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Abstract: Making the Internet of Things “green” has become a major research focus in recent years.
The anticipated massive increase in the numbers of sensor and communication devices makes
this endeavor even more important, resulting in various solution approaches ranging from energy
harvesting to energy efficient routing schemes. In this work, we propose a system that can perform
some of the main tasks of the Internet of Things, namely identification and sensing of an indoor
moving object, by the means of visible light sensing in combination with off-the-shelf retroreflective
foils, without the necessity to place any actively powered components on the object itself. By utilizing
the supervised machine learning approach of random forest, we show that these two tasks can be
fulfilled with up to 99.96% accuracy. Based on our previous findings in this regard, we propose
some advancements and improvements of the overall system, yielding better results in parallel
with an increased complexity of the system. Furthermore, we expand the number of performable
tasks toward additional movement direction determination. The achieved results demonstrate the
applicability of visible light sensing and its potentials for a “green” Internet of Things.

Keywords: visible light sensing; retroreflective foils; photonic sensors

1. Introduction

With the inconvenience of a predicted energy demand of 46 TWh caused by Internet of
Things (IoT) devices in 2025 [1], the research activities into methods and solutions to make
these devices more “green”, also referred to as Green IoT, have significantly increased in
the recent years. The proposed methods range from energy harvesting [2] carried out by
the IoT devices to energy-efficient routing schemes in order to allow for longer runtimes of
the utilized batteries and accumulators necessary to operate these devices. Nevertheless,
although such optimizations reduce the amount of energy usage or, in the best case, can
power the device solely by energy harvesting, the problem of e-waste [3] with regard to
the utilized batteries and accumulators, but also with the devices themselves, still remains.
In [4], three main strategies for turning the world of IoT into a “green” one are described.
Namely, the first one, ambient green energy harvesting, is related to the already bespoken
usage of different methods (e.g., mechanical, and piezoelectric) to generate the necessary
energy. The second strategy, green energy wireless charging, describes the approach of
charging the IoT device(s) wirelessly by establishing charging points that solely provide
energy produced by sustainable energy production (e.g., wind energy or solar panels).
When the IoT device(s) are near such a “green” charging point, they can be wirelessly
charged. The third proposed strategy, called green energy balancing, extends the approach
of wireless charging in a way that also the devices themselves can charge each other. This
leads to the opportunity that, for example, a device that receives “green” energy from one
of the charging points can retransmit this energy to devices that are out of the reach of such
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a charging point. The fact that wireless charging suffers from a low charging efficiency is an
important issue in such an approach since, although the energy is produced by sustainable
energy sources, a huge portion of this energy is lost due to the inefficient charging process.

In this work, we propose and demonstrate a different strategy, which, by utilizing
the technology of backscattered visible light sensing (VLS), can perform some of the main
tasks of an IoT, namely the identification and sensing of an indoor moving object in a
passive way. Passive in this regard means that no actively powered components (such as
Wi-Fi transmitters or sensors) need to be placed on the object under investigation. This
relieves the problem of e-waste as well as the anticipated bandwidth limitations of the RF
spectrum [5] as a consequence of the predicted massive increase in communicating IoT
devices in the future. Furthermore, the possibility to perform these tasks by means of VLS,
whilst the parallel operation of the light source for room lighting remains unaffected, can
be seen as another efficiency gain.

In recent years, based on the rapid developments in the fields of light-emitting diodes
(LEDs), photosensitive devices and associated electronic components, a highly active
research field has evolved that utilizes visible light to perform various tasks beyond
illumination. Visible light communication (VLC) [6], also known under the abbreviation Li-
Fi, is probably the most advanced one among these new applications utilizing the lighting
infrastructure. Applications that focus on inferring the position of a user or an object by
means of analyzing the impinging light on a photosensitive device are summarized under
the term of visible light positioning (VLP). VLP systems can be categorized into active
and passive ones [7]. Active means that the user or the object carries a VLP receiver unit,
usually consisting of a photosensitive device (e.g., photodiode (PD)), associated electronic
circuits (e.g., transimpedance amplifiers) and a processing unit. Passive means that the
VLP receiver unit is placed in the infrastructure, e.g., the walls [8], and the floor [9], or it is
integrated into the luminaire itself. Approaches where the receiver is collocated next to the
light source are also called backscattering systems or non-line-of-sight systems [7].

The line-of-sight in this regard is understood as the straight line between the light
source(s) (transmitter) and the photosensitive device(s) (receiver) [7,10]; therefore, non-line-
of-sight systems are considered systems in which the light emitted from the light source is
not received at the photosensitive device without being reflected at least once.

When the application goes beyond positioning, the more general term of visible light
sensing (VLS) is used for the latter arrangement. VLS in its most general specification
refers to a technology that performs various tasks, such as pose detection [11] or ges-
ture recognition [12], by analyzing the intensity and/or the spectral composition of the
impinging light on the photosensitive device. VLS can be broken down into two main
categories: the categories of line-of-sight systems and non-line-of-sight systems [13]. The
term “Backscattered VLS” is also often used for non-line-of-sight scenarios. Identical to the
descriptions given in the field of VLP, also in the literature regarding VLS, the line of sight
is understood as a straight line between the light source(s) and the receiving element(s),
and therefore, in non-line-of-sight systems, the emitted light must be at least reflected (or
backscattered) once in order to reach the receiving element [13]. In this work, we focus on
such a backscattering approach, which again can be divided into two subcategories. These
two subcategories are distinguishable by means of whether the object or the person is
intentionally equipped with purposive materials (codes) to reflect the light with a distinct
intensity and/or spectral composition, or if the object or person remains unmodified (is not
equipped with target-oriented codes). The latter consequently means that the reflections
are solely based on the geometrical shapes and the “natural” compositions of the object or
person’s surfaces themselves. From the viewpoint of comfort, this second subcategory, that
leaves the object or person´s surfaces unmodified, is the more favorable one, but has some
limitations when different objects that have similar shapes and surface compositions have
to be distinguished. Therefore, in our work, we focus on the first of these subcategories in
which we place so-called “markers” on the object. For the realization of these markers, we
chose off-the-shelf retroreflective foils in distinct size configurations, which are cheap and
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easy to handle and apply. Consequently, we can argue that the utilization of these markers
also causes only minimal effort and cost.

This work is an extension and continuation of our previous studies presented in [14,15].
In these studies, we showed that the identification and speed estimation of an indoor
moving object can be performed successfully and accurately by means of visible light
sensing in a backscattering VLS setup by utilizing the bespoken off-the-shelf retroreflective
foils. The main concept of our previous studies and also of this study is that light emitted
from the light source impinges on the retroreflective foils and is consequently reflected
toward the utilized photosensitive device, collocated in close vicinity to the light source,
with no direct line of sight between the light source and the photosensitive device, but
with the implication that there is no obstruction present in the path from the light source
toward the retroreflective foils, as well as in the path from the retroreflective foil toward
the photosensitive element. In [14], we introduced the concept of VLS in combination with
retroreflective foils mounted on a moving object, based on an algorithm that computes
the Euclidean distance between the stored reference curves and current acquired data in
order to perform the tasks of identification and speed estimation. As we describe later in
Section 2, we refer to this also as classification since the class to be determined incorporates
the applied foil in the applied size configuration (identification) and the inferred speed
of the moving object in the respective class name. The moving object is an adapted Lego
platform. Basically, a Lego train moves on tracks under a sender/receiver unit that we call
the VLS unit. Details of the components and the setup are given in Section 2. Although
the algorithm utilized in [14] excelled by its high classification accuracy, it required some
complex calculations and was demanding in terms of the necessary memory requirements.
In order to reduce the computational complexity and memory demand, we investigated
possibilities for the application of machine learning approaches in order to perform the
classification. With the results presented in [15], we were able to show that the supervised
machine learning (ML) approach of random forest fulfills these requirements and can be
used for reducing the computational complexity and memory requirements.

The present manuscript aims on advancing the approach introduced in [15] in order
to improve the already good classification accuracy and to simplify the experimental
setup by overcoming the necessity to place a light barrier for triggering purposes into the
infrastructure (alongside the train tracks). In addition, the movement direction of the train
was limited to one direction in our previous work. Here, we expand the number of tasks to
be performed by adding also the task of movement direction determination. Furthermore,
in the following, we also increase the distance between the VLS unit and the moving object
(train) and investigate the achievable classification accuracy when additional ambient light
is present. Based on the results of this work, we show that backscattered VLS can be an
optimal technology to make battery-powered communication components and sensors on
a moving object obsolete, at least for some certain tasks, thus realizing a “green” approach
for performing identification and sensing tasks.

Since this manuscript is a follow-up work of [14,15], we already discussed and com-
pared our solution to other related works in the field there.

In ref. [10], it is shown how humans can be detected by means of backscattered visible
light sensing, without the necessity of placing markers or distinct materials on the persons.
In the presented non-line-of-sight scenarios, the authors investigated not only the effects of
different clothing materials and colors, but also showed in a so-called pass-by experiment
in a corridor that the task of presence detection can be very well performed by VLS utilizing
only a single photodiode as the receiving element. The threshold-based algorithm utilized
by the authors is a straightforward solution for performing presence detection with highest
accuracy, although different persons performed the experiments. In comparison to this,
in our work, in which we place distinct markers on the moving object, we can realize and
fulfill the more complex tasks of additional identification, speed estimation, and movement
direction determination, while, as described later, by the here-discussed advancements
of our system, we can also perform presence detection implicitly. Nevertheless, ref. [10]
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outlines an interesting future research direction, where the materials and maybe shapes of
objects are used to perform in-depth sensing tasks, without the need of distinct markers.

Ref. [16] presents an approach to combine the technologies of VLC and VLS in parallel.
By utilizing a low frames per second (FPS) camera, the authors show the feasibility of this
combination by using light strobes for sensing and LED on-phases for communication.
Based on simulations of such an environment, they outline a method for strobing light-
based vibration sensing. The work shows that in future, the borders between VLC, VLP
and VLS will deteriorate and that visible light technologies can perform two or more tasks
at the same time without negatively affecting one another.

In another study [17], the current authors also demonstrated how the functionalities
of VLC and VLS can be applied in parallel. Concretely, we successfully demonstrated the
rotation direction determination of a robotic arm by VLS utilizing the same retroreflective
foils of the vendors 3M and Orafol, as in this work. In particular, the suggested, and
experimentally verified, successful VLC-VLS combination based on time multiplexing
between the tasks of VLC and VLS allows to conclude that the combination of VLC and
VLS is possible without any mutual interferences between VLC and VLS.

That the general concept of sensing based on backscattered signals is of high interest
also for technologies using other ranges of the electromagnetic spectrum, e.g., Wi-Fi, is shown
in [18]. In that work, a gesture recognition system is presented, that, based on the channel
state information of the Wi-Fi communication procedure, allows to determine the movement
of a human hand. In the experimental setup of that study, the hand gesture was performed at
a 50 cm to 60 cm distance to a sender–receiver setup, which had a distance of 1 m between the
sender and receiver. In comparison to the results presented in that work, with our approach,
we can handle also more complex tasks over a larger distance. Furthermore, we would like to
argue that in a common setup, Wi-Fi sender and receiver components are not placed in such
close vicinity to each other, whilst our setup follows the common placement of light sources,
which is parallel to the floor with the light being emitted downward. In contrast to [18], we
also verify the applicability of our solution approach in the presence of additional radiation of
the same kind, in our case, ambient light.

This article is divided into the following sections. In Section 2, Materials and Methods,
we firstly describe the motivation of this work, the used materials and the experimental setup,
which largely remained unmodified compared to [15]. In the subsections of Section 2, we
subsequently describe in detail the implemented solution approaches for advancing and
improving the system. In Section 3, the results of the experiments for movement direction
determination as well as for the tasks of identification and sensing the speed are presented
for the scenarios without and with additional ambient room lighting being present. In
Section 4, we discuss the results and outline future research directions. Section 5 finally
summarizes this manuscript.

2. Materials and Methods

As already outlined, this work reports on advancements of the work presented in [15],
dealing with the VLS-based classification of retroreflective foils attached on an indoor moving
object. The structure of this section is as follows. First, we give a problem formulation to
outline the motivation of this work. Then, we describe the “parts” of the solution approach
and experimental setup that remained the same in regard to our previous work in Section 2.2.
Then, in the separate Sections 2.3–2.6, we describe in detail the constraints and limitations
identified in our previous works and the corresponding solution approaches that were
undertaken in this regard for the present study.

2.1. Motivation and Problem Formation

This work follows the clear vision of enabling the fulfillment of tasks, such as identi-
fication and sensing parameters of a moving object solely by backscattered visible light,
without the necessity of placing wireless sensor nodes on the object itself. We were able to
show that the tasks of identification and speed estimation can be achieved in such a way,
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by utilizing retroreflective foils on the moving object, as shown in [14,15]. In the course of
advancing our proposed backscattered VLS approach, we were able to show in [15] that the
highly accurate but computationally demanding algorithm utilized in [14] can be replaced
by the supervised ML method of random forest. Nevertheless, motivated by our vision, we
identified certain issues and limitations in our previous works that need to be addressed in
order to take a step further toward applications in which these tasks, that otherwise would
require battery- or accumulator-powered devices for communication and sensing, can be
achieved in a backscattered “green” way. In this section, we describe the identified problems,
which are then addressed in detail in Sections 2.3–2.6.

As described in Section 1, our backscattered VLS approach is based on a setup in
which the light sources and the photosensitive devices are placed in close vicinity to each
other, thus enabling the integration of these components into a compact module, like a
luminaire. This approach has the advantage that the installation effort can be reduced since
only the existing light source needs to be replaced with a luminaire that integrates also the
photosensitive devices. This advantage was weakened to a certain extent in [15] by the
necessity of an actively powered light barrier alongside the train tracks in the experimental
setup. Overcoming this necessity is the first goal of this work, formulated as follows:

1. No additional active powered components are placed in the infrastructure of the
setup (alongside the tracks).

2. In [15], we restricted the movement direction of the utilized moving object (Lego
train) to be always in the same direction. Therefore, extending the sensing capabilities
to be able to distinguish between two moving directions is the second goal of this
work. Extend the sensing capabilities to determine the moving direction of the train.

3. Although we were able to achieve a classification accuracy of 98.8% in [15], one
shortcoming was that 86.66% of the misclassifications was caused by the two different
red foils out of the, in total, used 8 retroreflective foils. This issue led to the third main
motivation of this work. Improve the classification accuracy, especially in regard to
the utilized red foils.

In combination with the defined goal of improving the classification accuracy, we
can formulate the fourth goal, that this improvement of classification accuracy should be
achieved over a larger distance between the moving object and the VLS unit, whilst not
extensively increasing the energy demand of the system.

4. Increase the distance between the moving object and the VLS unit, whilst improving
the overall classification accuracy.

5. Last but not least, the fifth goal of the work presented in this manuscript is to extend
the application scenario and investigate the achievable classification accuracy in a use
case where additional ambient light, besides the light source on the VLS unit itself, is
present. Investigate the effects of additional ambient light and outline a method to
distinguish between these use cases.

To summarize, the motivation of this work is to extend the sensing tasks to be per-
formed to achieve a higher classification accuracy over a larger distance, without an
extensive increase in energy demand of the system, and to simplify the experimental setup
in order to reduce the installation effort.

2.2. Parameters, Materials and Hardware

Retroreflective foils are nowadays widely used, for example, on traffic signs. These
foils reflect the impinging light back to its source with only minimal scattering. As in our
previous works, we utilized the same off-the-shelf foils from the vendors 3M (production
family 4000 [19]) and Orafol (VC170 family [20]). In the case of the 3M family, we use 5
different colors, whilst for the Orafol one, we applied 3 different colors. Table 1 summarizes
the utilized foils with the respective vendor name, the color and the production code.
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Table 1. Summary of the utilized retroreflective foils.

Vendor Color Production Code

3M Green 4097
3M Blue 4095
3M Yellow 4091
3M White 4090
3M Red 4092

Orafol White VC 170 #015
Orafol Yellow VC 170 #065
Orafol Red VC 170 #012

Light-guiding microstructures are the basis of both types of foils to achieve the retrore-
flective characteristics. In addition, unaltered with respect to our previous work, we placed
these retroreflective foils in different size configurations on the moving object.

The moving object is the same adapted Lego train (60197 Lego City) that is formed
by a black cuboid, which is 22.3 cm in length, 4.7 cm in width and 8 cm in height. The
control block, the motor and the wheels with its connected platform were kept in their
original state. In order to allow for longer runtimes, we changed the power supply to a
rechargeable accumulator with a DC/DC converter.

In the center of the platform, on top of the cuboid, the retroreflective foils were placed in
the same way as in [14,15]. The applied size configurations and the corresponding naming
were not altered. Table 2 summarizes the size configurations and their corresponding names.

Table 2. Summary of the size configurations and the name of the size configurations.

Area 1 0.7 cm × 4.7 cm

Area 2 1.4 cm × 4.7 cm

Area 3 2.1 cm × 4.7 cm

Area 4 2.8 cm × 4.7 cm

In order to be able to directly compare the results of the previous work with the
results discussed later in this manuscript, we also used the same speed levels with their
corresponding names as given in Table 3.

Table 3. Applied speed levels and the average velocities of these speed levels.

Speed 1 ~ 0.68 m/s

Speed 2 ~ 0.81 m/s

Speed 3 ~ 0.94 m/s

Speed 4 ~ 1.06 m/s

The applied speed levels largely coincide with the maximum speed levels of robotic
platforms used in factory settings [21] or healthcare [22], which highlights the applicability
of our work for future applications in regard to moving objects in the context of the IoT.

By utilizing the same foils with the same size configurations and applying the same
speed levels of the train, we can furthermore use the same naming conventions as in our
previous works. To recapitulate, we defined a scenario as a distinct setup of the train in
combination with the applied speed setting. The naming scheme always starts with the
vendor of the respective foils at the beginning, 3M or Orafol. Concerning Orafol foils,
we only use the abbreviation “O”. The vendor is followed by the color of the respective
foil. Then, the size configuration, according to Table 2, is given, which is followed by the
applied speed settings of the train; see Table 3. To explain the applied naming scheme with
an example, we use the scenario that is called “O red Area 4 Speed 4”. This means that the
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red Orafol foil in the size of 2.8 cm × 4.7 cm was placed on the train and that the train was
moving at an average velocity of ~1.06 m/s.

Concerning the utilized hardware, we reused our self-developed VLS unit as described
in [14,15], with the one exception that we changed the light source from a CREE MC-E
white LED to a CREE MC-E RGBW LED [23]. Since the footprint on the PCB for the new
light source is identical to the previously used LED, this adaption was doable without any
major effort. The change of the light source and consequently the change in the spectral
power distribution of the emitted light is one of the main solution approaches in order
to enhance the number of correct classification results of the different retroreflective foils,
especially in regard to the two red foils (3M red and Orafol red), which showed to be the
most problematic ones in our previous work. We discuss this in detail in Section 2.6 in this
manuscript. We supplied each of the dies of the new CREE MC-E RGBW LED separately
with 3.1 V and 150 mA, using a laboratory power supply.

Concerning the sensing device, a Kingbright KPS-5130PD7C [24] RGB sensitive pho-
todiode, the VLS unit remained unaltered. This photodiode has a common cathode and
three anodes, which correspond to the different spectral ranges of red, green and blue. We
hereafter refer to them as the red channel, green channel and blue channel. Each of these
channels is interfaced with a separate transimpedance amplifier (TIA) that converts the
photocurrent of the channel into a voltage signal, which consequently can be easily sam-
pled by an analog-to-digital converter (ADC). Please note that due to the internal buildup
of the photodiode and the TIAs, a lower voltage signal at the TIA output corresponds
to a higher amount of impinging light in the respective spectral range. Consequently, a
voltage value of zero at the output of a TIA correlates to a saturation of the respective
channel of the photodiode. Furthermore, also the utilized reflectors over the LED (Ledil—
CA10928_BOOM) as well as over the photodiode (Ledil—C11347_REGINA) were kept the
same as in our previous works. Additionally, we utilized the same Keysight DSOS404A
Digital Storage Oscilloscope, where each of the outputs of the three TIAs were connected
to a separate channel of the oscilloscope for data acquisition. In order to be comparable
with our previous results, we kept the internal sample rate of the oscilloscope at 5 Ms/s
and performed a resampling step in GNU/Octave to emulate a lower sampling frequency
of 100 kHz. The overall workflow of data acquisition, signal processing, feature generation
and the final classification were done identically to [15]. When the triggering event (see
later in Section 2.3) is initiated, the oscilloscope stores the acquired data 1 s before the
triggering event and 1 s after the triggering event. This results in 10,000,000 samples for
all three color channels, which are stored in a binary file format to form the respective
dataset. In the following, these separate binary files are named as runs. An inbuilt function
of the Keysight oscilloscope was used for the storing of the dataset to a file. These samples
correspond in total to a time period of 2 s. The binary file format was chosen for easy
import into the GNU/Octave program. Following the workflow described in Section 3,
once all the defined files are generated and stored, they are transferred to a standard
laptop for further processing. After import in GNU/Octave, the samples of the three
color channels are immediately resampled, which reduces the data to 200,000 samples per
color channel. After resampling, also the signal processing and feature generation can be
performed in GNU/Octave. Finally, the implemented GNU/Octave script generates a CSV
file storing the respective features. Identical to [15], we subsequently utilized the Orange
Machine Learning Tool developed by the Bioinformatics Lab at the University of Ljubljana,
Slovenia [25], for the generation and testing of the random forest model.

In the following, we discuss in detail the constraints and limitations identified based
on our previous works and describe the solution approach applied to advance our system.

2.3. Advancing the Experimental Setup

The experimental setup in our previous work consisted of the aforementioned VLS
unit, incorporating the LED as the transmitter and the RGB photodiode as the receiver.
The moving object, the Lego train, equipped with the retroreflective foils moves on the
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train tracks that resemble the shape of the number zero with the straight parts of this track
layout, being 115 cm in length. The VLS unit is placed on a metallic bar facing downward
toward the rails over one of the straight parts. The VLS unit is aligned with the tracks in a
way that the LED and PD are over the center width of the rails. Identical to our previous
work, we used the same flooring material under the experimental setup. Figure 1 shows
a sketch of the new experimental setup, with the improvements of an increased distance
between the VLS unit and the rails, which was 68 cm in our previous work, of 1.1 m, and
that no light barrier alongside the track is necessary for triggering purposes, which is
discussed in detail in this subsection. Furthermore, also the movement directions applied
for the later discussed (see Section 2.4) movement direction determination are included in
Figure 1.
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Figure 1. Sketch of the improved experimental setup.

As mentioned earlier, we changed the LED type in our VLS unit to a CREE MC-E
RGBW LED. With this modified experimental setup (different LED type, increased distance)
and with the described applied power supply setting, this now results in an illuminance
of ~500 lux at the surface of the reflective foils on the train. Figure 2 shows the spectral
power distribution of the impinging light on the surface of the train on the base of the
applied LED. The spectral power distribution as well as the lux value were measured with
a handheld MK350S PREMIUM spectrometer.
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In our previous experimental setup, a self-developed, so-called light barrier, consisting
of an infrared LED and an associated infrared sensitive photodiode, was placed alongside
the train tracks in order to trigger the data acquisition when the train moves through the
light barrier. Although this light barrier is a straightforward and simple way to detect the
triggering event, it also bears a certain drawback since additional components have to be
placed in the infrastructure, in this case, alongside the track. In this work, we realized a
solution approach to detect the triggering event without this light barrier, thus overcoming
the issue of additional infrastructural effort.

In order to establish a precise and unique triggering mechanism, we devised the
following approach. The retroreflective foils placed on the train affect certain reflectivity
parameters and, therefore, “cause” very different output values of the three color channels.
Triggering the data acquisition utilizing the reflections of the foils is not a feasible solution
since, for example, the green foil “causes” a precise and detectable peak value in the green
channel, whilst, for example, the red foil does not cause such a peak value in the green
channel. Therefore, according to this example, the triggering event might be detectable in
the green channel for the green foils but not for the red foils. This already demonstrates that
in order to establish a unique and generally applicable triggering mechanism, we have to
use a different approach. Furthermore, the triggering event must not affect the acquisition
of the reflected light of the foils. Following these two requirements for performing a unique
and generally applicable triggering event that does not affect the foil determination, we
devised a solution approach for which we incorporated a specular reflective element on the
train. The most straightforward way to establish such an element is to use a mirror. In this
work, we used a commercially available plastic mirror, consisting of a plastic body covered
with a specular reflective foil, which was cut to the same size configuration as it is defined
for Area 1, 0.7 cm × 4.7 cm (see Table 2). This mirror element, which in the following is
abbreviated as ME, was then placed at one edge of the train platform. Figure 3 shows the
train equipped with the ME and a 3M green foil in the size configuration of Area 4.
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By utilizing the specular reflecting ME, we can anticipate two characteristics, which
will fulfill two requirements. First, since the ME will reflect the complete spectrum of the
impinging light, in contrast to the colored foils, the resulting reflections will be measurable
for all three color channels, and since the reflectivity of a mirror is usually between 80% and
99%, the intensity of the reflected light will also be unique compared to the intensities of
the individual colored foils. Second, as the ME is specular reflecting, we can also anticipate
that only when the ME is close or directly under the VLS unit, the ME will reflect light
back toward the photodiode. This will furthermore result in clear and steep flanks in
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the acquired data of the color channels over a short time interval. Figure 4a,b shows an
exemplary zoomed-in view of the acquired outputs of the three color channels (depicted
with their respective channel colors, y-axis) over time, given as sample numbers (x-axis)
when the train passes under the VLS unit with the speed setting of Speed 3. Please note
that in these figures, the data from the oscilloscope were already resampled, as described
before, to emulate a sampling rate of 100 kHz. For these exemplary measurements, the
shades of the laboratory room in which the setup was assembled were closed, blocking the
sunlight, and also the ambient room lighting was turned off, leaving the LED of the VLS
unit as the only active light source during these experiments. In order to make sure that
there were no reflections from the utilized colored foils, we only placed the ME on the train
(at the position shown in Figure 3). Figure 4a shows the output values for the movement
direction Forward and Figure 4b for the movement direction Backward (see Figure 1).
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From the run of the curves shown in Figure 4, we can clearly observe that our antici-
pations regarding the utilized ME are correct since the expected clear and steep flanks for
all three color channels are clearly deductible. Furthermore, also our second requirement,
that the ME will not interfere with the reflections of the foils, is fulfilled, as we discuss
in the following. As mentioned before, the train was only equipped with the ME and
there were no retroreflective foils placed on the train. When the train is moving in the
Forward direction (see Figure 4a), the course of events is as follows. At the beginning of
the curve shown in Figure 4a, from sample number 0 to around sample number 80,000,
the train is not under or close to the VLS unit; therefore, only the stable reflections from
the surroundings are acquired. At sample number 100,000, the Lego train has entered
the detection area of the VLS unit and the anticipated clear and steep flanks, due to the
ME, can be seen. It is important to point out that, as verified by the measurements and
intended in our solution approach, for a triggering mechanism without the need of placing
the light barrier in the infrastructure, the flanks are present in all of the three color channels.
Thus, we can perform the triggering for the acquisition based on a falling flank detection.
As the train moves along with the given speed, a second clear and steep flank occurs (at
sample number ~102,000), when the ME moves out of the VLS unit. Since in the moving
direction “Forward”, the train platform (black plastic material) reflects most of the light
back to the VLS unit, we can observe a period (sample number 102,000 to around 110,000),
where the impinging light on the RGB photodiode is a mixture of the reflections from the
ME as it almost moved out from the detection area of the VLS unit and the black plastic
material. This is followed by the almost stable reflections from the black material when the
“main body” of the Lego platform is under the VLS unit (see sample numbers 110,000 to
125,000). Please note that no retroreflective foils were placed on the train, but, as we show
later, in this “region”, the reflections from the retroreflective foils are acquired once they
are attached. From sample number 125,000 to 150,000, when the train has moved out of the
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detection area of the VLS unit, we can see an effect caused by the mechanical and materials
related setup of the train. In this “region” two effects take place. First, as the train moves
out of the detection area, the “main body” of the train no longer contributes to the acquired
reflections, and the coupler, which is usually used to connect another wagon to the train,
enters the detection area of the VLS unit. This coupler has a different surface structure than
most parts of the train, where the surface is structured with the known connection knobs
typical for Lego. This is clearly observable with the bare eyes as shown in Figure 5.
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This completely different surface structure leads to the effect that, in comparison to
the “main body” of the train, an increased portion of light is reflected back to the RGB
photodiode. The reason why this coupler now has a bigger impact is the changed spectral
power distribution (see Figure 2). In our previous work, where a white LED was used, the
reflections from this coupler were negligibly low. It is clear that this effect depends on our
chosen experimental setup and the moving object used. In this work, the approach was
chosen such that these reflections are not filtered or mitigated but accepted as an unavoidable
fact. This approach follows the argument that in every possible application of retroreflective
foils in combination with VLS, the form and material of the moving object (for example,
robotic automated vehicles) will have some influence on the reflections but can be, to a certain
extent, accepted as is, as long as these reflections are not overwhelmingly strong.

When comparing Figure 4a,b, we can also see that the ME provides clear and steep
flanks, independent of the moving directions of the train. Additionally, it can be clearly
observed that the acquired outputs of the three color channels are also very similar in
regard to the voltage signals, but that they are basically mirrored in regard to the time-
axis. This is, of course, a consequence of the opposite movement direction, where in the
Backward direction, first the mentioned coupler enters the detection area of the VLS unit,
then the “main body” and then the ME. This symmetry is, in the following, exploited
for the movement direction determination, described in Section 2.4, and for the feature
generation, described in Section 2.5 of this manuscript.

In order to show that, as our second requirement, utilizing the ME does not interfere
with the determination of the retroreflective foils, we want to exemplarily show the acquired
outputs of the three color channels (in their respective colors, y-axis) over time, given as
sample numbers (x-axis) in Figure 6, for the case that the train is additionally equipped
with the retroreflective foils. For this example, we chose the setup as shown in Figure 3,
where the 3M green foil in the size configuration of Area 4 is placed on the train. The speed
of the train was again set to Speed 3, and the movement direction was Forward.
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From Figure 6, we can clearly observe that also our second requirement, that the ME
does not interfere with the reflections from the foils, is fulfilled. Furthermore, we can also
see that the described effects at the front parts of the train (see sample number 100,000 to
around 110,000) are still present. Nevertheless, the effect of the coupler at the end of the
train is not that pronounced anymore since the reflections from the 3M green foil overlap
the reflections from the coupler to a large extent.

To summarize this section, by incorporating a specular reflective element on the train,
which consists of a plastic body covered with a specular reflective foil, we can overcome the
necessity to place an additional light barrier into the infrastructure of the setup (alongside the
tracks). Furthermore, we showed that this ME provides a clear steep triggering signal and
that it does not interfere with the acquisition of the reflections from the retroreflective foils.

2.4. Determination of the Movement Direction

In our previous work, we did not include the determination of the movement direction
of the train into our system; thus the train was always moving in the same direction. In the
here-discussed advanced system, we show that also the movement direction determination
can be realized as an additional task by the means of VLS. As already indicated in Figure 1,
the moving object can now have two moving directions, Forward and Backward.

In order to realize a direction determination procedure of low complexity, we devised
the solution approach to exploit the reflections from the ME in combination with the
given overall train setup. As shown in Figure 4a,b, the acquired reflections from the ME
are unambiguously clearly observable in the acquired output values of the three color
channels. Furthermore, we can also see that the acquired outputs of the color channels are
almost symmetrical. This symmetry is the main starting point for our solution approach.
Depending on the movement direction, we can observe that there is a transition phase for
the example when the train is moving Forward, where first only the reflections from the
environment are acquired, followed by the clear and steep flanks from the ME element and
then the reflections from the main body of the train. As shown in Figure 6, this effect is
also clearly present, independent of the circumstance of whether there is a retroreflective
foil placed on the train or not. When the train is moving Backward, the described sequence
is exactly the other way around, first reflections from the main body, then the ME element
followed by the reflections from the environment, since the train has left the detection area
of the VLS unit.

In order to exploit this fact, we implemented a movement direction determination
process. At first, a self-developed algorithm determines the positions in terms of sample
numbers of the two flanks “caused” by the ME. In the following, we name them Flank 1
and Flank 2. Flank 1 (falling flank) occurs when the ME enters the main detection area of
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the VLS unit and Flank 2 when the ME leaves it. The algorithm is based on building the
difference from one sample (sample number n) to the sample with the sample number n
+ 50. A negative difference yields a falling flank and a positive difference value a rising
flank. From this simple algorithm, we follow that the lowest negative difference indicates
the steepest part of the falling flank, and the highest positive difference value indicates the
steepest part of the rising flank. Once these minimum and maximum values are found, the
corresponding sample numbers are consequently defined as the positions of Flank 1 and
Flank 2. From the positions of these two flanks, we now calculate the mean values of the
red color channel of 10,000 samples before Flank 1 and 10,000 samples after Flank 2. These
two mean values are hereafter referred to as Mean_Flank1 and Mean_Flank2. For a simpler
graphic explanation, please see Figure 7, where we show Flank 1 and Flank 2 (dotted black
lines) as well as the periods for the calculations of Mean_Flank1 and Mean_Flank2 (labeled
greyish areas) for the red channel of the data used for Figure 4a, in a zoomed-in view.
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With the calculated values of Mean_Flank1 and Mean_Flank2, and a simple if state-
ment, the direction can be determined. If the value Mean_Flank1 is larger than Mean_Flank2
(as depicted in Figure 7), the train is moving in the Forward direction. If Mean_Flank2 is
larger than Mean_Flank1, then the movement direction is Backward. This simple method
of determining the movement direction could be applied for all three color channels, but in
order to reduce the computational effort, we only perform the flank determination and the
calculation of Mean_Flank1 and Mean_Flank2 for the red channel.

2.5. Random Forest Model and Feature Generation

Since the results presented in [15] showed that the supervised machine learning approach
of random forest is a good candidate for our application at hand, we also use this method
in the present study. In supervised learning, the common approach is that a set of features,
describing a class, is presented to the algorithm during the training phase. The output of the
training phase is a model that extracts regularities of the features that subsequently can be
used in the online phase to predict the class of an unknown feature set.

Among the manifold of approaches in supervised learning, the random forest al-
gorithm is a popular approach that has been shown to provide stable results with high
accuracy and ease of use. A random forest model is based on the combination of multiple
decision tree classifiers, as the name already suggests. A decision tree classifier can be
explained as a set of hierarchical nested if–else statements, where the if–else statements ap-
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plied to the features represent the branches of a tree and the classification result corresponds
to a leaf on the specific branch. Therefore, in order to reach a classification result with a
decision tree classifier, one can imagine that, based on the given features, the established
decision tree model is passed through from the trunk of the tree until a class (leaf at the
end of a branch) is reached. This class is then represented as the classification result of this
decision tree. Since the random forest approach is based on a multitude of such established
decision trees, the classification result is reached by a majority vote amongst the separate
trees. The class that has the most votes among the trees of the forest is presented as the
final classification result.

In order to generate the random forest model, we have to define the classes to be
determined as well as the features used for describing the class. In this work, we used the
described scenarios as the classes to be determined. Since the scenario (class) incorporates
the vendor of the foil, the color of the foil, the applied size configuration and the speed of
the train, the classification implicitly fulfills the task of identification and speed estimation.

In terms of the classes (scenarios) to be determined, we generated our random forest
model with 128 different classes since we utilized 8 different foils, with each foil in 4
different size configurations at 4 different speeds. In order to exemplify the 16 different
(4 sizes at 4 speeds) classes generated for a single foil, please see Table 4, where, exemplarily,
the 16 classes generated for the Orafol red foil are given.

Table 4. Example of the different classes generated for the Orafol red foil.

Utilized Foil:
Orafol Red

Speed Setting

Speed 1 Speed 2 Speed 3 Speed 4

Size
configuration

Area 1
O red
Area 1

Speed 1

O red
Area 1

Speed 2

O red
Area 1

Speed 3

O red
Area 1

Speed 4

Area 2
O red
Area 2

Speed 1

O red
Area 2

Speed 2

O red
Area 2

Speed 3

O red
Area 2

Speed 4

Area 3
O red
Area 3

Speed 1

O red
Area 3

Speed 2

O red
Area 3

Speed 3

O red
Area 3

Speed 4

Area 4
O red
Area 4

Speed 1

O red
Area 4

Speed 2

O red
Area 4

Speed 3

O red
Area 4

Speed 4

Table 4 shows the generated classes for one foil. Since we utilized 8 foils, this matrix,
given the generated classes, basically can be built 8 times in total, with the difference of the
utilized foils (left upper corner), thus, resulting in the classes of, for example, 3M green
Area 1 Speed 1, 3M green Area 1 Speed 2 and so forth.

As described in the previous Section 2.4, we improved our system in order to also
be able to determine the movement direction of the train, meaning that the train is either
moving Forward or Backward. For the random forest model generation, this leads to the
fact that, when the train is moving Backward, the time period in which the reflections from
the foils are acquired is not equal to that time period in which the train is moving Forward.
In order to resolve this issue, we devised the solution approach to exploit the symmetry
of the acquired reflections (as can be seen by comparing Figure 4a,b). In principle, this
means that when the comparison of Mean_Flank1 and Mean_Flank2 states that the train
was moving Backward, we basically take the data for the feature generation from before
the triggering event. This has to be done because in the Backward moving direction, the
reflections from the foils are acquired before the triggering event, whilst in the Forward
moving direction, the reflections occur after the triggering event. For this, we reuse the
determined positions of Flank 1 and Flank 2. To illustrate this graphically in the case of
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Figure 4a, we use the acquired output values to the right from the position of the rising
flank (Flank 2) along the x-axis, whilst in Figure 4b, we use the data starting from the
falling flank (Flank 1) to the left along the x-axis. In this work, we used 50,000 samples,
corresponding to 500 ms, either starting from the position of Flank 2 onward or for 50,000
samples before the position of Flank 1. Please note that, as described before, the 50,000
samples were selected based on the determined movement direction of the train. To give
an example, let us assume that the position of Flank 1 is determined at sample number
100,000 (out of the total 200,000 samples) and that Flank 2 is determined at sample number
102,000. If the movement determination yields that the train was moving Forward, the
features are created from the data with the sample numbers from 102,000 until 152,000, for
the corresponding color channel. In the case that the movement is determined as Backward,
the samples numbered 50,000 until 100,000 are used for the feature generation. In the
following, we would like to introduce the term of sample number range, which, based
on the movement direction determination, as described, ranges as 50,000 samples before
the position of Flank 1 or 50,000 samples after the position of Flank 2. By applying this
approach, we do not have to incorporate additional features or classes in our random forest
model to deal with the different movement directions. Nevertheless, this approach makes
a correct movement direction determination the decisive factor for the feature generation
process and consequently the achievable classification accuracy. This is based on the fact
that a wrongly determined movement direction would give reason for features created
from a sample number range determined when only the reflections from the environment
are present.

In terms of features, describing a scenario (class), in our previous work [15], we used
the following 9 calculated features: Min_Green, Mean_Green, Min_Index_Green, Min_Red,
Mean_Red, Min_Index_Red, Min_Blue, Mean_Blue and Min_Index_Blue. The features of
Min_Green, Min_Red and Min_Blue for the respective color channels are the respective
minimum values, determined in the sample number range defined by the movement
direction determination. These minimum values are strongly dependent on the used
foils and the size configurations of the foils and, therefore, are a good measure of the foil
(relation of the three color channels to each other) and the size configuration of the foil that
was used (value of the minimum). The second set of features, identical to [15], that we use
in this work are Mean_Green, Mean_Red, and Mean_Blue. These features are formed by
calculating the mean value for every color channel in the defined sample number range.
In contrast to [15], we do not use the features of Min_Index_Green, Min_Index_Red and
Min_Index_Blue in this work. In our previous work, these three features were mainly
responsible for determining the speed level of the train but were also influenced, of course,
by the size configuration of the foil.

In this work, we have the possibility to generate a feature that, independent of the
utilized foil and its size configuration, renders a good measure for the velocity of the
train. This feature is generated once again from the reflections “caused” by the ME. Since
we know the sample numbers of Flank 1 and Flank 2, the difference of these two values
strongly depends on the velocity of the train, since it is obvious that when the train moves
slower, the time period (and consequently, the number of samples) during which the
ME reflects the light back toward the VLS unit is longer than in the case when the train
moves faster. This feature hereafter is called Diff_Flanks, and replaces Min_Index_Green,
Min_Index_Red and Min_Index_Blue. Applied to the aforementioned example, the value
for Diff_Flanks is 2000. In comparison to our previous work, this replacement reduces the
number of features from 9 to 7. Please note, since the flanks are only determined for the
red channel, also the feature Diff_Flanks is solely computed based on the data from the red
color channel. A summary and a brief description of the defined seven features are given
in Table 5.
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Table 5. Summary of the features used in the random forest model generation.

Feature Name Description

Min_Green Minimum value of the green color channel in the defined sample
number range

Min_Red Minimum value of the red color channel in the defined sample
number range

Min_Blue Minimum value of the blue color channel in the defined sample
number range

Mean_Green Calculated mean value for the green channel in the defined sample
number range

Mean_Red Calculated mean value for the red channel in the
defined sample number range

Mean_Blue Calculated mean value for the blue channel in the
defined sample number range

Diff_Flanks Duration (in sample numbers) of the triggering event “caused” by the ME

These 7 features are generated for every run of a scenario and stored in a csv file
including the name of the corresponding scenario of the class. These csv files are then im-
ported into the Orange Machine Learning Tool, where the random forest model generation
and online test are performed.

2.6. Improving the Number of Correct Classification Results

In [15], we were able to show that 98.8% percent of the performed classifications
were correct. Nevertheless, we also observed that scenarios utilizing the 3M red and
Orafol red foils were responsible for 86.66% of the misclassifications, causing a strong
limitation of our classification accuracy. In order to overcome this limitation, we devised
the solution approach to change the spectral power distribution of the light emitted from
the LED by replacing the before-used white CREE MC-E LED by a CREE MC-E RGBW
LED, which provides a much larger spectral contribution in the red spectral range (see
Figure 2). This was done in anticipation of the effect that this increase in the red spectral
range will consequently lead to better distinguishability between 3M red and Orafol red
foils. Besides this simple and easy to perform exchange of the light source, no further
actions were executed in order to improve the classification accuracy.

3. Results

In this section, we present the achieved results concerning the tasks of movement
direction determination and classification accuracy. Please note that a correct classification
of an unknown feature set implicitly goes hand in hand with a correct identification and a
correct speed estimation, as described in Section 2. For the first experiments, the overall
condition were chosen in a way that the LED of the light source was the only active light
source in the laboratory room and that the shades of the windows were completely closed
in order to block any sunlight, identical to the experiments performed in [15].

In order to determine the data for the results generation, the following workflow was
executed after the initial powering up of the VLS unit. As the first step, the chosen foil
(for example, 3M green) is placed on the train at the defined position in the chosen size
configuration (exemplarily shown in Figure 3). Please note that the ME was placed on
the train at the discussed position and remained unchanged throughout all the performed
experiments. Then, in the second step, the train is set to the desired speed setting and
the desired movement direction and the movement along the given tracks is initiated.
As the train moves through the detection area of the VLS unit, the oscilloscope detects
the triggering event from the ME and stores the acquired output values of the VLS unit
with the aforementioned resolution in a binary file. After completing a round, the train
triggers the acquisition of the oscilloscope again, resulting in the next binary file and so
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forth. As explained earlier, each of these binary files is considered as one run. For each
of the chosen foils, size configurations, speed settings and movement directions, 20 runs
were performed. Please note that we also stored the metadata for each run, giving the
“ground truth” necessary for determining the correct classifications of the scenarios and
movement direction determinations. After finishing the 20 runs, we started over with the
first step until all the runs for all the defined combinations of foils, size configurations,
speed settings and movement directions were completed. In total, since we performed
20 runs for each of the 8 different foils in 4 different size configurations, performed in 2
different movement directions, this yielded 5120 binary files that were used for the feature
generation and online testing. Identical to [15], we split the available data in half, resulting
in 2560 binary files used for the model generation and the other half for the online test of
the generated random forest.

The subsequent processing and feature generation steps in GNU/Octave were applied
to all of the binary files, regardless of whether they were later on used for training or for
online testing. After importing the binary file, the data for all the three channels were imme-
diately resampled to emulate the sampling rate of 100 kHz. Then, a moving average over
50 samples was used for data smoothing. In the next step, the positions of the two flanks
“caused” by the ME were determined. Then, the described Mean_Flank1 and Mean_Flank2
values were calculated. Based on these values, the movement direction determination
was performed. Please note that in order to be able to give the later presented numbers of
correct movement direction determinations, we also compared the determined movement
directions to the given movement directions from the metadata associated with the respec-
tive files. Based on the determined directions, the sample number range for the feature
generation was deduced. By adapting the sample number ranges, the resulting features
become independent of the already determined movement directions and consequently are
only labeled by the scenario name as the class. As explained in Section 2.5, we generated
7 features (Min_Green, Min_Red, Min_Blue, Mean_Green, Mean_Red, Mean_Blue and
Diff_Flanks) and labeled these runs of the feature sets with the corresponding scenarios
(e.g., O red Area 4 Speed 4). After performing these steps for all the 5120 binary files, this
gives reason for 20 runs of the 7 features for every scenario for the training and 20 runs for
the online test. As already described, in total, this renders 2560 runs of the feature sets for
training and 2560 runs for testing the classification accuracy.

The runs of the feature set are then stored in two separate csv files, one for the model
generation (training) and one for the test. Basically, the columns of these csv files hold the
features, whilst the rows are the runs. After the import of these csv files in the Orange
Machine Learning tool, the model generation and online test, yielding the classification
accuracy, can be directly performed.

3.1. Movement Direction Determination

First, we would like to present the achieved numbers in terms of correct determinations
of the moving directions. Based on our approach described in Section 2.4, the direction of
the train was determined correctly for all the determinations. This demonstrates that our
solution approach utilizing the ME element in combination with the given reflections from
the train is a robust and straightforward method to fulfill this task. As mentioned earlier,
an incorrect determination of the direction would lead to the consequence that the features
for this particular run of the scenario are unusable since they would be generated based on
wrong underlying data.

3.2. Classification Accuracy—Identification and Speed Estimation Performance

Before the achieved results are presented, the applied parameters for the model
generation of the random forest are summarized in Table 6.
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Table 6. Applied parameters for the random forest generation.

Name of the Parameter Applied Setting

Number of trees to generate 10
Number of attributes considered at each split 7

Do not split subsets smaller than 2

In Table 7, the achieved classification accuracies in terms of total applied test scenarios,
the total amount of correct classifications, the total number of misclassifications and the
percentage of correct classifications are presented.

Table 7. Classification results for the generated random forest.

Total Number of
Test Scenarios

Number of Correct
Classifications

Number of
Misclassifications

Correct
Classifications

2560 2559 1 99.96%

These results show that our solution approach improved the number of correct classi-
fication results as intended. In our previous work, the total number of misclassifications
was 15, whilst in our advanced system, only a single misclassification occurred. Please
note that these 15 misclassifications occurred for only the half number of test scenarios
(1280). Based on this fact, we can argue that our advanced system shows a much higher
robustness in terms of identifying the correct foil in the correct size configuration and the
speed level of the train. Furthermore, we would like to point out that these almost perfect
results were achieved with an experimental setup, where the distance between the moving
object and the VLS unit was increased, the overall impinging light in terms of lux was
decreased and, most importantly, without the necessity to place additional components
(light barrier) alongside the train tracks.

In order to give more insight into the achieved results, we present the analysis of how
distinctly the classification was reached, based on the votes from the 10 separate decision
trees in our random forest. This means that, for example, if out of the 10 classification results,
7 trees rendered the correct classification result, we can conclude that this classification
was achieved with 70% agreement amongst the separate decision tree classifiers and can
be considered as a stable and reliable result. Table 8 shows the tabulation of the 2560
test scenarios subdivided into 3 groups. Every classification that was reached with an
agreement amongst the trees in a range between 100% and 70% is assigned to Group 1.
Group 2 holds the classifications that were achieved with an agreement between 60% and
50%. A classification result that was reached with an agreement below 50% is assigned to
Group 3.

Table 8. Tabulation of the achieved agreement percentages amongst the decision trees in order to reach the final decision.

Group Number of Test Scenarios in This
Group

Number of
Correct Classifications in This Group

Number of
Resulting Wrong Classifications

Group 1
100%–70% 2509 2509 0

Group 2
60%–50% 47 47 0

Group 3
Below 50% 4 3 1

These results show that 98% of the classifications are based on very stable majority
votes amongst the trees. The decisions in Group 2 are still reached by a stable majority,
but already showing some disagreement in the classification process. The test scenarios
assigned to Group 3 must be considered as unstable classification results, since the 3 correct
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classifications (out of the 4 test scenarios in this Group) were only achieved because no other
class got more votes than the correct class. In the case of the occurring misclassification,
where a 3M red Area 1 Speed 3 was misclassified as an O red Area 4 Speed 3, the votes were
allotted in the following way. The correct class of 3M red Area 1 Speed 3 has 2 votes (out of
the 10) and the incorrect class of O red Area 4 Speed 3 received 4 votes. The remaining 4
votes were given to 3M red Area 1 Speed2, 3M red Area 2 Speed4, O red Area 4 Speed2
and O yellow Area 1 Speed2. Each of these 4 classes received 1 vote.

Nevertheless, the fact that the speed estimation still was performed correctly can be
seen as an advantage that is effected by utilizing the ME element and consequently the
newly introduced feature of Diff_Flanks, which gives a good measure for the speed level
of the train, regardless of the utilized retroreflective foils in the scenario.

3.3. Classification Accuracy under the Influence of Ambient Light

In order to evaluate the classification accuracy of our system in the case that additional
ambient light is present, we identically reran the experiments following the described
workflow, including the training and testing. The additional ambient light was introduced
by additionally switching on the installed fluorescent tubes in the utilized laboratory room
(the window shades remained closed). The resulting spectrum, which is a combination of
the spectrum from the LED of the VLS unit and the fluorescent tubes, is shown in Figure 8
(measured with the handheld MK350S PREMIUM spectrometer at the top of the train).
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Figure 8. Spectral power distribution of the light impinging on the surface of the train with the
ambient room lighting turned on.

Comparing the spectral power distribution given in Figure 8 with that of Figure 2, we
can observe that the spectrum has changed quite strongly, caused by the additional light
from the fluorescent tubes.

Table 9 shows the achieved results of our system under the presence of this additional
ambient light.

Table 9. Classification results for the generated random forest.

Total Number of
Test Scenarios

Number of Correct
Classifications

Number of
Misclassifications

Correct
Classifications

2560 2545 15 99.41%

The results in Table 9 outline that the additional ambient light has some negative
effect, but nevertheless still shows a good classification accuracy of 99.41%. In Table 10, a
summary of the occurring misclassifications is presented, where in the left column, the real
(correct) class of the test scenario is given and in the right column, the predicted class of
our generated random forest model is shown.
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Table 10. Summary of the misclassifications.

Correct Class
(Ground Truth) Predicted Class of the Random Forest Model

3M_green Area 1 Speed 1 3M_blue Area 1 Speed 2
3M_green Area 1 Speed 2 3M_green Area 2 Speed 4
3M_green Area 2 Speed 3 3M_blue Area 1 Speed 2
3M_green Area 2 Speed 3 3M_blue Area 1 Speed 2
3M_green Area 2 Speed 3 3M_blue Area 1 Speed 2
3M_green Area 2 Speed 3 3M_blue Area 1 Speed 2
3M_green Area 2 Speed 4 3M_blue Area 1 Speed 4

O_red Area 2 Speed 2 O_red Area 2 Speed 1
O_red Area 2 Speed 2 O_red Area 2 Speed 1
O_red Area 2 Speed 2 O_red Area 2 Speed 1
O_red Area 4 Speed 1 3M_red Area 1 Speed 1

O_yellow Area 1 Speed 1 O_yellow Area 1 Speed 2
O_yellow Area 1 Speed 1 O_yellow Area 1 Speed 2
O_yellow Area 2 Speed 1 3M_green Area 1 Speed 1
O_yellow Area 2 Speed 2 O_yellow Area 1 Speed 1

The 15 misclassifications can be broken down as follows. Of the 15 misclassifications, 7
are related to the 3M green foil in the size configurations of Area 1 and Area 2, which were
misclassified (with one exemption) as 3M blue foils. Furthermore, not only were the foil
and size configurations misclassified, but also the estimated speed setting was wrong. The
next three misclassifications are related to the Orafol red foil in the size of Area 2. In these
three cases, the identification was performed correctly, but the speed estimation failed. The
same error also occurred for two runs of the scenario O yellow Area 1 Speed 1. The last
three misclassifications are related to two Orafol yellow scenarios and one run of Orafol
red, where, again, both the identification and speed estimation failed.

These results show that the effect of the ambient light is twofold. On the one hand, due
to the changed spectrum, the reflections of the green foil in the smallest size configurations
are very similar in terms of the acquired features compared to the 3M blue foil. On the
other hand, the ambient light also deteriorates the uniqueness of the Diff_Flanks feature,
which is based on the clear and steep flanks originating from the ME. Nevertheless, with
an overall classification accuracy of 99.41%, we can argue that our system still renders
high robustness for the identification and speed estimation tasks. Additionally, the task
of determining the movement direction was still performed with 100% correct results.
Possible countermeasures to further improve the classification accuracy also under the
presence of ambient light are discussed in Section 4.

3.4. Determining the Applicable Generated Random Forest Model

In our work, we showed that in both experimental settings (firstly, the LED of the
VLS unit is the only active light source and, secondly, in addition, also the room lighting
is switched on), our general approach to utilize retroreflective foils in combination with
a specular reflecting mirror element yields a high number of correct results. The move-
ment direction was determined with 100% correctness in both settings; for the tasks of
identification and speed estimation, the accuracies were 99.96% and 99.41% in terms of
correct classifications. This raises the question of whether our system can also determine
which generated random forest model has to be applied for the classification: either the
one trained when only the LED was active, or the model trained when additional ambient
light was present. For determining the correct model to be applied, we can reuse the data
from the movement direction determination task (see Section 2.4). Since we can determine
the movement direction of the train with 100% correct results, this gives us the opportunity
to know when no meaningful reflections from the train were acquired. For example, we
know that when the train was moving in the Forward direction, the reflections from the
train occur after Flank 2 (see Figure 7) and consequently, before Flank 1 only reflections of
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the environment are present. For a Backward moving train, this fact, of course, is the other
way round. Therefore, we can calculate a parameter that yields us the presence or absence
of ambient light. To illustrate the validity of this approach, please see Figure 9 that shows a
scatter plot of calculated mean values for the green channel in the two settings, when it is
known that only the reflections from the environment are present. The two settings are
named “only LED” (blue scatter points) and “Ambient” (red scatter points) given on the
y-axis and the calculated mean values, called mean_value_empty, over 100 samples on the
x-axis.
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This scatter plot shows the clear distinguishability of the two settings. This conse-
quently proves that by calculating the mean value during the known absence of the train
can be used to determine whether only the LED was on or if, additionally, the ambient
room lighting also was switched on. As a consequence of this clear distinguishability, we
can also infer, based on this parameter, the applicable model of the random forest and
generally that our system is also able to perform the task of ambient light determination.

4. Discussion

In this study, we present a system that, based on the method of visible light sensing
in combination with retroreflective foils, can perform the task of identification and speed
estimation of a moving object without the need to place any actively powered components
on the object itself. Basically, these tasks are fulfilled by means of acquiring the reflections
caused by the differently colored foils in different size configurations and calculating
features to be used in the supervised machine learning approach of random forest. In this
work, we not only showed an advancement of the classification accuracy, compared to our
previous work, on the base of a solution approach for which the spectral power distribution
of the emitted light of the utilized LED was modified, but also that this advancement can
be achieved for a larger distance between the light source and the object as it was applied in
our previous work. Furthermore, we also expanded the number of the tasks to be fulfilled
by our system by adding the task of determining the movement direction of the object
itself, which was achieved with 100% correct results. Last, but not least, we also showed
that the necessity of placing additional components (light barrier) alongside the tracks, as
it was done in our previous work, can be overcome, which consequently simplifies the
experimental setup. This simplification was achieved by placing an additional specular
reflecting element on the train, which provides a clear trigger and additionally provides
a possibility to reduce the number of features used in the random forest. Finally, we also
expanded the scope of our experimental setup and demonstrated the classification accuracy
under the presence of ambient light.

With the help of a distinctive accentuation of the red spectral range in the spectral
power distribution of the light emitted from the LED by a simple exchange of the LED from
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a white LED to an RGBW LED with the same PCB footprint, we were able to improve the
classification accuracy from 98.8% in our previous work to 99.96% correct classifications
with the same setting (only LED) and 99.41% in the setting when also additional ambient
light is present. It is clear that in real application scenarios, additional ambient light
is inevitable, but as we showed with the results, even in the presence of ambient light
(fluorescent tubes), we can achieve a higher classification accuracy than in our previous
work where no ambient light was present.

As already described, these improvements were achieved for a larger distance between
the light source and the moving object, with an experimental setup that requires lower
effort in its installation and with fewer features used in the random forest. Especially
in regard to the increased distance between the light source and the moving object, we
would like to point out that we did not follow the solution to increase the output power
of the light source in order to generate the same illuminance on the reflective area of the
moving object. In contrast, we were able to show that a better allocation of the emitted
light spectrum improves the classification accuracy, whilst having a lower illuminance of
500 lux, compared to the 690 lux in our previous work.

Nevertheless, as shown, there are some slight deteriorations in correct classifications
when additional ambient light is introduced. First, it has to be pointed out that the applied
ambient light, which is generated by a completely different type of light source (fluorescent
tubes) provides a very challenging environment. The resulting spectrum impinging on the
train consequently deteriorates the difference in the acquired reflections from the foils to a
certain extent. The spikes in the spectrum (see Figure 8), especially in the green and blue
spectral ranges, are therefore responsible for the observed misclassifications because the
utilized RGB photodiode has some overlapping regions with respect to the sensitivity of
the three color channels, especially between the blue and green channels; please see [24] for
further details. In order to resolve this issue, the most straightforward approach would be
to adjust the output spectrum of the utilized LED by a variation of the applied current to the
different dies of the LED to make the reflections from the 3M green foil more distinct again.
In combination with our previous work of [15], we can, based on the achieved results,
deduct some combinations of light sources with retroreflective foils that can be expected to
render good results and combinations that are problematic. As described in [15], when the
light source is a white LED, with only limited accentuation of the red spectral range, all
types of retroreflective foils yield good results, with the exemption of the two utilized red
foils. Therefore, we can follow that when the dominant light spectrum corresponds to a
white LED with low accentuation of the red spectral range, only a single red foil should
be used. In applications for which the spectral power distribution accentuates the red
spectral range (as shown in this work), also the differentiation between different red foils
can be achieved. Finally, from the results shown in this work, when the RGBW LED light
is combined with the light from fluorescent tubes (at least for fluorescent tubes having
spectral power distributions similar to that used in this study), we can deduce the strategy
to either exclude the green foil or the blue foil.

We also noticed that the ambient light has some effect on the reflections from the
utilized mirror element, resulting in a deterioration of the uniqueness of the feature derived
from the ME. Therefore, as a countermeasure, we will in the future investigate differ-
ent geometrical buildups of the ME that better suit the application under ambient light.
Nevertheless, we can argue that the 99.41% correct classifications still demonstrate the
applicability of the present system in the case that ambient light in the utilized laboratory
room is present. The results achieved under the presence of additional ambient light give
reason for two conclusions. On the one hand, the spectral composition of the impinging
light on the foils has an impact on the achievable classification results. Therefore, in an
envisioned application, for example, in a factory, the ambient lighting conditions have to
be taken into consideration and adapted if necessary. On the other hand, our work also
shows that when the spectral composition of the light is known, the utilizable foils can
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be selected properly so that foils that tend to cause misclassifications under the known
lighting conditions can be excluded.

In order to perform the classification without and with ambient light, we generated
two different models of the random forest. We chose this approach to illustrate that the
random forest models can be successfully created and applied, even though the lighting
conditions changed largely. Additionally, we also pointed out how our system can be used
to determine which of the models should be applied preferably, based on performing the
ambient light determination from the data for which it is known that the train does not
cause meaningful reflections toward the VLS unit. In this work, we devised the approach to
train two separate models, one for the setting when only the LED of the VLS unit is on and
the second in case that the LED and the ambient light (fluorescent tubes) of the laboratory
room are switched on. In Section 3.4, we showed that these two settings can be clearly
distinguished from each other and that, consequently, the correct model can be chosen to
perform the classification. This approach is in contrast to our previous work in [17], where
we used the model trained when only the LED was on to perform also the classification
when the ambient light of the fluorescent tubes was present. Whilst for the application
in [17] this approach was applicable, in this work, dealing with a completely different
movement type and a largely increased complexity of the classification (foil, size of foil
and speed of the train), it is not practicable without further advancements. In future work,
we will investigate this issue to devise methods that can mitigate the effect of ambient light
in the calculated features in order to be able to have a single trained model, regardless of
whether ambient light is present or not.

One of the limitations of our approach, utilizing a Lego train moving on given rails,
is that the movement direction is limited to either Forward or Backward. To a certain
extent, this movement on a given path (rails) can be compared to current real-world
applications, where also autonomous mobile platforms in factories or warehouses do
move on given paths, thus limiting the movement possibilities. For enabling also varying
paths through the detection area, we will investigate an extension of our utilized system
to incorporate multiple receivers, in order to overcome the limitations of the number of
movement directions. Still, we would like to point out that in settings such as high rack
warehouses or corridors, the possible movement directions are also quite limited.

In the process of movement direction determination, especially in the algorithm that
determines the positions of the two flanks, we had to define the parameter for building
the difference between the samples. Of course, a lower or higher speed of the train would
lead to the necessity of adjusting this parameter in order to perform the flank position
determination. In this work, we set this parameter to 50 since this value renders good results
for all the applied speed settings. As already described, an increased or decreased speed of
the moving object without the adjustment of this parameter would lead to incorrect flank
determination and consequently to false movement direction determination. The same
issue consequently also rises with respect to the feature generation process. The utilized
speed settings in this work are nevertheless very well comparable to the maximum speeds
of mobile robots used in factory settings or healthcare and therefore, give reason to argue
that the envisioned applications of identification, speed estimation and movement direction
determination of such devices are realizable on the base of the presented approach.

Our utilized hardware, where the light source and the receiving RGB photodiode
are placed in close vicinity to each other, on the one hand, has the big advantage that
this approach allows for integrating the light source and the receiving element into one
compact module. In comparison to systems where the light source and the receiving
elements are separated from each other, we can argue that this approach requires lower
installation effort. On the other hand, this integration of the light source and photosensitive
device in the same module also imposes some requirements regarding the applicable
reflecting materials. In an application where the light source and the receiving element are
placed further away from each other, it is clear that our retroreflective foils and the mirror
element in the current setup (horizontally aligned) are not generally applicable. In such
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applications, it is necessary to investigate geometric models in combination with other
reflecting materials as given in [26], where the authors showed the localization of a toy
car by the means of visible light by placing reflective materials (mirrors or aluminum) in a
certain geometric shape on the toy car. The same is also true for a largely parallel alignment
of the light source and the surface on which the foils are mounted. Still, for the envisioned
application scenarios, robotic platforms used in factory settings or healthcare, it is expected
that such an alignment can be executed and can be largely retained during operation
(robot movement).

Finally, we also want to discuss the possibilities and limitations that are imposed by
the geometrical implications and materials used on the train, as shown in the context of
the coupler of the Lego platform (see Figure 5). In this work, we approved this circum-
stance as it is and did not exploit it or counteract it in any way. On the one hand, such
reflections from the object itself are problematic, especially when they impose a certain
magnitude of reflected light and, therefore, interfere with the reflections from the applied
foils but also impose a certain opportunity on the other hand. In an envisioned applica-
tion where the object itself is made from highly reflecting materials, we can outline the
solution approach that the tasks of identification and sensing are not performed by an
analysis of the reflections, but by analyzing the absence of reflections “caused” by placing
certain non-reflective foils or materials on the moving object. In this case, we do believe
that our shown algorithmic approach by random forest is a good candidate to perform
these classifications.

Therefore, in future applications, a thorough inspection of the influence of such parts
(for example, polished metal parts on the object) will be necessary to prevent an interference
with the determination of the reflective foils. On the other hand, exploiting these reflections
from the material or shape of the object itself would be an interesting research direction in
order to perform different sensing tasks without the use of retroreflective foils.

5. Conclusions

In this work, we were able to show a further improvement of our approach to utilize
visible light sensing for the identification and speed estimation of an indoor moving
object by utilizing cheap and easy-to-apply off-the-shelf retroreflective foils on the object.
Furthermore, by utilizing an additional specular reflecting element on the train, the task of
movement direction determination can be achieved, the necessity of placing a light barrier
into the environment can be resolved, and the number of features used in the applied
random forest model can be decreased. We also showed the applicability of our system
under the presence of ambient light and outlined a simple method for distinguishing
between the settings in which the ambient light was off or on. Therewith, the discussed and
experimentally verified improvements are a step further toward applications in which tasks
that usually require battery- or accumulator-powered devices for communication with
and sensing of an indoor moving object can be performed in a backscattered “green” way,
whilst the obligatory room lighting is provided without any deterioration. Furthermore,
the fact that, as discussed in the introduction, some new developments allow to perform
VLS in parallel with the task of visible light communication opens the possibility to
expand backscattering [27,28] and joint communication and sensing tasks [29], which are
anticipated to be main strategies of the 6G era, to the visible spectral range. Similar to
the hybrid RF/VLC(LiFi) networks [30] discussed nowadays to exploit a broader range of
the electromagnetic spectrum for communication, the currently discussed backscattering
and joint communication and sensing approaches could be fused with their visible light
analogs in the future to exploit the advantages provided by the different ranges of the
electromagnetic spectrum.
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