.
K

∑
k=1

zk = 1,

zk ∈ {0, 1}, 1 ≤ k ≤ K,

(6)

where Z = {z1, z2, ..., zK}. Concerning the value of zk, with 1 ≤ k ≤ K, in case a UAV-
BS deployed in the cluster k then zk = 1, otherwise zk = 0. The operation of the CSP
subprocess, which solves the optimization problem (6), is summarized in Algorithm 2.

Algorithm 2 Clustering Selection Process (CSP).

1: input: Available number of UAV-BSs D and the set of formed clusters of users S
2: for each Sk ∈ S do
3: Calculate the weight score WSk

norm of Sk using (5)
4: end for
5: Sort in descending order the elements of set S = {S1, S2, . . . , SK} based on the corre-

sponding weight score WSk
norm of each cluster Sk

6: From the ordered set S, select the first D clusters S1, . . . , SD
7: output: The D clusters S1, . . . , SD, where the available UAV-BSs should be deployed

into the coordinates of the medoids of each cluster to maximize the objective function
of (6)

4. Performance Evaluation

This section presents the simulation results obtained from the UDP process. The com-
puter simulation was performed on a custom-made MATLAB© simulator executed on
a computer consisting of Windows 10 64-bit operating system, Intel Core i7-8700 CPU,
and 8 GB of RAM. For the environment where the whole transmission occurs, we consider
an urban region of interest covered by three MBSs, as described in Section 2. Due to the
start of an unexpected event, it is essential to integrate the available D UAV-BSs into the
existing infrastructure to maximize the offloading of existing MBSs. In this way, we develop
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a dynamic UAV-aided offloading scheme for the duration of the event. Regarding the users’
handover procedure from MBSs to UAV-BSs, it is triggered for the users who receive a
stronger signal from the UAV-BS. As a result, these users are stopped being served by the
MBS and continue to receive their services from the UAV-BS.

The users are placed in the coverage area according to the specifications of 3GPP [25],
creating H hotspots with an average of N/H users in each hotspot. For comparative
purposes, we simulate fixed pico-base stations (PBS) deployments by either placing them
randomly in the region of interest or through planned strategy in the center of each
hotspot [25]. Hereinafter, we refer to these two schemes as picocell deployment process
planned (PDPP) and picocell deployment process randomly (PDPR), respectively. Addition-
ally, performance comparisons are made with another placement technique of UAV-BSs that
utilizes the k-means unsupervised machine learning algorithm [23], from now on referred
to as k-means deployment process (KDP). Also, for PDPP and PDPR we assume that both
LOS and non line of sight (NLOS) channel conditions can exist; therefore, the proposed
3GPP models [25] were used to evaluate the picocell deployment under both LOS and
NLOS conditions. The rest of the selected parameters regarding the H-CRAN network
configured in the event of an exponential increase in data traffic, are listed in Table 1.

Table 1. Simulation parameters.

Parameters Values

Simulated frames 100,000
Number of MBSs M 3
Number of UEs N 150
Number of UAV-BSs/PBSs 1–10
Number of UE hotspots H 1–10
MBS downlink operating frequency fm 2 GHz
UAV-BS downlink operating frequency fd 1.8 GHz
MBS Transmit power Pm 43 dBm
UAV-BS Transmit power Pd 23 dBm
Area of interest W 4.5 km × 4.5 km
MBS Cell Radius RMBS 1.27 km
MBS Path loss model (NLOS) 128.1 + 37.6 log10(r) dB
Path loss model (NLOS) for PBS 145.4 + 37.5 log10(r) dB
Path loss model (LOS) for PBS 38 + 30 log10(r) dB
Path loss model (LOS/NLOS) for UAV-BS Elevation Angle-Based Model [26]
Terrestrial Environment Urban
UE receive antenna gain Gr 0 dBi
MBS transmit antenna gain Gm

t 15 dBi
UAV-BS transmit antenna gain Gd

t 0 dBi
PBS transmit antenna gain Gp

t 0 dBi
Terrestrial Environment Urban
Log-Normal Shadowing 6 dB
Bandwidth Bg with g = {MBS, PBS, UAV-BS} 5 MHz

4.1. Comparative Evaluation of UDP in Terms of Offloading Percentage

In this section, we examine the percentage of the UEs offloaded from the MBSs. More
specifically, comparisons between the proposed and the compared methods are presented
in terms of percentage offload. Furthermore, constraints regarding the maximum number
of UEs that a single UAV-BS or PBS can serve, are considered.

First, we determine the best weighting factor a concerning the UDP method. Figure 2
illustrates the offloading percentage achieved by the UDP, depending on the available
number of UAV-BSs and the weighing factor a. The red line represents the best values
of a, depending on the available number of UAV-BSs, where the offloading percentage is
maximized. More specifically, we observe that for 1 to 5 UAV-BSs, we obtain the maximum
offloading rates for a = 0.5. When the number of UAV-BSs is equal to 6, then the maximum
offloading rate is reached for a = 0.6. Morevoer, when the number of UAV-BS is greater
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than 6, the maximum offloading rates are achieved for a = 0.7. Based on this observation,
we have set these values in our simulations for the UDP method. Regarding the KDP
method, we have considered fixed value of a = 0.5, as in [23]. From Figure 2, we can
easily conclude that as the number of available UAV-BSs increases, it is more important to
consider the number of users in each cluster nk

norm for CSP process instead of the distance
dk

norm from the MBSs (a > 0.5), in order to achieve the maximum possible offloading.

Figure 2. Percentage of UEs offloaded from the MBSs utilizing the UDP method, for different number
of UAV-BSs and weighting factor a.

In Figure 3, the percentage of UEs offloaded from the MBSs for different number of
UAV-BSs/PBSs is presented, utilizing the proposed scheme, as well as the compared ones.
As it can be observed, the UDP process outperforms all the compared methods for all
configurations. Furthermore, when the number of the available UAV-BSs or PBSs is less
than two, the offloading rate for the KDP and PDPP with LOS channel conditions remains
the same. However, when the availability of UAV-BSs/PBSs increases, the methods that
utilize ML techniques for the UAV-BSs placement outperform the traditional PDPP and
PDPR methods, respectively. The maximum percentage of the UEs offloaded from the MBSs
through the PDPP and PDPR is 44% and 3%, respectively. PDPR has quite small offloading
percentage since the placement of PBSs is random, and practically, it can not be ensured
that the formed hotspots of UEs will be covered. In addition, the maximum offloading
percentage achieved by the KDP and UDP methods is 49% and 59%, respectively. Obviously,
due to the operation of the UDP and KDP methods that place the UAV-BSs in actual UE
concentrations, the maximum offloading rate is achieved, subject to the capacity constraints
regarding the maximum number of UEs that each UAV-BS can serve simultaneously.

Concerning the examined techniques that utilize ML methods, from Figure 3, it is
observed that UDP provides significant offloading gains as compared to KDP for all
configurations. This happens due to the use of the k-medoid algorithm for the UDP
method, in contrast to the KDP that utilizes the k-means algorithm to form the candidate
clusters. As opposed to k-means, k-medoid is not deceived from the outliers of the cluster
and thus is more robust to the extreme positions of the UEs in the hotspots. It should be
noted that for 150 UEs and 10 available UAV-BSs, where each UAV-BS can serve 10 UEs
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simultaneously, the maximum offloading that can be achieved is 66.7%. In this case,
the UDP method achieves 59% offloading, which is equal to 88.5% of the maximum possible
offloading percentage. Meanwhile, KDP reaches 73.5% of the maximum possible offloading
percentage, which is 15% below the UDP.
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Figure 3. Percentage of UEs offloaded from the MBSs for different number of UAV-BSs/PBSs.

4.2. Comparative Evaluation of UDP in Terms of the Received Signal Strength (RSS)

In Figure 4, we observe users’ average downlink received signal strength (RSS) before
and after the UDP process. Specifically, the MBS bar refers to users’ average RSS when
they are served from the MBSs with a value equal to −73.5 dBm. Also, with the optimal
placement of 5 UAV-BSs through the UDP process, the average RSS from the UEs increases
to −68.8 dBm, which is an expected value, as the available access points introduced to
the existing network increases. Additionally, both UDP and KDP methods that employ
machine learning algorithms outperform the PDPP and PDPR deployment scenarios under
both LOS and NLOS channel conditions. This happens since the picocells are fixed placed
at expected points of users’ concentration. On the contrary, UAV-BSs are placed in actual
concentration points because they consider users’ locations in real-time, as well as the
on-demand user traffic.

Moreover, UDP outperforms KDP with average received signal strengths of the
UEs, −68.8 dBm and −69.8 dBm, respectively. This is due to the nature of k-means
and k-medoids algorithms. Specifically, k-medoids clustering is more robust to noise and
outliers than k-means and ensures that the UAV-BSs will be adequately positioned, thus
resulting in improved average RSS value of the UEs located inside the formed clusters.
The robustness of UDP compared to KDP is confirmed in Figure 5, which shows the im-
provement of the total average received signal power from the UEs by integrating either
more PBS or UAV-BSs. As the number of base stations increases, regardless of whether it
is PBS or UAV-BS, the quality of the user’s reception improves. This is reasonable as the
integration of more PBSs or UAV-BSs decreases the average distance between the users
and the available base stations. Furthermore, as it can be observed from Figure 5, UDP
outperforms KDP at all configurations.
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Figure 4. Average downlink RSS with 5 UAV-BSs/PBSs.
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Figure 5. Average downlink RSS for all UEs in the region of interest for different number of UAV-
BSs/PBSs.

4.3. Comparative Evaluation of UDP in Terms of System Sum Rate, User Average throughput, and
Spectral Efficiency

In this section, simulation results are presented in terms of system sum rate, user
average throughput, and spectral efficiency. We consider a 5G H-CRAN system operat-
ing under orthogonal frequency division multiplexing (OFDM), based on a standalone
orthogonal multiple access (OMA) scheme [27]. Thus, the available spectrum is equally
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distributed to the users of the system. In Figure 6, comparisons between the proposed and
the compared methods are presented in terms of system sum rate. Before the deployment
of either UAV-BSs or PBSs, MBS downlink sum rate is equal to 122 Mbps. We present the
MBS downlink sum rate as the lower bound for the system sum rate. After the integration
of UAV-BSs / PBSs, we observe that as the number of UAV-BSs / PBSs increases, the system
sum-rate increases significantly. Notable system sum-rate gains can be harvested using
the UDP and KDP methods, as compared to the PDPP and PDPR under both LOS and
NLOS channel conditions, for all configurations. Furthermore, UDP behaves marginally
better than KDP in terms of system sum rate, when the number of UAV-BSs is less than 4.
For more than 4 UAV- BSs, UDP exceeds KDP in terms of system sum rate. The maximum
difference of 28 Mbps between UDP and KDP is presented when the available UAV-BSs
are 10. In this case, UDP achieves system sum-rate equal to 857 Mbps, while the KDP
method achieves 829 Mbps.
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Figure 6. Downlink system sum rate for different number of UAV-BSs/PBSs.

Moreover, as shown in Figure 7, the trend of the average throughput for each UE is
the same as the trend shown for the system sum rate regarding the examined methods.
The average throughput of each UE utilizing only MBSs is equal to 0.8 Mbps, while with
the use of UDP and KDP methods it ranges from 1.3 to 5.7 Mbps and 1.2 to 5.5 Mbps,
respectively. The achievable UE average throughput using the PDPP and PDPRR technique
under LOS conditions is ranging from 1.2 to 5 Mbps and 0.9 to 1.4 Mbps, respectively.

As discussed in Section 4.1, UDP performance is superior to that of KDP in terms of
offloading percentage. This means that the UAV-BSs in the case of the UDP method will
be more loaded as compared to the case where UAV-BSs operate under the KDP method.
Hence, UAV-BSs will distribute the available spectrum to more users in the case of the UDP
method contrary to the KDP method where the available spectrum will be allocated to
fewer users. It is important to note that UDP exceeds KDP in terms of system sum-rate
and average UE throughput, while the KDP method allocates the available bandwidth
to fewer users than the UDP method. This happens because UDP gives a higher average
downlink RSS compared to the KDP, as discussed in Section 4.2. Thereby, UDP is twice as
profitable as KDP, since it significantly increases the offloading percentage of the terrestrial
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network, as compared to KDP and at the same time, provides better sum-rate and average
UE throughput performance than KDP. This can be proved through Figure 8, which shows
the spectral efficiency of the UDP and KDP methods, for different number of UAV-BSs.
It is observed that the UDP method outperforms the KDP method for all configurations.
As explained above, since the average downlink received power provided to users using
the UDP method is much better than in the case of KDP, the utilization of the spectrum is
much higher even for a smaller part of it.
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Figure 7. Average UE throughput for different number of UAV-BSs/PBSs.
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4.4. Comparative Evaluation of UDP under Increased Localization Inaccuracy

The previous results refer to the case where the estimation of user locations in the
region of interest is perfect and there are no localization errors. Moreover, the authors
in [28] state that 95% of localization errors in LTE systems are less than 20 m. Figure 9
illustrates the impact of the localization error of 5 m, 10 m and 20 m to the average received
signal strength of the UEs located in the area of interest for the UDP and KDP methods,
respectively. It is noteworthy that these localization errors can be well-approximated via
a zero-mean normal distribution with standard deviation σ of 0 m, 5 m, and 10 m [23].
In addition, we evaluate the performance of the proposed UDP method against the KDP in
case of an error bigger than 20 m, raising the standard deviation equal to 20, where such a
state can be considered as an extreme case. The results show that there is approximately
1 dBm difference regarding the received signal strength between the UDP best scenario
(no error) and the worst scenario (σ = 20 m). It is noticed that even with a significant error
in user location estimation, UDP development still retains its advantage over the KDP
method. This is due to the fact that the algorithm is not sensitive to extreme outliers, which
most likely occur with the addition of an error greater than 20 m.
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Figure 9. Impact of the increased localization inaccuracy on the achieved average RSS value for the
UDP and KDP scheme, given the deployment of 5 UAV-BSs.

5. Conclusion and Future Directions
5.1. Conclusions

The on-demand deployment of aerial base stations can improve the communication
quality via offloading the terrestrial cellular network in highly loaded scenarios, where
connectivity and service provisioning is threatened. UDP, a UAV-aided offloading scheme
for 5th generation terrestrial cellular networks, utilizing the k-medoid, was presented in
this context. Through UDP, both the offloading percentage of the terrestrial network and
the average received signal strength of the UEs are improved, compared to traditional
offloading strategies utilizing pico base stations, PDPP/ PDPR, and to KDP, which is
also a UAV-aided offloading scheme utilizing k-means ML technique. Moreover, UDP
outperforms the compared methods in terms of system sum rate, user average throughput,
and spectral efficiency. Finally, UDP outperforms the compared methods in terms of the
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received signal strength of UEs in scenarios where localization inaccuracies exist regarding
UEs’ locations.

5.2. Future Directions

There are several interesting directions where UDP can be extended and applied. Con-
sidering an air–ground integrated network developed for emergency scenarios, the UAV-
BSs can be deployed to serve ground users where suffer from communication outages in
the disaster area. Specifically, adopting the UDP scheme in emergency networks scenarios
will facilitate the fast and unsupervised deployment of a UAV-enabled Emergency Cellular
Network (UECN). Furthermore, in scenarios of popular content dissemination to multiple
terrestrial users, a preventive caching approximation can be integrated into the UDP for
effective content transmission. This approach can achieve significant offloading gains to
relieve the existing terrestrial network infrastructure of high-demand-driven data traffic.
Another essential aspect of UDP that should be further investigated is the optimization of
the handover procedure between the UAV-BSs and the terrestrial base stations, especially in
offloading scenarios. In addition to the maximum received signal strength criterion, other
network performance metrics should also be considered, such as user rate requirements,
delay constraints, and load balancing between network nodes. Finally, of potential interest
is the integration of artificial intelligence and reinforcement machine learning methods in
the context of aerial–terrestrial networks, which will allow fully autonomous zero-touch
UAV trajectory schemes to offload traffic on the edges of the terrestrial base stations.
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CSP Clustering Selection Process
GBS Ground Base Station
H-CRAN Heterogeneous Cloud Radio Access Network
IoT Internet of Things
JTO Joint Traffic Offloading
KDP K-means Deployment Process
LOS Line of Sight
LTE Long Term Evolution
MBS Macro Base Station
MmWave-NOMA Millimeter Wave Non Orthogonal Multiple Access
MTs Mobile Terminals
NLOS Non Line of Sight
OFDM Orthogonal Frequency Division Multiplexing
PBS Pico Base Station
PDPP Picocell Deployment Process Planned
PDPR Picocell Deployment Process Randomly
QoS Quality of Service
RRH Remote Radio Head
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RSS Received Signal Strength
SAGIN Space-Air-Ground Integrated Networks
SWIPT Simultaneous Wireless Information and Power Transfer
UAV Unmanned Aerial Vehicle
UAV-BSs UAV Base Stations
UDP UAV-BS Deployment Process
UE User Equipment
UCP User Clustering Proces
WS Weighted Score
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