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Abstract: This paper proposes a potential enhancement of handover for the next-generation multi-

tier cellular network, utilizing two fifth-generation (5G) enabling technologies: multi-access edge 

computing (MEC) and machine learning (ML). MEC and ML techniques are the primary enablers 

for enhanced mobile broadband (eMBB) and ultra-reliable and low latency communication 

(URLLC). The subset of ML chosen for this research is deep learning (DL), as it is adept at learning 

long-term dependencies. A variant of artificial neural networks called a long short-term memory 

(LSTM) network is used in conjunction with a look-up table (LUT) as part of the proposed solution. 

Subsequently, edge computing virtualization methods are utilized to reduce handover latency and 

increase the overall throughput of the network. A realistic simulation of the proposed solution in a 

multi-tier 5G radio access network (RAN) showed a 40–60% improvement in overall throughput. 

Although the proposed scheme may increase the number of handovers, it is effective in reducing 

the handover failure (HOF) and ping-pong rates by 30% and 86%, respectively, compared to the 

current 3GPP scheme. 

Keywords: multi-tier cellular handover; multi-access edge computing; deep learning; long short-

term memory; heterogeneous network; 3GPP 

 

1. Introduction 

With the introduction of the fifth-generation (5G) cellular network [1], the industry 

is posed with many diverse challenges. A common challenge to all three major pillars of 

5G (enhanced mobile broadband (eMBB), massive machine-type communications (mMTC), 

and ultra-reliable low latency communications (URLLC)) is seamless and low latency multi-

tier handover. In the latest 3rd generation partnership project (3GPP) standards for 5G [2], it 

was noticed that the event-based triggering for handover ignores various key elements of the 

user’s session that require to be taken into consideration, such as their mobilities and data rate 

requirements. The user requirements are ever-changing; thus, cellular networks must be suf-

ficiently dynamic to react and cater to this demand effectively. There are various channel in-

efficiencies that occur when a diverse range of requirements are not taken into consideration. 

The issues relating to multi-tier handovers have not been effectively resolved to this 

day. There is literature addressing the issues of handover, but only a small portion of 

these adopt a form of artificial intelligence (AI) or cloud computing techniques in their 

solutions. The use of deep learning (DL) and multi-access edge computing (MEC) for op-

timizing handover is still a gap in the industry that has not been explored yet. 

With the addition of MEC and DL in 5G, network operators can gather user data and 

analyze variations in signal strength, mobility patterns, and data rate requirements of 

each user to achieve optimum user experience. Additionally, with the implementation of a 

system that understands the user’s requirements, network elements also benefit because 

this helps to manage the base station’s resources efficiently. Keep in mind that the network 
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operators should extract or use all of these data without compromising on the compliance 

of user privacy laws of the specific country. 

The objective of this paper is to develop a DL handover decision algorithm while utilizing 

MEC. This will enable a faster and more reliable handover system that would ideally al-

low the user to switch seamlessly between any cellular network configurations based on 

key requirements. The scope of this research is focused on a 5G heterogeneous environ-

ment with various base station tiers (macro, micro, and femtocells) to carry out a compre-

hensive multi-tier handover evaluation. This research is validated by conducting software 

simulations to compare the proposed method to the handover technique specified by 3GPP 

in the technical standard (TS) 38.300 [3]. Both key components of the simulator: channel 

model and scheduler, are compliant with 3GPP standards 38.104 [4] and 36.873 [5], re-

spectively. The main contributions of this paper are as follow: 

 Proposal of a new DL Long Short-Term Memory (LSTM) handover decision algo-

rithm that uses a look-up table (LUT) and is catered to key user quality of experience 

(QoE) and quality of service (QoS) requirements; 

 Replacement of the time to trigger (TTT) with a dynamic LUT-based trigger mecha-

nism; 

 Modification of the handover admission control process when using the DL LSTM 

logic to occur at the same time instant that the base station sends the handover command 

to the UE. This is assuming that the user plane function (UPF) and the access and mobility 

management function (AMF) is located at the MEC aggregated edge. 

The rest of this paper is organized as follows: Section 2 provides some necessary pre-

liminaries. Section 3 overviews the related works. Section 4 introduces the system model. 

Section 5 presents the proposed algorithm. The simulation model and performance metrics 

are described in Section 6. This is followed by results and discussion in Section 7. Finally, 

Section 8 concludes the paper with some directions for future work. 

2. Preliminaries 

2.1. Multi-Tier Intra-RAT Handover 

This paper focuses on enhancing the 5G multi-tier intra-radio access technology 

(RAT) handover. This refers to a handover where the current and target BSs involved in 

the handover of user equipment (UE) are located in different tiers of the network, and the 

RAT of both current and target BSs is the same [6]. In 5G networks, a BS that connects the 

UE to the 5G core (5GC) via next-generation (NG) interfaces is referred to as a gNodeB 

(gNB) [3]. The intra-RAT handovers occur in the AMF and UPF elements of the 5G archi-

tecture.  

This paper models the handover functions performed by the UE, gNB, AMF, and 

UPF as specified in the non-roaming architecture for 5G in 3GPP standard TS 23.501 [7]. 

The AMF manages the handovers between different gNBs, while UPF supports service 

features such as packet routing for the UE. Both AMF and UPF communicate with the gNBs 

through the N2 and N3 interface, respectively. 

2.1.1. 3GPP Defined Logic and Procedure 

This section overviews the handover logic and procedure defined in 3GPP TSs 38.331 

[8] and 38.300 [3], respectively. Before detailing these steps, an understanding of how a UE 

switches between idle and connected states are described below:  

 Idle: A UE is in the idle state when its context is known to the 5GC but does not have 

an established connection to a gNB. In this state, the UE listens and responds to 

broadcasted messages from gNBs. It performs measurements and cell reselection 

methods when it is ready to connect to a gNB; 

 Connected: A UE is in the connected state when its context is known to both 5GC and 

gNB. In this state, the UE provides periodic measurement reports with channel quality 

information (CQI). Data are regularly transferred in this phase. 
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At set timestamps during the connected state, the UE sends measurement reports for 

the AMF to assess whether a handover is necessary. Usually, it is based on the UE’s re-

ceived signal strength (RSS) for its associated BS, although sometimes other factors such 

as loading are considered. The way the AMF decides whether a handover is to occur is 

decided based on an event-triggered system. Events are triggered by the logic described 

in [8]. There are various event triggers, and their parameters are specified in Tables 1 and 

2. Events A1 through A6 are only considered as they relate to intra-RAT handover; other 

events such as B1 are not relevant to this work as they relate to inter-RAT handover. 

Table 1. Handover trigger events for intra-RAT handover. 

Event Description 

A1 Serving cell becomes better than a threshold 

A2 Serving becomes worse than a threshold 

A3 Neighbor becomes offset better than serving 

A4 Neighbor becomes better than a threshold 

A5 
Serving cell becomes worse than threshold 1, and neighboring cell becomes bet-

ter than threshold 2 

A6 Neighbor become offset better than secondary cell 

Table 2. Event parameter ranges. 

Event Parameter Minimum Maximum 

A1, A2, A4, A5 RSRP threshold −156 dBm −31 dBm 

All Hysteresis 0 dB 15 dB 

A3, A6 Offset −15 dB +15 dB 

Each event has an entry and leaving condition. If the entry condition is satisfied for 

longer than a certain period, called the time to trigger (TTT), the BS will initiate the handover 

procedure to the desired cell. However, if the UE’s reference signal received power (RSRP) 

drops below the leaving condition or does not meet the entry condition after the TTT, the UE 

remains connected to the current BS, as the desired BS no longer meets the criteria. 

This paper focuses on implementing two of the handover events, A1 and A3. Other 

events are not considered as there will be unnecessary complexities introduced that will 

diverge from the scope of this work. For example, an A6 handover would require a form 

of dual connectivity for the user to perform and assess this event correctly. After the UE 

has met the entry condition for the duration of the TTT interval, a handover procedure is 

initiated. There are three phases [3]: 

 Preparation: Upon deciding to handover, the source gNB sends a handover request to 

target gNB, which in turn processes the request and completes the admission control 

by returning a handover request acknowledgment to the source gNB; 

 Execution: Upon being notified by source gNB, UE begins to detach from source gNB and 

synchronizes to target gNB. Simultaneously, source gNB executes a sequence number 

(SN) status transfer and delivers buffered and new data from UPF to target gNB; 

 Completion: This phase begins with a path switch requested by the target gNB, which 

triggers the 5GC to switch the path of the UE’s data to the target gNB via the UPF. 

Then UPF sends the end marker for source gNB via the AMF, which in turn sends a path 

switch acknowledgment. Finally, the target gNB sends a message to source gNB to re-

lease the context of the UE, completing the handover procedure. 

2.2. Far and Aggregated MEC 

While the traditional cloud computing services reside in the core, multi-access edge 

computing (MEC) enables decentralized cloud-like services close to the edge of a network, 

allowing for lower latencies and higher throughputs for users [9]. Figure 1 highlights their 
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key differences. This paper focuses on the two edge data center architectures, (i) far edge 

and (ii) aggregated edge, to achieve a handover latency that approaches the user plane eMBB 

and URLLC latency targets of less than 4 ms and 1 ms, respectively [10]. 

 

Figure 1. Edge (MEC) and Central (Cloud) data centers. 

2.3. LSTM 

This paper focuses on one of the popular deep learning algorithms called long short-

term memory (LSTM), which is known to be able to learn and memorize long-term de-

pendencies [11]. LSTMs consist of one cell state and various gates. The cell state is the 

“memory” part of the LSTM, which can be altered by various gates, each comprising of a 

sigmoid neural network layer and a pointwise multiplication operation [12]. While different 

variants of LSTMs exist, such as peephole connections [13] and gated recurrent unit (GRU) 

[14], this paper uses the standard LSTM as it is ideal for classifications of sequence data. A 

detailed explanation of the LSTM process can be found in [11]. 

3. Related Works 

This section classifies and analyzes the literature on multi-tier handovers under three 

solution approaches: multi-connectivity, AI, and cloud/edge-based approaches, and high-

lights key areas for improvement. 

3.1. Multi-Connectivity Approach 

Multi-connectivity refers to the situation when a user is connected to more than one 

BS to ensure that its connection to the network is not lost. Soft handovers, considered in 

this paper, are a type of multi-connectivity, as when handing over, the user is connected 

to multiple BSs at once for a small amount of time. In the following, we review the litera-

ture that employs multi-connectivity for multi-tier handovers. 

In [15], the issue of high handover latency and signaling overhead was addressed. 

The authors proposed that the UE is always connected to two 5G millimeter-wave access 

points (mmAPs) and one LTE BS. The proposed scheme compares the predicted RSS of 

the active set of 5G-mmAPs and one LTE-BS to another candidate, LTE-BS or 5G-mmAP. 

If the candidate device has a better RSS, the network will initiate a handover request to 

the core network. The proposed algorithm is compared to two systems: A3 event-based 

logic and the current scheme but without prediction. Simulation results show that the av-

erage throughput of the proposed scheme is improved by 12% under moderately high 

mobility (30–50 km/h). Additionally, the number of handovers is also reduced by 5%. 

However, it is observed that although the system is a multi-tier network, it lacks a detailed 
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study on multi-tier handover as the focus is primarily on the 5G-mmAPs. It is also ob-

served that the resulting channel efficiency is reduced since the UE uses three forms of 

connectivity to achieve minor improvements. This issue can pose a major constraint when 

this is deployed in a populated environment. 

The same channel efficiency and signaling overhead issues are accentuated in [16], 

where the authors aim to address the issue of mm-waves being highly susceptible to 

blockages and degradation in channel quality. The proposed solution consists of a heter-

ogeneous dual-connectivity solution that connects UEs to both 4G LTE and 5G mm-wave 

BSs, providing rapid switching from 5G to 4G for failures on any link. Additionally, the 

solution added the complexity of including static and dynamic TTT delays. The proposed 

algorithm is compared with that of 3GPP for vertical handover. In terms of the number of 

handovers executed, the 3GPP algorithm is more efficient by 5–10%, as the proposed dual-

connectivity approach requires the handovers to occur more frequently as user require-

ments change. However, the handover latency is reduced by 70%, while the overall 

throughput is marginally improved by 2–5%. 

In [17], the authors proposed a combination of soft and hard handover solutions for 

horizontal and vertical handover in a vehicular network. The proposed algorithm uses 

circular geometric calculations to model the cell’s coverage, relying on the vehicle’s GPS 

coordinates to trace the path accurately. It also uses soft handover between roadside units 

(RSUs) and hard handover between RSU and BS. Additionally, the handover latency is 

considered when the algorithm executes its decision, resulting in a combination of the cell 

with the lowest latency and the best QoS. The proposed solution is compared with the 

3GPP threshold and signal hysteresis methods to determine if the number of handovers 

and HOFs are reduced. The algorithm provided a reduction of 30% in handovers and a 

25% reduction in HOFs at speeds of 100 km/h. However, there are two potential draw-

backs to this proposed solution: (i) The signal overhead for RSU and BS will increase dra-

matically as the density of vehicles grows. Hence, the equipment cost on the network side 

to support this will increase. (ii) The system present in the vehicle requires at least three 

other separate systems to be able to execute handovers, which would further add to the 

cost of the system. 

3.2. AI Approach 

AI-based handover is where the system learns user patterns and dependencies and 

attempts to find the most optimal solution through its learning. AI can include forms of 

ML as well as other forms of evolutionary learning. This section divulges details of the im-

provements that AI-based schemes can provide for multi-tier handovers. 

The authors of [18] proposed to use fuzzy logic to solve issues relating to redundant 

handovers and HOF ratios in dense small cell networks in LTE. A self-optimizing system 

that analyses the user velocity and radio channel quality and adapts hysteresis values for 

handover decisions is proposed. The inputs for the system are the user velocity, RSRP, 

and reference signal received quality (RSRQ). The proposed algorithm is compared to four 

other algorithms: Best Connection, Conventional LTE handover, Fuzzy Multiple-Criteria 

Cell Selection integrated with TOPSIS, and Self-Tuning Handover Algorithm. The pro-

posed algorithm reduced the average number of handovers by 20%, the overall HOF ratio 

by 25%, and the ping-pongs events by 50%. However, the impact on latency and through-

put has not been analyzed, which could insinuate a possible increase in computational 

strains, resulting in a reduction in the user’s quality of experience. 

In [19], the authors addressed the inefficiencies of handover for in-building systems. 

The proposal is to optimize these inefficiencies through ML and data mining techniques 

by developing a clustering algorithm based on shapelets and wavelet decompositions at 

the cell’s edge. The considered environment consists of two in-building systems on a uni-

versity campus and a three-sector macro-cell. The authors developed objective functions 

for three scenarios of loading the macro-cell and in-building systems (assuming UEs are 

exiting the building) to achieve the optimal operating point, which is a combination of the 



Telecom 2021, 2, 26 451 
 

A2 and A3 handover thresholds and a TTT period. The optimal operating points were 

based on HOF, ping-pong, and average data rates. The achieved data rate gain by this 

algorithm is between 25% and 65% over the static A3 algorithm. The authors discussed 

ping-pong and HOF rates but did not provide evidence of improvements in these areas. 

It is also unclear how the proposed algorithm would perform when there are mass user 

movements, such as leaving the building when a class finishes. 

A DL approach was analyzed in [20], where the authors proposed to significantly 

reduce service traffic that is transmitted through the 5G communication channels and to 

optimize handovers. The proposed algorithm uses gated recurrent units (GRUs) to pro-

vide a rapid response to changes in the environment. The GRU is used to predict how 

many users would be in a particular cell for a given the time of day. The prediction scheme 

varies the size of the cell coverages based on the time of day. This allows underloaded 

cells to be easily handed over and overloaded cells to become harder to connect into. The 

authors used supervised learning for these predictions and compared them to a DL LSTM 

over 300 epochs. It is shown that the GRU can achieve a better result than the LSTM in a 

short time frame, although the LSTM becomes more accurate as the number of epochs 

increases. It is also shown that the GRU can accurately model daily user traffic with an 

accuracy of 90%. However, the authors did not state when all cells are overloaded, which 

would cause the coverages to become so small that dead zones appear, causing mass radio 

link failures for the users.  

In [21], the authors proposed a hybrid user mobility prediction approach based on 

vector autoregression (VAR) and gated recurrent unit (GRU). The proposed approach is 

shown to predict user future trajectory with less error than methods based on GRU alone, 

recurrent neural network (RNN), and LSTM. The approach is then applied to handover 

management in mobile networks to reduce the amount of handover processing and trans-

mission costs. However, user mobility is only one factor that could affect the connectivity 

of the users to the network. There are other factors that could affect the user’s connectivity, 

such as fading and shadowing effects on the channel conditions and the interferences from 

other transmitting users. The fading and shadowing effects are propagation environment-

dependent, e.g., built-up vs. open-space, while the interferences are dependent on the 

presence of other concurrent transmissions in the same frequency band, particularly at the 

cell edges. These critical factors were not considered in the above work. 

3.3. Cloud/Edge-Based Approach 

The industry was the major force behind the push for many cloud and edge-based solu-

tions. This has also applied to handover solutions, such as cloud and edge computing, and 

can provide significant benefits in terms of lower latency and higher throughput when 

compared to systems that do not utilize them. 

This can be observed in [22], where the authors addressed the issues with cooperative 

interference mitigation and handover management in heterogeneous cloud small cell networks 

(HCSNet). This is a type of network architecture that combines the cloud radio access net-

work (RAN) with small cells. The authors specifically target UEs moving between macro 

cells and small cells. A low complexity handover management scheme was proposed, and 

its signaling procedure was analyzed. The authors developed their algorithm based on 

UE speed estimations (using an autocorrelation function) and UE latency requirements. 

Additionally, to avoid user interference at the cell’s edge, the authors proposed a coordi-

nated multipoint (CoMP) joint transmission clustering scheme using affinity propagation 

methods. The results show that the signaling overhead related to call holding time and 

high mobility users are reduced significantly by 40% and 90%, respectively. Although the 

solution provides an effective reduction in signaling overheads, there is a lack of analysis 

of other key performance indicators such as the number of handovers, ping-pong rate, 

and handover latency. 

In comparison to the previous effort, the authors in [23] focus on the latency benefits of 

using a cloud RAN architecture, as this is an important enabler for URLLC services for 
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high mobility applications. The authors analyzed the performances of different cloud 

RAN architectures and then developed a new concept called early admission control (EAC) 

for reducing the handover preparation time. This algorithm is created with respect to syn-

chronous handovers without random access and then compared to the current distributed 

RAN configurations. The results show a clear reduction in handover preparation time of 

up to 30% when compared to cloud RAN architectures without EAC and more than 60% 

when compared to distributed RAN architectures (resulting in better throughput and lower 

signaling overheads). Although this proposed approach is promising, it was observed that 

the authors could have moved the EAC preparation closer to the edge of the RAN in order to 

achieve an even lower latency, which is the concept being investigated in this paper.  

In [24], the authors considered a 5G-MEC network where MEC servers are co-located 

with 5G BSs to support the computation-intensive, and delay-sensitive mobile augmented 

reality (MAR) applications. They proposed a handover scheme for users of MAR applica-

tions that considered not only the RSS of BSs but also the computation load of the co-

located MEC servers. Hence, handovers can be triggered when the RSS of the serving BS 

is sufficiently degraded or when its co-located MEC server is sufficiently overloaded. It 

was shown that the proposed scheme could improve UE experienced delay significantly 

and is relatively robust to different UE speeds. However, it is conceivable that the pro-

posed scheme can also cause UEs to be handed over to BSs with less loaded MEC servers 

as well as lower RSS, resulting in a deteriorated performance of non-MEC applications 

that may be executing on these UEs. 

3.4. Summary 

Table 3 summarizes the related works. Where works are found to share similar pros 

and cons, the discussion of their benefits and drawbacks are merged. 

Table 3. Summary of related works 

Approach Ref. Solution Summary Benefits and Drawbacks 

Multi-connec-

tivity 

[15] 

 Proposes to always connect UE 

to two 5G mm-wave access 

points and one LTE BS to re-

duce HO latency and signaling 

overhead 
Benefits: 

 Reduced number of HOs 

and HO latency 

 Increase throughput 

Drawbacks: 

 High signaling overhead 

 Inefficient use of radio re-

sources 

 No comprehensive study 

of multi-tier HOs despite 

having a two-tier scenario 

 Focuses mainly on one tier 

and uses the other tier as a 

fall-back system 

[16] 

 Proposes a dual-connectivity 

solution that connects UE to 

both 4G LTE and 5G mm-wave 

BSs 

 This mitigates issue of mm-

waves being susceptible to 

blockages and degradation in 

channel quality 

[17] 

 Proposes HO decision scheme 

for vehicles based on geometri-

cally calculated cell coverage, 

vehicle trajectory, and HO la-

tency 

 Uses soft HO between RSUs 

and hard HO between RSU and 

BS 

AI-based [18] 
 Proposes to use fuzzy logic to 

reduce redundant HOs and 

Benefits: 

 Reduced HOs, HOF, and 

ping-pong rates 
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HOF rates in dense small cell 

networks 

 Analyzes UE velocity and radio 

channel quality to adapt hyste-

resis margins for HO decisions 

Drawbacks: 

 No latency, throughput re-

sults 

 High computational load 

[19] 

 Proposes to use ML and data 

mining techniques to learn and 

identify cell characteristics and 

then optimize the HO parame-

ters for in-building BSs 

 The considered HO parameters 

are A2 and A3 handover thresh-

olds, and TTT period 

Benefits: 

 Good throughput 

 Low latency 

Drawbacks: 

 No results on HOF, num-

ber of HOs, and ping-

pong rates 

 Only focused on exiting 

UEs 

[20] 

 Proposes a GRU-based scheme 

to predict the number of users 

in a cell for a given time of day 

 The prediction is used for vary-

ing cell sizes, making it easier 

for UEs to be handed over to 

underloaded cells or harder for 

UEs to connect to overloaded 

cells  

Benefits: 

 Predict up to 90% accu-

racy 

 Cell sizes variable for 

more balanced loading 

Drawbacks: 

 When all cells overloaded, 

radio link failures increase 

 Need plenty of data to 

learn 

 Lower accuracy than 

LSTMs 

[21] 

 Proposes a hybrid VAR-GRU 

scheme to predict the future tra-

jectories of users in a mobile 

network 

 The prediction is applied to HO 

management to reduce HO pro-

cessing and transmission costs 

Benefits: 

 Higher prediction accu-

racy than GRU, RNN, and 

LSTM 

Drawbacks: 

 No consideration of prop-

agation effects and inter-

ferences on user connec-

tivity 

Cloud/Edge-

based 

[22] 

 Proposes a CoMP transmission 

scheme and a HO management 

scheme for HCSNets with 

macro and small cells 

 Determines if UEs can hando-

ver from macro to small cells 

based on their speed/latency re-

quirements 

Benefits: 

 Less HO signaling over-

head 

Drawbacks: 

 No other metrics evalu-

ated 

 Mainly focuses on macro-

to-small cell HOs 

[23] 

 Proposes an EAC scheme for re-

ducing HO preparation time in 

cloud RAN 

 Focuses on synchronous HO 

that enables predictable and fast 

HO to support URLLC services 

in high mobility applications 

Benefits: 

 Reduced HO preparation 

time and overall latency 

Drawbacks: 

 Only uses cloud; may im-

prove latency by utilizing 

MEC 
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[24] 

 Proposes a HO algorithm for 

users of MAR applications in 

5G-MEC network 

 Jointly considers RSS of BSs and 

computation load of co-lo-

cated MEC servers 

Benefits: 

 Reduced UE experienced 

delay 

Drawbacks: 

 Potential performance 

tradeoff between MEC and 

non-MEC applications 

In summary, this discussion of related works shows that research gaps that can be 

addressed still exist. Despite our exhaustive search, very few works on multi-tier handover 

were found to combine all three approaches above. This presented a unique opportunity 

for us to explore and propose a new mechanism for multi-tier handover. 

4. System Model 

Figure 2 shows the 5G RAN architecture considered in this work. It is a type of Cloud 

RAN with three tiers, namely macrocells, microcells, and femtocells. The macrocell BS, 

i.e., gNB, can be functionally split into one centralized unit (CU) and one or more active an-

tenna units (AAU) and distributed units (DU). The AAU is an antenna-integrated remote ra-

dio head (RRH), while both DU and CU constitute the base band unit of the Cloud RAN. 

The DU comprises the physical, medium access control, and radio link control sublayers, 

whereas the CU comprises the remaining higher sub-layers. Both microcells and femtocells 

operate the same 5G radio access technology as the macrocell, but with different operating 

parameters such as different frequency, bandwidth, and transmit power. 

 

Figure 2. Three-tier 5G RAN architecture with MEC deployment. 

This work also considers the deployment of two types of MEC platforms: aggregated 

edge at the CU of gNB and far edge at each microcell. By using the network function vir-

tualization (NFV) technique, instances of two 5G core network functions, AMF and UPF, can 

be deployed and hosted in the aggregated edge. The virtualized AMF can reduce the hando-

ver latency, while the virtualized UPF, along with the far edge at microcells, can improve 

the performance of user application traffic. 

Finally, three types of users, namely motorists, cyclists, and pedestrians, are consid-

ered, representing users of high, medium, and low mobility, respectively. As the users 

move, their connectivity to the network can be switched between cells of the same or differ-

ent tier, as determined by the handover mechanism. 
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5. Proposed Algorithm 

Before detailing the proposed algorithm, we describe the benchmarking scheme to be 

used, which is the 3GPP defined handover logic and procedure described in Section 2.1.1 

but adapted with aggregated edge components for enabling lower latencies. 

5.1. Benchmarking Scheme 

5.1.1. Handover Logic 

For the UE to trigger a handover, its RSS has to be greater than the A3 entry condition. 

Table 4 describes the equations and offset values used. This table is used for the decision 

made after the TTT period, whether it is an A1 or an A3 handover. 

Table 4. A1 and A3 handover conditions. 

A3 Event A1 Event 

target gNB RSS > source gNB RSS + A3 

offset (3 dB) 

source gNB RSS > A1 threshold (minimum RSS 

for a CQI of 1) 

If it is an A1 handover, it will revert back and remain connected to the source gNB. 

If it is an A3 handover, the UE will move on to the handover initiation phase. Otherwise, 

if the UE’s CQI for the serving BS drops below a value of 1 during this process, the UE 

becomes idle and begins to reconnect to the base station that meets the A1 handover con-

ditions. For all cases, the handover trigger instance will be recorded. 

5.1.2. Handover Procedure 

Key communication delay parameters for the handover procedure are given below. 

All latency values are obtained from [23,25]: 

 Handover request from source gNB to target gNB: 2 ms between their respective dis-

tributed units; 

 Admission control: 1ms for admission control at the target gNB; 

 UE handover initiation message: 1ms for data transmission over air interface; 

 UE handover configurations: 

o Handover request processing: 5 ms; 

o Handover reconfiguration: 10 ms; 

- Status transfer from source gNB to target gNB: 1 ms; 

- Target gNB and UE synchronization messages: 2 ms. 

Additionally, two handover failure (HOF) types are identified: 

1. If at any point during the handover procedure, the desired BS’s CQI is < 1, the hand-

over is stopped, and the UE is moved to the connected state; 

2. If 16 or more communication failures occur in a set handover period, these are con-

sidered gross handover failures [26], then the UE will be disconnected from the BS 

and become idle. 

5.2. Proposed DL LSTM Algorithm 

In this work, we propose a DL LSTM handover decision algorithm. To develop a DL 

LSTM, an understanding of what the inputs and outputs must be realized. First, the de-

sired outputs are decided. These are based on what is desirable and what challenges that 

this proposal is trying to address. The metrics are: 

1. User CQI: This is chosen to be an output to ensure that data connections are never 

lost, and a good QoS is maintained; 

2. User data rate requirements: This is required to ensure that the user’s data rate (DR) require-

ments are met for as long as possible; 
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3. User velocity: This ensures that the algorithm is dependent on user mobility when 

connection requirements become more important. 

The parameters above were chosen because it provides the algorithm the best oppor-

tunity to meet the UEs’ QoS and QoE requirements. Therefore, from these desired output 

metrics, the key input dimensions were chosen. This LSTM consists of four dimensions. 

The UE’s velocity is split into direction and speed for a smoother and faster learning pro-

cess for the DL LSTM. 

First Dimension: User CQI 

This is the UE’s CQI rating for the potential BS, and only BSs that have a CQI ≥ 1 are 

considered. This eliminates any BSs which are not within the range. This method, if im-

plemented correctly, can reduce signaling overheads and UE costs. This is because there 

is no longer a need for the capability to monitor and report on a minimum of eight (four 

Inter-RAT and four Intra-RAT) BSs, as stated in [27]. 

Second Dimension: User data rate ratio 

The UE’s data rate ratio (DRR) is derived as DRR = minimum DR that BS can support/max-

imum user DR requirements. The maximum data rate is the maximum of the uplink and 

downlink requirements. The minimum data rate that BS can support is given by: minimum 

BS DR for a CQI of 3/number of UEs attached (if attached UEs > 0); or minimum DR that BS 

can support for a CQI of 3 (if there is no attached UE). 

A CQI of 3 was chosen as this is the average CQI that a UE will have when connecting 

to a BS at a distance equivalent to approximately 70% (±10–20%) of the BS’s coverage. This 

distance was chosen as, in most cases, the CQIs of potential BSs that can be handed over 

to will not be higher than 50–70% of the BS coverage. Thus, a value of 20% of the maximum 

CQI value of 15 was taken. The variation takes into consideration of small-scale fading and 

shadow fading effects, which can cause a ±10–20% variation in the channel quality. 

Third and Fourth Dimensions: User direction and speed 

Both dimensions are measured using RSS values in dBm. Firstly, the UE’s direction is 

measured from the variation in RSS between two successive measurement reports (MRs) of 

the potential BS. A negative value denotes a user is moving away, while a positive value 

denotes the user is moving closer to the potential BS.  

Additionally, the variation in speed is calculated as an absolute value of RSS varia-

tion. All the following values are with respect to RSS variations:  

UE direction = �
 Closer to potential BS              D RSS ≥ 0
 Away from potential BS         D RSS < 0

 

UE speed = |D RSS| (1)

where D RSS = RSSt − RSSt−1  

A variation of 5 dBm or more was chosen to be the value of a fast-moving user, as a 

1 m variation in 100 ms (equivalent to a vehicle traveling at approximately 36 km/h) ac-

counts for an RSS change of 10–15% in free space. 

In addition, due to further pathloss factors such as wall losses and user noise inter-

ferences, a 3 dBm offset is added to avoid potential misrepresentations. From these defi-

nitions, each of the input dimensions was classified and concatenated into one output. 

These are specified in Table 5. 

  



Telecom 2021, 2, 26 457 
 

Table 5. DL LSTM classification categories. 

Dimension Classification Letter Code Value Range 

User CQI 

Good G CQI > 5 

Ok O 3 < CQI ≤ 5 

Poor P CQI ≤ 2 

User DRR 
Met M DRR ≥ 1 

Not Met N DRR < 1 

User Direction 
Closer C D RSS ≥ 0 dBm 

Away A D RSS < 0 dBm 

User Speed 
Fast F |D RSS| ≥ 5 dBm 

Low L |D RSS| < 5 dBm 

With these chosen output types and classifications, there are 24 possible combina-

tions, which are shown in Table 6. 

Table 6. All 24 classification of the proposed DL LSTM. 

Index Code 
Classification 

CQI DRR Direction Speed 

1 GMCF 

Good 

Met 

Closer 
Fast 

2 GMCL Low 

3 GMAF 
Away 

Fast 

4 GMAL Low 

5 GNCF 

Not met 

Closer 
Fast 

6 GNCL Low 

7 GNAF 
Away 

Fast 

8 GNAL Low 

9 OMCF 

Ok 

Met 

Closer 
Fast 

10 OMCL Low 

11 OMAF 
Away 

Fast 

12 OMAL Low 

13 ONCF 

Not met 

Closer 
Fast 

14 ONCL Low 

15 ONAF 
Away 

Fast 

16 ONAL Low 

17 PMCF 

Poor 

Met 

Closer 
Fast 

18 PMCL Low 

19 PMAF 
Away 

Fast 

20 PMAL Low 

21 PNCF 

Not met 

Closer 
Fast 

22 PNCL Low 

23 PNAF 
Away 

Fast 

24 PNAL Low 

Now that the classifications and their reasonings are clarified, the adjustment to the 

handover logic and procedures are discussed below. 

5.2.1. Handover Logic 

This algorithm relies on the previous MRs to predict the best BS to handover to. This 

decision happens in the current MR time stamp. Each UE’s last seven MRs for potential 

BSs are stored in the aggregated edge of the MEC. In addition, the connected BS CQIs are 
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also stored for the past seven timestamps. These seven CQIs are averaged to ensure 

shadow fading and small-scale fading effects are minimized. Furthermore, the same is 

performed for the actual data rate to ensure fluctuations are filtered out. If the BS has a 

CQI that is higher than 1 for longer than seven consecutive time stamps, MR variations 

are considered to save power for low mobility UEs. The pseudocode below describes these 

logical steps (Algorithms 1 and 2). 

Algorithm 1 Classification logic 

1. procedure: Classify BSs based on MRs 

2.     for each potential detected BS 

3.         if CQI ≥ 1 then 

4.             Calculate all remaining parameters to input into the LSTM 

5.             Predict potential BS classification based on the inputs 

6.             Store the classification for the user at the aggregated edge 

7.         end if 

8.     end for 

9. end procedure 

 

Algorithm 2 MR variation logic 

1. procedure: Vary measurement reporting with UE mobility 

2.     if consecutive MRs for potential BS = 7 then 

3.         UE state = potential BS handover 

4.         if UE speed is fast for ≥5 MR instances, then 

5.             Decrease MR interval by 40 ms 

6.             if MR interval is ≤80 ms then 

7.                 MR interval = 80 ms 

8.             end if 

9.         end if 

10.         if UE speed is low for ≥5 MR instances, then 

11.             Increase MR interval by 40 ms 

12.             if MR interval is ≥400 ms then 

13.                 MR interval = 400 ms 

14.             end if 

15.         end if 

16.     end if 

17. end procedure 

The reasons why these MR occurrence limits were chosen are highlighted below: 

 For high mobility UEs, the MRs will not go below 80 ms, as it will drain the UE’s 

battery at a high rate; 

 For low mobility UEs, the MRs will not go above 400 ms, as this will impact the re-

sponse of a handover decision if it is required for sudden changes in movements. 

For this algorithm, the TTT is replaced with a dynamic LUT-based trigger mecha-

nism. LUTs provide a very fast and simple approach to solving repetitive problems. Ad-

ditionally, outcomes can be easily modified to achieve the desired outcomes. 

All handover decisions require 5 (~70%) or more instances of each predicted classifi-

cation. For example, if a UE is fast-moving, the classification ‘fast’ within the last seven 

predictions must occur at least five times. Otherwise, it will be considered a slow-moving 

UE. 
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Table 7 shows the possible handover decisions based on the predicted classification 

for the potential BS and the parameters of the current connected BS. The classification for 

the potential BS is the classification obtained from executing Algorithm 1 for the new de-

tected BS to which the UE may connect. The “1” decision denotes a handover to be per-

formed, while a “0” decision implies no handover is required, and the UE remains con-

nected with the current BS. The “1*” decision refers to an exception handover that should 

only occur if the CQI of the potential BS is better than that of the current BS to avoid the 

risk of radio link failure. If the resulting decision is to handover, the UE proceeds to the 

handover procedure phase, where the current BS initiates the handover to the desired 

potential BS. 

Table 7. LUT for handover decisions based on DL LSTM classifications. 

Classification for Potential BS 

Parameters of Current BS 

DR Met DR Not Met 

CQI < 3 CQI  3 CQI < 3 CQI  3 

GMCF 1 0 1 1 

GMCL 1 0 1 1 

GMAF 1 0 1 1 

GMAL 1 0 1 1 

GNCF 1 0 1 0 

GNCL 1 0 1 0 

GNAF 1 0 1 0 

GNAL 1 0 1 0 

OMCF 1 0 1 1 

OMCL 1 0 1 1 

OMAF 1 0 1 0 

OMAL 1 0 1 1 

ONCF 1 0 1 0 

ONCL 1 0 1 0 

ONAF 1 0 1 0 

ONAL 1 0 1 0 

PMCF 1* 0 1* 0 

PMCL 1* 0 1* 0 

PMAF 0 0 0 0 

PMAL 0 0 0 0 

PNCF 1* 0 1* 0 

PNCL 1* 0 1* 0 

PNAF 0 0 0 0 

PNAL 0 0 0 0 

5.2.2. Handover Procedure 

The handover procedure proposed in this section implements a faster variation to the 

currently used procedure. The proposal is to make the admission control happen at the 

same time instant that the UE begins to process the handover command. This can be made 

possible because of the aggregated edge architecture, where, due to its centralized nature, 

the MEC can orchestrate both events to execute simultaneously. Hence, a reduction of 3 

ms could be made to the handover procedure latency discussed in Section 5.1.2. 

Figure 3 shows the flow diagram of the modified handover preparation phase for the 

proposed algorithm and considers RAN architecture, where virtualized AMF and UPF 

instances are hosted on the aggregated edge at the CU of gNB. All other remaining parts 

of the handover procedure, i.e., the handover execution and completion phases, remain 

the same as described in Section 2.1.1. 
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Figure 3. Flow diagram of the modified handover preparation phase. 

6. Simulation Environment and Performance Metrics 

6.1. Simulation Environment 

The simulation tool used is the Vienna 5G system-level simulator [28], which we aug-

mented with several advanced toolboxes from MATLAB. The BS and UE scheduler used is a 

5G new radio scheduler available from the 5G toolbox of MATLAB [29]. This scheduler is 

compliant with the 3GPP standards and combined with the Vienna simulator to develop a 

fully functioning uplink and downlink 5G system-level simulator. The round-robin sched-

uler mode was chosen as it has low complexity and provides long-term fairness for all 

users regardless of their priorities and CQIs. 

In terms of modeling user mobility, there are three categories of users considered in 

this simulation: pedestrians, cyclists, and motorists. Their mobilities are modeled using 

an application named Driving Scenario Designer, which requires the use of the automated 

driving toolbox of MATLAB [30]. 

The handover logic and procedure implemented in this simulator follow key 3GPP 

standards. The handover simulations involve a total of 40 mobile UEs, and each simula-

tion run is conducted for 200 s. This duration excludes the initial 10 s “warm-up” phase 

of the simulation before results are recorded. 

The deep learning is simulated using the Deep Network Designer Application, which 

requires the use of the Deep Learning Toolbox of MATLAB [31]. The Adam solver is ap-

plied for training the DL system. The initial learning rate is set to 0.001, as a higher value 

creates a less accurate model, while a smaller value takes very long for the system to learn 

with little to no improvements. The gradient threshold is set to two to prevent the gradi-

ents from diverging from the desired learnings. 

The LSTM is taught to learn a sequence of 4 dimensions and 24 classifications, as 

described in Section 5. The number of epochs and hidden units is varied to find the opti-

mal values. For the DL LSTM, a training and testing data set of 25,000 data points are taken 

based on simulated movements of 10 users (four motorists, four pedestrians, two cyclists): 

eight are used for training (20,000 points), two are used for testing the prediction accuracy 

(5000 points). BSs are only considered if their CQI ≥ 1. User data point sizes varied from 2200 

to 2700 based on the number of BS coverages that could be quantified as a potential base 

station. 

The region of interest is rectangular, spanning 600 m by 700 m (0.42 km2) with vary-

ing building heights between 10 and 45 m. The simulated region is based on New York 

University (NYU) with Manhattan-style building configurations, as shown in Figure 4a,b. 

Building widths and lengths are mapped in blocks of 25 m by 25 m. Street widths are 25 m 

wide, which can accommodate all types of users and split easily into pedestrian walkways 

(2.5 m on either side), cyclist ways (2.5 m on either side), and road lanes (7.5 m per lane: 

4.0 m wide lane for moving vehicles, and 3.5 m wide land for off-street parking). The 
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colored dots in Figure 4b depict the BSs. There is a total of 69 BSs: 2 macrocells (dark blue 

dots), 43 microcells (red dots), and 24 femtocells (teal dots). 

In addition to BSs, there are 44 MEC deployments, 1 aggregated edge server at the CU 

of a macrocell, and 43 far edge servers (one per microcell). Tables 8 and 9 summarize the 

simulation parameters used for the BS, and UE, respectively. 

Vertical View Oblique View  

  
(a) 

  

(b) 

Figure 4. (a) Vertical and oblique aerial views of the NYU campus; (b) Corresponding views of the 

simulated environment modeled after the NYU campus. 

Table 8. BS simulation parameters. 

Parameters 
Macro Cell 

(Wide Area BS) 

Micro/Pico Cell 

(Medium Area BS) 

Femtocell 

(Local Area BS) 

Number of BSs 2 43 24 

BS coverage range 500–1000 m 50–100 m 10–20 m 

BS height 50 m 10 m 6.5 m 

Min distance to UE 35 m 5 m 2 m 

Carrier frequency 2.0 GHz 3.5 GHz 26 GHz 

Bandwidth 20 MHz 40 MHz 

Duplex mode FDD 

Transmit power 40 W 6.31 W 0.25 W 

Antenna gain 0 dBi 

Number of antennas 1 TX/RX pair 

Pathloss model 

(LOS/NLOS) 
3D-UMa 3D-UMi 

Free-space + other 

loss factors * 

Shadow fading 4 dB 

Wall losses  13 dB 

* Wall losses, shadow fading, and user noise interferences. 
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Table 9. UE simulation parameters. 

Parameters Motorists Cyclists Pedestrians 

Number of UEs 22 4 14 

Speeds 080 km/h 020 km/h 05 km/h 

Channel model Vehicle A Typical Urban Typical Urban 

Number of antennas 2 TX/RX pairs (one operates at 2/3.5 GHz; the other at 26 GHz) 

Transmit power 1 W 

6.2. Performance Metrics 

6.2.1. Deep Learning Metrics 

For this work, the learning time and prediction accuracy of the proposed DL LSTM can 

be evaluated by varying two key parameters: 

 Number of hidden units: This parameter can correlate to the computational latency of 

the network. The key reason behind this parameter being varied is to find a balance be-

tween the number of hidden units and computational speed; 

 Number of epochs: This parameter is varied to determine the optimal time required for 

training the system. 

For both of these parameters, a range of values is considered to ensure overfitting 

and underfitting are effectively captured. These concepts are further discussed in Section 

7. 

6.2.2. Handover Metrics 

For the evaluation of multi-tier handovers, there are eight key metrics, which can be 

split into two categories: one evaluating the handover performance (QoS metrics) and the 

other evaluating the throughput performance (QoE metrics). All throughput metrics are 

measured for uplink and downlink communications. 

Handover performance metrics (QoS metrics): 

1. Total handovers: This is the total number of handovers in the whole network, inclusive 

of failed handovers; 

2. Number of ping-pong handovers: This is the number of handovers that occur back and 

forth between two BSs in a short amount of time; 

3. Number of handover failures (HOFs): This is the number of handovers that failed due 

to either desired BS CQI dropping to a value lower than desired or due to a gross 

handover failure (described in Section 5); 

4. Average handover latency: This includes the time it takes for a HOF to become successful 

after retransmissions but excludes gross failures as they are rare occurrences and can 

significantly skew the latency. 

Throughput performance metrics (QoE metrics): 

1. Total throughput: This is the total throughput for the uplinks and downlinks of the 

whole network in megabytes per second (MBps); 

2. Average UE throughput: This is the average throughput per UE in MBps; 

3. UE satisfaction rate: This is defined as the percentage of time that the UE data rate 

requirements are met. 

7. Results and Discussion 

7.1. Deep Learning Performance 

The training is based on supervised learning, where the LSTM is made aware of all 

24 classification variations. The number of epochs and hidden units is varied to evaluate 

their impacts on the performance results in terms of learning time (s) and prediction accuracy 

(%). The results are averaged over three simulation runs with percentages rounded to the 

nearest 0.01% and time rounded to the nearest second. 
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Table 10 shows the effects of increasing the number of hidden units on the performances 

in each simulation run with the number of epochs fixed at 1000. The results illustrate an 

example of all three types of capacity fittings [32]: 

1. Underfitting: where the solution is not sufficiently complex to understand the data, 

causing a bias underfitting issue. This can be seen with 5 and 10 hidden units; 

2. Overfitting: where the solution learns the training data but fails to generalize the train-

ing set for new unseen testing data. This can be slightly observed with 40 hidden 

units; 

3. Appropriate fit: where the solution can generalize as well as learn the trend to predict 

new data accurately. This is observed with 20 hidden units. 

Table 10. Effects of the number of hidden units (1000 epochs). 

Number of  

Hidden Units 

Learning Time (s) Prediction Accuracy (%) 

Run 1 Run 2 Run 3 Mean Run 1 Run 2 Run 3 Mean 

5 241 239 254 245 81.35 76.94 73.35 77.21 

10 273 284 294 284 88.44 71.08 86.32 81.95 

20 352 353 360 355 99.45 99.86 99.47 99.59 

40 540 550 533 541 94.12 98.82 99.27 97.40 

Table 11 further shows the effects of increasing the number of epochs on the perfor-

mances in each simulation run with the number of hidden units fixed at 20. Similarly, all 

three types of fits are visible. Based on the results obtained from varying these two param-

eters, the combination of 20 hidden units and 1000 epochs is chosen for the evaluation of 

handover and throughput performances in the next section. 

Table 11. Effects of the number of epochs (20 hidden units). 

Number of 

Epochs 

Learning Time (s) Prediction Accuracy (%) 

Run 1 Run 2 Run 3 Mean Run 1 Run 2 Run 3 Mean 

10 4 4 4 4 22.12 8.17 19.86 16.72 

100 37 34 34 35 57.03 67.89 54.17 59.70 

1000 352 353 360 355 99.45 99.86 99.47 99.59 

2000 710 819 739 756 90.05 90.68 99.35 93.36 

7.2. Handover Performance 

7.2.1. Total Handovers 

Figure 5a shows the total number of handovers for both algorithms. Interestingly, it 

can be noticed that the proposed algorithm has a higher number of handovers than its 

3GPP counterpart. In order to gain better insights into this phenomenon, we also analyzed 

the number of handover triggering events for each algorithm, as shown in Figure 5b. It 

was found that in the proposed algorithm, each handover was triggered only once (when 

it needed to proceed to the handover procedure phase), while in the 3GPP scheme, each 

handover was triggered 2.8 times on average. This is due to the 3GPP scheme only taking the 

current time instance to compare the RSRP, subjecting its handover decisions to greater impact 

by random channel effects. 
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(a) (b) 

Figure 5. (a) Total number of handovers and (b) number of triggering events. 

The higher total handovers by the proposed algorithm can be attributed to its focus 

on providing links with the best possible CQI to improve the user data rates, i.e., users 

could be handed over to achieve higher data rates, not only when they are at risk of losing 

the link to their current serving BSs due to mobility. 

7.2.2. Ping-Pong Handovers 

Figure 6a,b shows the number of ping-pong handovers for both algorithms, and their 

proportion as a percentage of the total handovers, respectively. The results show the pro-

posed algorithm has fewer ping-pong handovers than the 3GPP scheme and much fewer 

when considered as a percentage of the total handovers. The key feature that contributes to 

this outcome is the averaging of the CQIs over seven timestamps, therefore mitigating 

potential ping-pong effects and providing a more stable transition to the desired BS. 

  
(a) (b) 

Figure 6. (a) Number of ping-pong handovers and (b) ping-pong handovers as a percentage of total 

handovers. 
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7.2.3. Handover Failures 

Figure 7a shows the number of HOFs for both algorithms. The result shows that the 

proposed algorithm has a higher number of HOFs than the 3GPP scheme, which is some-

what unexpected. However, this absolute number of HOFs can be misleading as the pro-

posed algorithm also performed a much higher number of handovers, as explained in 

Section 7.2.1. Indeed, if we consider the HOFs as a percentage of the total handovers, the 

proposed algorithm is found to fail 30% less than the 3GPP scheme, as shown in Figure 

7b. 

This can be attributed to the more confident decision-making by the proposed algo-

rithm as it checks the LUT conditions for the average value of the past seven instances. 

Additionally, it can be attributed to the faster response of the proposed algorithm to 

higher mobility UEs due to its variation in the frequency of MRs with mobility. 

7.2.4. Average Handover Latency 

Figure 8a shows the average latency of successful handovers for both algorithms. The 

results show the latency of the proposed algorithm is marginally lower than the 3GPP 

scheme. Since a handover may be attempted multiple times due to retransmission of failed 

handover communications, we also analyzed the proportion of handovers that made a differ-

ent number of attempts before they became successful. 

Figure 8b shows the percentage of handover attempts after a set number of retrans-

missions (abbreviated as reTx in the figure). It shows that most of the successful hando-

vers were attempted only once (0 retx) or twice (1 retx) for both algorithms. Despite hav-

ing a slightly lower proportion of handover that becomes successful after the first attempt 

(0 retx) than the 3GPP scheme, the proposed algorithm is still found to incur a lower av-

erage latency. This may be due to the simultaneous activation of admission control and 

UE handover procedure by the proposed algorithm as described in Section 5.2.2, which 

helps to reduce the impact of the handover retransmissions. 

  
(a) (b) 

Figure 7. (a) Number of handover failures and (b) handover failures as a percentage of total hand-

overs. 
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(a) (b) 

Figure 8. (a) Average handover latency and (b) percentage of handover attempts. 

7.3. Throughput Performance 

7.3.1. Total Throughput 

Figure 9 shows the total throughput for the downlink and uplink of both algorithms. 

The result shows that the proposed algorithm achieves higher throughput by approximately 

45% in both downlink and uplink, which is a significant improvement over the 3GPP 

scheme. This result is expected as the proposed algorithm was designed to provide users 

with links having the best possible CQI to improve their data rates rather than to simply 

maintain their connectivity. 

 

Figure 9. Total throughput. 

7.3.2. Average UE Throughput 

Figure 10 shows the average downlink and uplink throughputs of each of the 40 UEs 

for both algorithms. This result shows that the average UE throughput for the proposed 
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algorithm is generally higher. For example, the 3GPP scheme has 17 UEs with an uplink 

data rate of below 1 MBps compared to only 9 UEs for the proposed scheme, i.e., a 47% 

reduction in the number of low throughput users. Similarly, the 3GPP scheme has 16 UEs 

with a downlink data rate of below 1 MBps compared to only 8 UEs for the proposed 

scheme, i.e., a 50% reduction in the number of low throughput users. This finding is gen-

erally consistent with the total throughput result in Section 7.3.1. 

7.3.3. UE Satisfaction Rate 

Finally, Figure 11 shows the UE satisfaction rate for both algorithms. It refers to the 

percentage of time that the data rate requirement for each UE is met. The result clearly 

shows that a larger number of UEs are satisfied by the proposed algorithm is compared 

to the 3GPP scheme. If we consider UEs who are satisfied at least 50% of the time with 

their uplink and downlink data rates, then the proposed algorithm has outperformed the 

3GPP scheme by approximately 40%. 

 
(a) 

(b) 

Figure 10. Average UE throughput for (a) downlink and (b) uplink. 

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

A
ve

ra
ge

 U
E 

th
ro

u
gh

p
u

t 
(M

B
p

s)

Users

DL LSTM 3GPP

0.00

5.00

10.00

15.00

20.00

25.00

30.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

A
ve

ra
ge

 U
E 

th
ro

u
gh

p
u

t 
(M

B
p

s)

Users

DL LSTM 3GPP



Telecom 2021, 2, 26 468 
 

 
(a) 

(b) 

Figure 11. UE satisfaction for (a) downlink and (b) uplink. 

8. Conclusions 

A DL LSTM handover decision algorithm utilizing LUTs and MEC was proposed, 

and its impact on UEs and BSs against the benchmark 3GPP scheme was investigated. The 

results showed that the QoE targets are achieved with improvement in the UE satisfaction 

rate by 40% over the 3GPP scheme. By replacing the TTT with a dynamic triggering func-

tion, the proposed algorithm provided a very fast response to UE mobilities when the LUT 

requirements were met. This allowed the QoS targets to be met with lower HOF and ping-

pong rates than the benchmark by 30% and 86%, respectively. These performance gains 

are achieved despite a higher occurrence of handovers. This is due to the algorithm at-

tempting to accommodate user data rate requirements and/or user CQI expectations. Fur-

thermore, the proposed modification to the admission control process resulted in hando-

vers with lower latencies that approach the user plane eMBB latency target. As future 

work, we plan to extend our approach to enhancing inter-RAT handovers as coexistence 

between legacy and successor systems has always been a requirement in different gener-

ations of cellular networks. We also plan to use reinforcement learning to make our LSTM 

models autonomously adaptive to changing future environments and user requirements. 
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Nomenclature 

3GPP 3rd Generation Partnership Project 

4G/5G 4th/5th Generation 

AI Artificial Intelligence 

AMF Access and Mobility Management Function 

BBU Base Band Unit 

BS Base Station 

CoMP Coordinted Multi-Point 

CQI Channel Quality Information 

DL Deep Learning 

DR Date Rate 

DRR Date Rate Ratio 

EAC Early Admission Control 

eMBB Enhanced Mobile Broadband 

FDD Frequency Division Duplexing 

gNB Next-generation NodeB 

GPS Global Positioning System 

GRU Gated Recurrent Unit 

HCSNet Heterogeneous Cloud Small Cell Network 

HOF Handover Failure 

LOS Line-of-Sight 

LSTM Long-Short Term Memory 

LTE Long Term Evolution 

LUT Look-Up Table 

MBps Mega Bytes per second 

MEC Multi-access Edge Computing 

ML Machine Learning 

mmAP Millimeter-wave Access Point 

MR Measurement Report 

NFV Network Function Virtualization 

NLOS Non-Line of Sight 

NYU New York University 

QoE Quality of Experience 

QoS Quality of Service 

RAN Radio Access Network 

RAT Radio Access Technology 

reTX Retransmission 

RNN Recurrent Neural Network 

RSRP Reference Signal Received Power 

RSS Received Signal Strength 

RSU Road Side Unit 

RX Receive 

TOPSIS Technique for Order Preference by Similarity to Ideal Solution

TTT Time-to-trigger 

TX Transmit 

UE User Equipment 

UPF User Plane Function 

URLLC Ultra-Reliable Low Latency Communication 
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VAR Vector Autoregression 
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