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Abstract: Unmanned aerial vehicles (UAVs) can play a key role in meeting certain demands of
cellular networks. UAVs can be used not only as user equipment (UE) in cellular networks but also
as mobile base stations (BSs) wherein they can either augment conventional BSs by adapting their
position to serve the changing traffic and connectivity demands or temporarily replace BSs that are
damaged due to natural disasters. The flexibility of UAVs allows them to provide coverage to UEs in
hot-spots, at cell-edges, in coverage holes, or regions with scarce cellular infrastructure. In this work,
we study how UAV locations and other cellular parameters may be optimized in such scenarios
to maximize the spectral efficiency (SE) of the network. We compare the performance of machine
learning (ML) techniques with conventional optimization approaches. We found that, on an average,
a double deep Q learning approach can achieve 93.46% of the optimal median SE and 95.83% of
the optimal mean SE. A simple greedy approach, which tunes the parameters of each BS and UAV
independently, performed very well in all the cases that we tested. These computationally efficient
approaches can be utilized to enhance the network performance in existing cellular networks.

Keywords: artificial intelligence; double deep Q learning; FeICIC; HetNets; LTE-advanced; UAV

1. Introduction

An unmanned aerial vehicle (UAV) heterogeneous network (HetNet) consists of
conventional stationary ground macro base stations (MBSs), supplemented by mobile
UAV base stations (UABSs) and cells on wheels [1]. The agility of UAVs coupled with
their ability to carry radios and communicate wirelessly has led their adoption in various
applications to address network congestion and in public safety communications as a
temporary substitute for damaged communication infrastructure. In the aftermath of
hurricane Maria in 2017, ground base stations were destroyed and AT&T used UAVs to
temporarily restore wireless voice, text, data, and multimedia services [2].

UABSs can complement existing MBSs in a UAV HetNet by providing wireless cover-
age to user equipment (UE) that are near cell borders, coverage holes, or far away from
the MBS as shown in Figure 1. In this scenario, UABS 1 serves UE 5, while UABS 2 serves
UE 6. These are the UEs that are far away from MBS 1, and thus these UABSs extends the
coverage area of the network. On the other hand, though UABSs transmit at a lower power
than MBSs, UABSs may cause interference to MBSs and vice-versa. Thus, the transmit
powers of MBSs and UABSs needs to be adjusted accordingly to ensure sufficient signal to
noise ratio (SINR) for all UEs.

As UABSs are generally powered by battery and have limited computational ca-
pabilities, any network optimization algorithms that are developed need to have low
computational complexity. Additionally, the solutions should also have low time com-
plexity so that the UABS can respond quickly to changes in cellular demand. Taking into
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account these constraints, we attempt to reduce the computational and time complexity of
our proposed algorithms.

In this work, we develop computationally efficient algorithms to maximize the mean
and median spectral efficiency (SE) in a UAV HetNet and evaluate the performance of these
algorithms. This works extends a previous work written by the same authors [3]. In [3], we
optimized the fifth percentile of spectral efficiency (5pSE) in a UAV-HetNet by employing
a greedy algorithm and an artificial intelligence (AI) approach based on deep Q learning
(DQN). In [3], it was observed that an AI approach, somewhat surprisingly, failed to find
the optimum solution and was always out-performed by the greedy approach. In this work,
we present an alternate AI solution, which is based on a double deep Q learning algorithm
(DDQN) and uses a single AI agent to model all MBSs and UABSs in the UAV HetNet.

This single AI agent chooses the values of all relevant network parameters, unlike
in [3], where each macro base station (MBS) and UAV base station (UABS) was modeled as
a separate AI agent. Its performance is evaluated against the optimal exhaustive search
and the computationally efficient sequential algorithm introduced in [3], which optimizes
BS and UAV parameters in a greedy manner. Compared to [3], the performance of the AI
approach is now closer to the optimal. Specifically, the AI algorithm can achieve 93.46% of
the optimal, when maximizing the median SE and 95.83% of the optimal, when maximizing
the mean SE.

UE-1

UE-2

UE-3UE-4
MBS-1

UABS-1

UABS-2

UE-5

UE-6

LTE Cloud

Figure 1. A UAV-assisted HetNet composed of UABSs and an MBS where certain UEs are offloaded
to UABSs to improve the coverage and fairness.

2. Literature Review

Various studies in the literature have explored how UAVs can be used to supplement
cellular networks. Approaches to calculate the best UABS position and trajectory have
been studied in [4–10]. The authors in [4] calculated the best trajectory for a single UABS,
assumed that the MBS and UABS operated at orthogonal frequencies, and thus the effect of
interference was ignored. Greedy and unsupervised learning-based algorithms to position
a fleet of UAVs to maximize aggregate user received power were presented in [5], while a
sequential spiral algorithm was presented in [6].

However, none of these works considered interference between UAVs and BSs. Inter-
ference between UAVs and BSs was taken into account in [7,8]. Interference was minimized
by using a statistical interference map and orthogonal frequency assignment in [7] to
select optimal UAV locations, while multi-antenna beam-forming techniques were used
in [8]. None of the studies leveraged LTE 3GPP Release-10/11 interference management
techniques, nor any machine learning techniques. Machine learning techniques were used
to predict potential network congestion and deploy UAVs accordingly in [10].
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Interference between UAVs and BSs was assumed to be minimized using orthogonal
frequency assignments and beamforming techniques rather than with LTE 3GPP Release-
10/11 techniques. The authors in [11] followed the intuition that UAVs should be placed at
coverage holes to maximize coverage, and used machine learning to locate coverage holes.
A greedy approach to position UAVs was used in [12] to maximize the number of users
covered, while ensuring that the QoS requirements of the users are satisfied.

Game-theory-based approaches were used in [13] The use of a UAV to provide wireless
service to an Internet of Things (IoT) network was studied in [13], wherein IoT nodes
harvest energy from a UAV before transmitting data on the uplink to the UAV. The nodes
form coalitions with one node acting as the coalition head. The optimal trajectory of the
UAV was calculated to maximize the energy available to the IoT coalition heads.

Novel approaches to optimally partition a geographical area into UABS and MBS
cells were proposed in [14,15]. While [14] used optimal transport theory with the aim of
minimizing the transmission delay for all users in the area, ref. [15] used a neural-based
cost function in which user demand patterns are used to assign a cost and density to each
area. Both studies, however, did not tackle interference mitigation challenges explicitly.
Interference mitigation using 3GPP Release-10 enhanced inter-cell interference coordination
techniques (eICIC) and Release-11 further enhanced inter-cell interference coordination
(FeICIC) techniques in HetNets were studied in [16–19]. While [16] jointly optimized the
ICIC parameters, the UE cell association rules, and the spectrum resource sharing between
the macro and pico cells, it did not use 3GPP Release-11 FeICIC or cell range expansion
(CRE) techniques.

Moreover, ref. [16] only studied LTE HetNets and not UAV HetNets. LTE UAV
HetNets were also evaluated in [20], which optimized the allocation of LTE physical
resource blocks in addition to the UAV position in order to maximize coverage. However,
LTE interference management techniques were not utilized. In [17], the authors developed
a stochastic-geometry-based framework to study and compare the effectiveness of 3GPP
FeICIC techniques and eICIC techniques, but [17] also did not study UAV HetNets. The
use of 3GPP Release-10/11 techniques along with UABS mobility in UAV HetNets was
evaluated in [19]. However, this study did not individually optimize the 3GPP ICIC
parameters, but rather applied the same ICIC parameter values to each MBS and UABS,
which is sub-optimal, as we demonstrate. An overview of the existing literature that is
related to our work is presented in Table 1.

To the best of our knowledge, low complexity approaches to optimize 3GPP Release-
10/11 interference management parameters in UAV HetNets have not been studied in
the literature. Our contribution is that we propose a greedy algorithm and a double deep
Q learning-based algorithm, to individually optimize 3GPP Release-10/11 interference
coordination parameters and UABS position in order to maximize the mean and median
SE. We also compare these two computationally efficient algorithms with an optimal but
computationally complex brute force algorithm.

Table 1. Comparison with related works.

Ref. Applicable
to HetNets

UAVs Used
as BSs

3GPP
Interference
Management

Optimization Variables Optimization Goal Optimization
Algorithm(s)

[4] ✓ ✓ ⨉

Bandwidth allocated to
the UAV, user-cell

association, radius of
UAV’s trajectory

Maximize the minimum
throughput across all

users
Bisection search

[5] ✓ ✓ ⨉ Number and position of
UAVs

Minimize the number of
UAVs, and maximize

aggregate user received
power

Greedy approach, a novel
unsupervised learning

approach

[6] ⨉ ✓ ⨉ Number and position of
UAVs

Minimize the number of
UAVs

A sequential algorithm
that places UAVs along a

spiral
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Table 1. Cont.

Ref. Applicable
to HetNets

UAVs Used
as BSs

3GPP
Interference
Management

Optimization Variables Optimization Goal Optimization
Algorithm(s)

[8] ✓ ✓ ⨉ UAV position

Minimize the distance
travelled by each UAV

while maximizing the LoS
MIMO channel capacity

Exhaustive search,
gradient descent

[9] ✓ ✓ ⨉

User-cell associations,
downlink power

allocations and UAV
position

Maximize network sum
rate, subject to a

constraint on received
SINR

Hybrid fixed-point
iteration, particle swarm

optimization

[10] ✓ ✓ ⨉ Location and area served
by each UAV

Minimize total downlink
power

Machine learning
framework based on a

Gaussian mixture model
and weighted expectation

maximization

[14] ✓ ✓ ⨉ Area served by the BS and
the UAV

Minimize mean user
transmission delay Optimal transport theory

[16] ✓ ⨉ ✓
Sub-frame radio resource
sharing among macro BSs

and pico cells, user-cell
association

Maximize weighted
proportional proportional

fair throughput

Dual-based approach to
solve a relaxed NLP
followed by integer

rounding

[17] ✓ ⨉ ✓ 3GPP FeICIC parameters
Maximize aggregate

capacity and proportional
fairness among users

Exhaustive search

[19] ✓ ✓ ✓
3GPP FeICIC parameters.
Parameters not optimized
individually for each BS

and UAV.

Maximize fifth percentile
of spectral efficiency (SE)

Exhaustive search, genetic
algorithm, and elitist

harmony search

[13] ✓ ✓ ⨉

UAV trajectory and uplink
transmission of each

Internet of Things (IoT)
node

Maximize energy
availability of IoT

coalition heads

Exhaustive search for
UAV trajectory and

non-cooperative game
theory-based approach to

calculate uplink
transmission power

[21] ✓ ✓ ⨉

Trajectory of multiple
UAVs, association of
devices to UAVs, and

uplink power

Minimize total uplink
transmit power

Main optimization
problem decomposed into
two sub-problems, which

are solved iteratively
together

[20] ✓ ✓ ⨉
UAV position and

allocation of LTE physical
resource blocks

Maximize number of
users covered, while
satisfying their delay

requirements

A heuristic-based
approach, which achieves
near-optimal performance

[12] ✓ ✓ ⨉ UAV position

Maximize number of
users covered, while
satisfying their QoS

requirements

Greedy approach

[11] ✓ ✓ ⨉ UAV position Maximize number of
users covered

Reinforcement learning
used to discover network

coverage holes, where
UAVs are then positioned

This
work ✓ ✓ ✓

3GPP FeICIC parameters.
Parameters optimized

individually for each BS
and UAV.

Mean and median SE
Double deep Q learning,

greedy approach,
exhaustive search

3. System Model

We consider a HetNet with MBSs and UABSs operation in two tiers, within a sim-
ulation area of l × l square meters as shown in Figure 2. MBSs and UEs are randomly
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distributed in this area, according to a Poisson point process with the intensities λmbs and
λue, respectively. The number of MBSs and UEs in the simulation can be calculated as
Nmbs = λmbs × l2 and Nue = λue × l2, respectively. The 3D locations of all the MBSs, UABSs,
and UEs are represented by the matrices Xmbs ∈ RNmbs×3, Xuabs ∈ RNuabs×3, and Xue ∈ RNue×3,
respectively. The transmission power of each MBSs is Pmbs, while that of UABSs is Puabs.
Given the antenna gains of MBS and UABS as K and K′, respectively, the effective MBS and
UABS transmission power is calculated as P′mbs = KPmbs and P′uabs = K′Puabs, respectively.

UE 2

MBS 2

MBS 1

UABS 1

UABS 2

UE 6

UE 4Duty cycle of MBS-i

Power reduction factor of MBS-i

Cell range expansion of UABS-i

UE 3UE 1

UE 5

Figure 2. Illustration of a UAV HetNet where the ICIC parameters of all MBSs and UABSs, and the
locations of UABSs are optimized individually. This approach is in contrast to some existing work,
such as [22], which, while optimizing locations for each UABS individually, assigns the same ICIC
parameters to all UABSs and MBSs, Reprinted with permission from Ref. [3]. Copyright 2018 IEEE.

We assume that the UABSs and MBSs exchange information over the X2 interfaces.
We also consider that the downlink bandwidth available to an MBS or a UABS is shared
equally among their served UEs. We assume that downlink data is always available for
any UE—i.e., the downlink UE traffic buffers are always full. For an arbitrary UE n, where
n ∈ {1, 2, . . . , Nue}, we define the macro-cell of interest (MOI) as the nearest MBS, and the
UAV-cell of interest (UOI) as the nearest UABS.

For example, in the specific scenario shown in Figure 2, MBS 1 is the MOI for UEs 1
and 2, MBS 2 is the MOI for UEs 5 and 6, UABS 1 is the UOI of UE 2, and UABS 2 is the
UOI of UE 3. We denote the reference symbol received power (RSRP) of the nth UE from
the MOI and the UOI as Smbs(dmn) and Suabs(dun), respectively, where dmn is the distance
from the nearest MOI, and dun is the distance from the nearest UOI for the nth UE. We use
the Okumura Hata suburban propagation model without any Rayleigh or Rician fading.

An arbitrary UE n is always assumed to connect to the nearest MBS or UABS, where
n ∈ 1, 2, . . . , Nue. Then, for the nth UE, the reference symbol received power (RSRP) from
the macro-cell of interest (MOI) and the UAV-cell of interest (UOI) are given by

Smbs(dmn) =
P′mbs

10ϕ/10
, Suabs(dun) =

P′uabs

10ϕ′/10
, (1)

where ϕ is the path-loss observed from MBS in dB, ϕ′ is the path-loss observed from
UABS in dB, dmn is the distance from the nearest MOI, and dun is the distance from the
nearest UOI.
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The Okumura Hata path loss is a function of the carrier frequency, distance between
the UE, serving cell, base station height, and UE antenna height. The path-loss (in dB)
observed by the nth UE from MOI and UOI is given by:

ϕ = A + Blog(dmn)+C, (2)

ϕ′ = A + Blog(dun)+C, (3)

where the distances dmn and dun are in km, and the factors A, B, and C depend on the
carrier frequency and antenna height. In a suburban environment, the factors A, B, and C
are given by

A = 69.55+ 26.16log( fc)− 13.82log(hbs)− a(hue), (4)

B = 44.9− 6.55log(hbs), (5)

C = −2log( fc/28)2 − 5.4, (6)

where fc is the carrier frequency in MHz, hbs is the height of the base station in meters, and
a(hue) is the correction factor for the UE antenna height hue in meters, which is defined as

a(hue) = 1.1log( fc)− 0.7hue − 1.56log( fc)− 0.8 . (7)

3.1. SE with 3GPP Release-10/11 ICIC Techniques

In a HetNet, the MBSs transmit at higher powers and have higher ranges compared to
the lower power UABSs. Nevertheless, the UABSs can extend their coverage and associate
a larger number of UEs by using the cell range expansion (CRE) technique defined in 3GPP
Release-8. The CRE of a UABS is defined as the factor by which UEs are biased to associate
with that UABS. For example, in Figure 2, UABS 1 uses a CRE of 15 dB to force UE 4 to
associate with itself. The use of CRE, however, results in increased interference to those
UEs in the extended cell regions.

This interference from MBSs to UEs near the edge of range-extended UABS cells can be
mitigated using time-domain-based ICIC techniques defined in 3GPP Release-10/11. These
techniques require the MBS to transmit with reduced power during specific subframes on
the physical downlink shared channel (PDSCH). Radio subframes with reduced power are
termed coordinated subframes (CSF), and those with full power are termed uncoordinated
subframes (USF).

We denote this power reduction factor by α where 0 ≤ α ≤ 1. We note that α = 1 implies
no ICIC, while eICIC techniques use α = 0, and FeICIC techniques allow α to vary between
0 and 1. We use β to denote the USF duty cycle, and hence, the CSF duty cycle is given
by (1− β). Figure 3 shows, for the scenario depicted in Figure 2, how MBS 1 and MBS 2
use power reduction factors, α1 and α2 respectively, to reduce interference to UE 3. We
note that α1 < α2, as MBS 2, being farther away from UE 3, can transmit at a higher power
without degrading the performance of UE 3.

Individual MBSs or UABSs can schedule their UEs in USF or CSF based on the
scheduling thresholds ρ and ρ′, respectively. Then, a UE may be served either by an MOI
or UOI and by the CSF or USF resources of the MOI/UOI, resulting in four different
association categories. Let Γ denote the signal to interference ratio (SIR) at the MOI-USF, Γ′
denotes the SIR at the UOI-USF, and τ denotes the CRE that positively biases the UABS
SIR to expand its coverage. Then, the four different resource categories where a UE may be
scheduled can be summarized as follows. If Γ > τΓ′, we associate the UE with the MOI;
otherwise, we schedule it with the UOI.
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MBS 1

UE-2 UE-2 UE-2 UE-2 UE-2 UE-2 UE-2

UABS 1 

UE-3 UE-3 UE-3 UE-3 UE-3 UE-3 UE-3 UE-3 UE-3 UE-3

UE-1 UE-1
SF-5 SF-6

MBS 2

UE-5 UE-5 UE-5 UE-5 UE-5 UE-5 UE-5UE-6 UE-6

USF USFCSF

USF

Text

UABS 2 

UE-4 UE-4 UE-4 UE-4 UE-4 UE-4 UE-4 UE-4 UE-4 UE-4

UE-5

UE-2

Figure 3. 3GPP Release-11 FeICIC with reduced power, almost blank subframes, and different power
reduction factors for each MBS for the scenario in Figure 2.

The intuition behind this condition is straightforward: associate the UE with the
nearest base station that gives the best SIR, taking into account the CRE. On the other hand,
if Γ > ρ or Γ′ ≤ ρ′ , we schedule the UE in CSF, and otherwise in USF. This condition is
based on the following intuition: scheduling a UE in the CSF of an MOI degrades that
UE’s SIR, whereas scheduling a UE in the CSF of a UOI improves that UE’s SIR. Thus,
the “stronger” UEs that have sufficiently high SIRs and are close to the MBS should be
scheduled in the CSFs of that MBS, as these “stronger” UEs can take the performance hit.
Similarly, the “weaker” UEs that have low SIRs and are close to the cell edge of a UABS
should be scheduled in the CSF of that UABS, as they need to be protected as a priority.

Using this framework of eICIC and FeICIC and following an approach similar to
that of [17,22] for a HetNet, the SIR (Γ, Γcsf, Γ′, Γ′csf) and the SE (Cmbs

usf , Cmbs
csf , Cuabs

usf , Cuabs
csf )

experienced by an arbitrary UE n can be defined for four different scenarios as follows:

(1) UE associated with MOI and scheduled in USF:

Γ = Smbs(dmn)
Suabs(dun)+ Z

Cmbs
usf =

βlog2(1+ Γ)
Nmbs

usf

. (8)

(2) UE associated with MOI and scheduled in CSF:

Γcsf =
αSmbs(dmn)

Suabs(dun)+ Z
Cmbs

csf =
(1− β)log2(1+ Γcsf)

Nmbs
csf

. (9)

(3) UE associated with UOI and scheduled in USF:

Γ′ = Suabs(dun)
Smbs(dmn)+ Z′ Cuabs

usf =
βlog2(1+ Γ′)

Nuabs
usf

. (10)

(4) UE camped on UOI and scheduled in CSF:

Γ′csf =
Suabs(dun)

αSmbs(dmn)+ Z′ Cuabs
csf =

(1− β)log2(1+ Γ′csf)
Nuabs

csf

. (11)
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In (8)–(11), Z and Z′ are, respectively, the interference at a UE from all the MBSs
and the UABSs except the UOI and except the MOI. They have the same meaning but
different values.

3.2. Performance Metrics

The objective of our study is to design algorithms to calculate the best FeICIC and
eICIC parameters individually for all MBSs and UABSs as well as the positions of the
UABSs to, thus, maximize our performance metric. We evaluate two performance metrics:
the mean SE and median SE. The algorithm should find the best state, S′, out of all possible
states S such that:

S′ = arg C
SmaxSE

(S), (12)

where C(.) denotes the function that calculates the mean or median SE over the whole
network area for a given state S = [Xuabs, SICIC

mbs , SICIC
uabs]. First, we calculate the SE for each UE

as per Equations (1)–(4). As defined previously, Xuabs is the matrix representing the location
of the Nuabs UABSs in three dimensions, SICIC

mbs = [α, β, ρ] ∈ RNmbs×2 is a matrix that captures
individual ICIC parameters for each MBS, and SICIC

uabs = [τ, ρ′] ∈ RNuabs×2 is a matrix that
captures the individual ICIC parameters for each UABS. The vectors α = [α1, . . . , αNmbs]

T

and ρ = [ρ1, . . . , ρNmbs]
T capture the power reduction factors and scheduling thresholds,

respectively, of each MBS. On the other hand, for each UABS, τ = [τ1, . . . , τNuabs]
T and

ρ′ = [ρ′1, . . . , ρ′Nuabs
]T denote the CRE and scheduling threshold, respectively.

3.3. Parameter Optimization

The SE is a function of α, β, τ, ρ, ρ′, and Xuabs, which are our optimization space.
Either these parameters can be optimized for individual MBSs and UABSs, or the same
value of each parameter can be used for all MBS and UABS, which is sub-optimal but
computationally less complex.

To show that optimizing the above parameters individually for each MBS and UABS
gives a better performance than optimizing the ICIC parameters jointly, we consider the
hypothetical situation depicted in Figure 2. Here, UE 3 is the critical UE to be protected
from interference. Intuitively, as MBS 1 is closer to UE 3 compared to MBS 2, it is desirable
for MBS 1 to transmit at a lower power during CSFs. Mathematically, α1 = 0.4 < α2 = 0.8.
As UE 4, which is served by UABS 2, is farther away from all the MBSs, UABS 2 does not
have to use a large CRE to encourage UE 4 to associate with itself. In contrast, UABS 1
would have to use a larger CRE to encourage UE 3 to associate with itself. Mathematically,
τ1 = 15 dB > τ2 = 0 dB. Therefore, optimizing the parameters individually for each MBS and
UABS gives better performance.

The large size of the search space can be appreciated by referring to Tables 2 and 3,
which list the range and size of the parameters to be optimized. In this table, the parameters
∆α, ∆β, , ∆ρ, ∆ρ′ , ∆x, and ∆y denote the step sizes for α, β, ρ, ρ′, x coordinate of a UABS’s
location, and y coordinate of a UABS’s location, respectively, while ρlow and ρ′low denote
the lower bounds for ρ and ρ′, respectively. Similarly, ρhigh and ρ′high denote the upper
bounds for ρ and ρ′, respectively. The actual size of the parameter space is depicted in
Figure 4, which shows the number of possible states in S, over which the individual or
joint optimization algorithms have to search, in order to find the best state, S′.

Figure 4 shows that, as the geographical area and correspondingly the number of
MBSs and UABSs increase, the size of the search space increases much more rapidly for
individual optimization than for joint optimization. This behavior can be understood by
calculating the number of possible permutations of α for two MBSs considered by joint and
individual optimization approaches, assuming that α can take four different values from 0
to 1.
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While the joint optimization approach will only compare the SE metric at these four
values of α, the individual optimization approach will need to compare the SE metric for
42 = 16 different permutations of α values of the two MBSs. In this way, the parameter
search size for joint optimization is agnostic to the number of MBSs or UABSs in the
simulation area. The parameter search space of individual optimization, on the other hand,
increases exponentially with number of MBSs and UABSs. We also observe that, for the
individual optimization approach, the size of the state space exceeds a googol (10100) of
states as the simulation area increases beyond 15 km2.

Table 2. UABS parameters and search space.

Parameter Range Search Space Size

UABS scheduling threshold
(ρ′)

ρ′low, ρ′low +∆′
ρ, ρ′low + 2∆ρ′ . . . ρ′high

(ρ′high−ρ′low)
(∆′ρ)

Cell range expansion (τ) 0, ∆τ , 2∆τ , . . . τhigh
τhigh
∆τ

X coordinate of UABS −l/2,−l/2+∆x, −l/2+ 2∆x, . . . l/2 l
∆x

Y coordinate of UABS −l/2,−l/2+∆y, −l/2+ 2∆y, . . . l/2 l
∆y

Table 3. MBS parameters and search space.

Parameter Range Search Space Size

MBS power reduction factor
(α)

0, ∆α, 2∆α, . . . 1 1/∆α + 1

MBS duty cycle (β) 0, ∆β, 2∆β, . . . 1 1/∆β + 1

MBS scheduling threshold ρ ρlow, ρlow +∆ρ, ρlow + 2∆ρ . . . ρhigh
(ρhigh−ρlow)
(∆ρ)
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Figure 4. Increase in the parameter search space size as a function of the total simulation area.

4. UAV Location and Interference Management

We considered and compared the performance of three algorithms for FeICICs—a
brute force algorithm, a greedy algorithm, and a DDQN learning algorithm. In this section,
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we present the brute force and greedy algorithms, while Section IV presents the DDQN
learning algorithm.

4.1. Brute Force Algorithm

The brute force algorithm investigates the entire search state space of all possible
values of UABS locations and individual eICIC and FeICIC parameters and returns the state
with the best mean or median SE. This is illustrated in Algorithm 1. Since it individually
searches for all possible parameter values, it is computationally infeasible for large areas
and large number of MBSs and UABSs.

Algorithm 1 Brute force algorithm.

1: Best state, S′ ← NULL
2: bestSE ← −1
3: for all State S do
4: currentSE ← C(S)
5: if currentSE > bestSE then
6: bestSE ← currentSE
7: S′ ← S
8: end if
9: end for

4.2. Greedy Algorithm

In order to reduce the time complexity, we utilized a heuristic algorithm that initially
assumes that there is only one UABS in the system and finds the best location, eICIC,
and FeICIC parameters for this UABS. It then considers that there are two UABSs in the
system, with the parameters of the first UABS set to those found earlier, and finds the
best parameters for this second UABS. Similarly, it then finds the best parameters for the
third UABS considering the first two UABSs to be at their earlier determined states. The
algorithm continues this procedure for the given number of UABSs.

A similar approach is used to optimize the parameters of MBSs. This algorithm is
summarized in Algorithm 2. As we will see in the simulation results, this algorithm,
somewhat surprisingly, performs close to the brute force search, and outperforms the
DDQN algorithm, to be discussed in the next section. A main reason for this is that the
large number of parameters in Table 1 allows to compensate for a non ideal selection of
parameters in earlier stages, e.g., by tuning the scheduling thresholds and CRE, non-ideal
location of a UABS can still result in good SE.

Algorithm 2 Greedy algorithm.

1: for all UABS do
2: Assume all previous UABS to be positioned at their best location and operating at

their best ICIC parameters.
3: Find best location and FeICIC parameters for current UABS.
4: end for
5: for all MBS do
6: Assume all previous MBS to be operating at their best ICIC parameters.
7: Find best ICIC parameters for current MBS.
8: end for

5. Machine Learning Approach for UAV ICIC and Placement
5.1. Q Learning

The Q learning algorithm is one of the commonly used reinforcement learning (RL)
algorithms [23]. In reinforcement learning, an agent interacts with an environment by
taking actions in different states and observing the costs or rewards of the actions. The
agent starts out with random actions and. eventually, by observing the rewards and by
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exploring different states, it learns the best action to take in each state in order to optimize
the cumulative reward. Figure 5 shows the interaction of the MBS and the UABS agent
with the UAV HetNet environment considered in this paper.

Since RL and deep-learning techniques are relevant and are known to be effective in
solving problems with large search spaces, it is instructive to investigate their performance
in solving our UAV HetNet optimization problem. Q learning allows the agents to act and
learn as follows: being in a state s after selecting action a, and receiving the immediate cost
c, a UABS or MBS agent n updates its knowledge Qn(s, a) for the particular state-action
pair through the following operation:

Qn(s, a)← (1− η)Qn(s, a)+ η[cn + λ min
a

Qn(s′, a)], (13)

where η, the learning rate, is the agent’s willingness to learn from the UAV HetNet envi-
ronment, λ is the discount factor, and s′ is the next state. Lower values of λ give more
importance to immediate rewards. We note that, conventionally, α, rather than η, is used
to denote the agent’s learning rate. We use η, as, in our work, we have already used α to
denote the ICIC power reduction factor. After the Q learning agent has been trained, and
when it is being evaluated, the exploration–exploitation factor, ε, determines the probability
of the agent choosing a random action at a given state, (i.e., the agent explores), rather than
choosing the optimal action, as learned by it (i.e., the agent exploits).

DDQN Agent: 
Representing all 

UABSs and MBSs

Environment: 
UAV HetNet

Action: 

 Next State:

Reward: 
Mean or Median SE

MBS parameters UABS parameters 

Figure 5. Interaction of the MBS or the UABS agent with the UAV HetNet environment for Q-learning.

The state space is a sufficient representation of the environment at a point in time,
containing all the information required by the agent to choose its next action. In our case,
the state space is the set:

[Xue, Xmbs, Xuabs, SICIC
mbs , SICIC

uabs], (14)

which captures the value of each ICIC parameter for each UABS and MBS, and also the
location of each MBS, UABS and UE. The action space is the union of the possible actions
for UABSs and MBSs in the system. At each state, along with its position, a UABS may
choose any value for its ICIC parameters, τ and ρ′. An MBS, similarly, may choose any
value for its ICIC parameters, α, β and ρ.

Specifically, an MBS’s action space is the following set:

{α, β, ρ} ∣ α ∈ {0, ∆α, 2∆α, . . . 1},

β ∈ {0, ∆β, 2∆β, . . . 1},

ρ ∈ {ρlow, ρlow +∆ρ, . . . , ρhigh}, (15)
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and a UABS’s action space is the set:

{τ, ρ′, δx, δy} ∣ τ ∈ {0, ∆τ , . . . τhigh +∆τ , τhigh},

ρ′ ∈ {ρ′low, ρ′low +∆ρ′ , . . . ρ′high},

xuabs ∈ {−l/2,−l/2+∆x,−l/2+ 2∆x, . . . l/2},

yuabs ∈ {−l/2,−l/2+∆x,−l/2+ 2∆x, . . . l/2}, (16)

where xuabs and yuabs represent the X and Y coordinate, respectively, of the UABS, as a
result of the action. Our chosen reward function is the median or mean SE.

As conventional Q learning algorithms maintain a Q table, with states as rows and
actions as columns and with each cell representing the Q value of a specific action in a
specific state, they cannot handle infinite state spaces, as the size of the Q table would
become infinite. The Q table would take an extremely long duration to converge. Conven-
tional Q learning suffers from issues of memory complexity, computational complexity, and
sample complexity [24]. As illustrated in Figure 4, the parameter space for our scenario can
become extremely large, and therefore a conventional Q learning approach is not feasible.
Deep learning, relying on the powerful functional approximation and representational
learning properties of deep neural networks, provides us with the tools for overcoming
these problems [25].

5.2. Deep Q Learning

DQN, hailed as the first step towards general AI—an AI that can survive in a variety
of environments, came to the forefront of machine learning when it was used by DeepMind
and Google to train an agent to achieve professional level scores on 49 different Atari 2600
games [26]. DQN extends Q learning by using a neural network to model the Q function,
instead of using the simple Q table. One approach is to design the network to accept
the state and action as the inputs and provide the corresponding Q value as the output.
Another approach is for the network to accept the current state as the input and provide
the Q value of each possible action as the output.

The latter approach, used in [26], is found to be better as only a single forward pass
through the network is needed when we want to do a Q value update or pick the action
with the highest Q value [27]. This is the architecture that we use as well. This neural
network can handle infinite state spaces and also recognize common patterns between
similar states. Another advantage of deep Q learning is experience replay—the neural
network is retrained after each action step, enabling the agent to adapt to changes in the
environment. Thus, the deep Q learning agent can learn from its experience continuously.

5.3. Double Deep Q Learning (DDQN)

In our simulations, we use the double DQN (DDQN) [28] architecture, which leads
to better policy evaluation in the presence of many similar-valued actions and reduces
over-estimation in action values compared to DQN. The DDQN approach decouples the
selection of an action from the evaluation of an action. The Q-learning equation in (13) is
then modified as:

Qn(s, a)← (1− η)Qn(s, a)+ η[cn + λQ′
n(s′, min

a
Qn(s′, a))] , (17)

where Q′
n is the evaluation network that is used to evaluate the policy, while Q′

n is the
online network that is used to select the optimal actions. All MBSs and UABSs in the
UAV HetNet are modeled by a single AI agent, which chooses the values of all relevant
network parameters. The neural network parameters are listed in Table 4, while our DDQN
approach is presented in Algorithm 3.
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Table 4. Parameters relevant to the DDQN RL algorithm.

Layer Number of Neurons

Input layer Size of state space
Middle layer 512, densely connected
Output Layer Size of action space

Algorithm 3 DDQN learning for UAV HetNets.
1: while (Realization ≤ numRealizations) do
2: Intialize a new realization of the environment
3: while (NumberO f Steps ≤ numSteps) do
4: The agent acts, observes the reward and the new state.
5: Update the weights of the model neural network
6: Update the weights of the target neural network
7: end while
8: Choose the best state encountered so far
9: Preserve the neural network weights

10: end while

6. Simulation Results

The ICIC and UAV placement algorithms were evaluated in a UAV HetNet, and the
parameters are as defined in Table 5. The DDQN-based AI algorithm was implemented
using Intel RL Coach [29]. Intel RL Coach is a python framework, and it implements many
state-of-the-art algorithms. These algorithms can be used through a set of application
programming interfaces (APIs). The developer defines the environment and the optimiza-
tion problem and calls the Intel RL Coach APIs to solve the problem. The UAV HetNet
environment was created using python scripts, while Matlab scripts were used to simulate
the path-loss model, associate UEs to BSs, and calculate the SE for a particular realization.

Table 5. Simulation parameters.

Parameter Value

MBS and UE density 8 or 4 per km2 and 100 per km2

MBS and UABS transmit powers 46 dBm and 30 dBm
Path-loss exponent 4
Altitude of UABSs 121.92 m (400 feet)
Simulation area 0.5× 0.5 km2

Range expansion bias in dB 0 to 15
Power reduction factor for MBS during (α) 0 to 1
Duty cycle for the transmission of USF (β) 0 to 1
Scheduling threshold for UEs served by MBSs (ρ) 35 dB or 45 dB
Scheduling threshold for UEs served by UABSs (ρ′) −20 dB to −5 dB
Downlink frequency 763 MHz

The agent was trained over 300 realizations and then evaluated over 250 realizations,
where the location of UEs and BSs in each realization were generated using a random
Poisson point process (PPP) with UE and MBS densities as indicated in Table 5. The
CDF of the median and mean SE achieved by the algorithms, calculated over multiple
realizations, are shown in Figure 6a,b, respectively, when the density of MBSs is 4 MBSs
per km2, resulting in one MBS in the simulation area. Blue curves denote the CDF obtained
using DDQN, red when using the greedy algorithm, and black when using the optimal
exhaustive search.
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Figure 6. SE results for an MBS density of 4 MBS per km2, which corresponds to one MBS in the
simulation area. (a) CDF of median SE. DDQN achieves 96.56% of the optimal when ε = 0.5 and
82.85% of the optimal when ε = 0.05. (b) CDF of mean SE. DDQN achieves 98.31% of the optimal
when ε = 0.5 and 89.1% of the optimal when ε = 0.05.

It can be seen that the DDQN algorithm performs better when the value of the
exploration–exploitation trade-off (ε) during evaluation is 0.5 (achieving 96.56% of the
optimal median SE and 98.31% of the optimal mean SE), compared to when ε is 0.05
(achieving 89.1% of the optimal mean SE and 82.85% of the optimal median SE). Using a
higher ε implies that the agent takes more random actions, compensating for under-training
and helping it to come out of local minima.

For 8 MBSs per km2 (two MBSs in the simulation area), the CDF of median and mean
SE achieved by the algorithms are shown in Figure 7a,b, respectively. Again, the DDQN
performance is better when using ε = 0.5 (achieving 93.46% of the optimal median SE and
95.83% of the optimal mean SE), than when using an ε = 0.05 (achieving 79.73% of the
optimal median SE and 82.89% of the optimal mean SE). The greedy algorithm achieves
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the optimal results in the scenarios that we consider. The time complexity of the exhaustive
search is exponential in the number of MBSs and UABSs and is given by:

Ctime = O
⎛
⎝
( 1

∆α + 1
)

Nmbs

× (1/∆β + 1)Nmbs × (
ρhigh − ρlow

∆ρ
)

Nmbs

× (
ρ′high − ρ′low

∆′
ρ

)
Nuabs

× ( l2

∆x
∆y)

Nuabs⎞
⎠

. (18)
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Figure 7. SE results for an MBS density of 8 MBS per km2, which corresponds to two MBSs in the
simulation area. (a) CDF of median SE. DDQN achieves 93.46% of the optimal when ε = 0.5 and
79.73% of the optimal when ε = 0.05. (b) CDF of mean SE. DDQN achieves 95.83% of the optimal
when ε = 0.5 and 82.89% of the optimal when ε = 0.05.

Unlike the brute force algorithm, the greedy algorithm has linear time complexity,
expressed as:

O(Nmbs)+O(Nuabs) . (19)
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The time complexity of the DDQN approach during training is a function of the
number of training steps,

O(Ntrain) , (20)

where Ntrain is the number of training steps. However, after training is complete and the
resultant neural network is used to optimize UAV HetNet parameters, the time complexity
is the number of steps in the evaluation phase:

O(Neval), (21)

where Neval is the number of evaluation steps. To optimze all parameters for a realization
consisting of two MBSs and one UABS, considering the range of parameters given in
Table 5, the brute force algorithm searches over 409, 600 parameter combinations, the greedy
approach evaluates 464 parameter combinations, while the searches over 500 parameter
combinations, as per the policy learned after training.

7. Conclusions

We studied how 3GPP LTE FeICIC parameters can be tuned in a UAV-HetNet to
maximize the mean and median spectral efficiency of a cellular network. Computationally
efficient AI and greedy approaches were compared with an optimal exhaustive search. The
AI approach was implemented using DDQN RL with a single agent to model all UAVs and
BSs in the network. We observed that, for the scenarios that we considered, the greedy
algorithm achieved the optimal mean and median SE, while the AI approach achieved
93.46% of the optimal median SE and 95.83% of the optimal mean SE.
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