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Abstract: This paper proposes a potential enhancement of handover for the next-generation multi-
tier cellular network, utilizing two fifth-generation (5G) enabling technologies: multi-access edge
computing (MEC) and machine learning (ML). MEC and ML techniques are the primary enablers for
enhanced mobile broadband (eMBB) and ultra-reliable and low latency communication (URLLC).
The subset of ML chosen for this research is deep learning (DL), as it is adept at learning long-term de-
pendencies. A variant of artificial neural networks called a long short-term memory (LSTM) network
is used in conjunction with a look-up table (LUT) as part of the proposed solution. Subsequently, edge
computing virtualization methods are utilized to reduce handover latency and increase the overall
throughput of the network. A realistic simulation of the proposed solution in a multi-tier 5G radio
access network (RAN) showed a 40–60% improvement in overall throughput. Although the proposed
scheme may increase the number of handovers, it is effective in reducing the handover failure (HOF)
and ping-pong rates by 30% and 86%, respectively, compared to the current 3GPP scheme.

Keywords: multi-tier cellular handover; multi-access edge computing; deep learning; long short-term
memory; heterogeneous network; 3GPP

1. Introduction

With the introduction of the fifth-generation (5G) cellular network [1], the industry is
posed with many diverse challenges. A common challenge to all three major pillars of 5G
(enhanced mobile broadband (eMBB), massive machine-type communications (mMTC),
and ultra-reliable low latency communications (URLLC)) is seamless and low latency
multi-tier handover. In the latest 3rd generation partnership project (3GPP) standards for
5G [2], it was noticed that the event-based triggering for handover ignores various key
elements of the user’s session that require to be taken into consideration, such as their
mobilities and data rate requirements. The user requirements are ever-changing; thus,
cellular networks must be sufficiently dynamic to react and cater to this demand effectively.
There are various channel inefficiencies that occur when a diverse range of requirements
are not taken into consideration.

The issues relating to multi-tier handovers have not been effectively resolved to this
day. There is literature addressing the issues of handover, but only a small portion of these
adopt a form of artificial intelligence (AI) or cloud computing techniques in their solutions.
The use of deep learning (DL) and multi-access edge computing (MEC) for optimizing
handover is still a gap in the industry that has not been explored yet.

With the addition of MEC and DL in 5G, network operators can gather user data
and analyze variations in signal strength, mobility patterns, and data rate requirements of
each user to achieve optimum user experience. Additionally, with the implementation of a
system that understands the user’s requirements, network elements also benefit because
this helps to manage the base station’s resources efficiently. Keep in mind that the network
operators should extract or use all of these data without compromising on the compliance
of user privacy laws of the specific country.
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The objective of this paper is to develop a DL handover decision algorithm while
utilizing MEC. This will enable a faster and more reliable handover system that would
ideally allow the user to switch seamlessly between any cellular network configurations
based on key requirements. The scope of this research is focused on a 5G heterogeneous
environment with various base station tiers (macro, micro, and femtocells) to carry out a
comprehensive multi-tier handover evaluation. This research is validated by conducting
software simulations to compare the proposed method to the handover technique specified
by 3GPP in the technical standard (TS) 38.300 [3]. Both key components of the simulator:
channel model and scheduler, are compliant with 3GPP standards 38.104 [4] and 36.873 [5],
respectively. The main contributions of this paper are as follow:

• Proposal of a new DL Long Short-Term Memory (LSTM) handover decision algorithm
that uses a look-up table (LUT) and is catered to key user quality of experience (QoE)
and quality of service (QoS) requirements;

• Replacement of the time to trigger (TTT) with a dynamic LUT-based trigger mechanism;
• Modification of the handover admission control process when using the DL LSTM

logic to occur at the same time instant that the base station sends the handover
command to the UE. This is assuming that the user plane function (UPF) and the access
and mobility management function (AMF) is located at the MEC aggregated edge.

The rest of this paper is organized as follows: Section 2 provides some necessary
preliminaries. Section 3 overviews the related works. Section 4 introduces the system
model. Section 5 presents the proposed algorithm. The simulation model and performance
metrics are described in Section 6. This is followed by results and discussion in Section 7.
Finally, Section 8 concludes the paper with some directions for future work.

2. Preliminaries
2.1. Multi-Tier Intra-RAT Handover

This paper focuses on enhancing the 5G multi-tier intra-radio access technology (RAT)
handover. This refers to a handover where the current and target BSs involved in the
handover of user equipment (UE) are located in different tiers of the network, and the RAT
of both current and target BSs is the same [6]. In 5G networks, a BS that connects the UE to
the 5G core (5GC) via next-generation (NG) interfaces is referred to as a gNodeB (gNB) [3].
The intra-RAT handovers occur in the AMF and UPF elements of the 5G architecture.

This paper models the handover functions performed by the UE, gNB, AMF, and
UPF as specified in the non-roaming architecture for 5G in 3GPP standard TS 23.501 [7].
The AMF manages the handovers between different gNBs, while UPF supports service
features such as packet routing for the UE. Both AMF and UPF communicate with the
gNBs through the N2 and N3 interface, respectively.

2.1.1. 3GPP Defined Logic and Procedure

This section overviews the handover logic and procedure defined in 3GPP TSs
38.331 [8] and 38.300 [3], respectively. Before detailing these steps, an understanding
of how a UE switches between idle and connected states are described below:

• Idle: A UE is in the idle state when its context is known to the 5GC but does not
have an established connection to a gNB. In this state, the UE listens and responds
to broadcasted messages from gNBs. It performs measurements and cell reselection
methods when it is ready to connect to a gNB;

• Connected: A UE is in the connected state when its context is known to both 5GC and
gNB. In this state, the UE provides periodic measurement reports with channel quality
information (CQI). Data are regularly transferred in this phase.

At set timestamps during the connected state, the UE sends measurement reports
for the AMF to assess whether a handover is necessary. Usually, it is based on the UE’s
received signal strength (RSS) for its associated BS, although sometimes other factors such
as loading are considered. The way the AMF decides whether a handover is to occur is
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decided based on an event-triggered system. Events are triggered by the logic described
in [8]. There are various event triggers, and their parameters are specified in Tables 1 and 2.
Events A1 through A6 are only considered as they relate to intra-RAT handover; other
events such as B1 are not relevant to this work as they relate to inter-RAT handover.

Table 1. Handover trigger events for intra-RAT handover.

Event Description

A1 Serving cell becomes better than a threshold
A2 Serving becomes worse than a threshold
A3 Neighbor becomes offset better than serving
A4 Neighbor becomes better than a threshold

A5 Serving cell becomes worse than threshold 1, and neighboring cell becomes
better than threshold 2

A6 Neighbor become offset better than secondary cell

Table 2. Event parameter ranges.

Event Parameter Minimum Maximum

A1, A2, A4, A5 RSRP threshold −156 dBm −31 dBm
All Hysteresis 0 dB 15 dB

A3, A6 Offset −15 dB +15 dB

Each event has an entry and leaving condition. If the entry condition is satisfied
for longer than a certain period, called the time to trigger (TTT), the BS will initiate the
handover procedure to the desired cell. However, if the UE’s reference signal received
power (RSRP) drops below the leaving condition or does not meet the entry condition after
the TTT, the UE remains connected to the current BS, as the desired BS no longer meets
the criteria.

This paper focuses on implementing two of the handover events, A1 and A3. Other
events are not considered as there will be unnecessary complexities introduced that will
diverge from the scope of this work. For example, an A6 handover would require a form
of dual connectivity for the user to perform and assess this event correctly. After the UE
has met the entry condition for the duration of the TTT interval, a handover procedure is
initiated. There are three phases [3]:

• Preparation: Upon deciding to handover, the source gNB sends a handover request to
target gNB, which in turn processes the request and completes the admission control
by returning a handover request acknowledgment to the source gNB;

• Execution: Upon being notified by source gNB, UE begins to detach from source gNB
and synchronizes to target gNB. Simultaneously, source gNB executes a sequence
number (SN) status transfer and delivers buffered and new data from UPF to tar-
get gNB;

• Completion: This phase begins with a path switch requested by the target gNB, which
triggers the 5GC to switch the path of the UE’s data to the target gNB via the UPF.
Then UPF sends the end marker for source gNB via the AMF, which in turn sends a
path switch acknowledgment. Finally, the target gNB sends a message to source gNB
to release the context of the UE, completing the handover procedure.

2.2. Far and Aggregated MEC

While the traditional cloud computing services reside in the core, multi-access edge
computing (MEC) enables decentralized cloud-like services close to the edge of a network,
allowing for lower latencies and higher throughputs for users [9]. Figure 1 highlights their
key differences. This paper focuses on the two edge data center architectures, (i) far edge
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and (ii) aggregated edge, to achieve a handover latency that approaches the user plane
eMBB and URLLC latency targets of less than 4 ms and 1 ms, respectively [10].

Figure 1. Edge (MEC) and Central (Cloud) data centers.

2.3. LSTM

This paper focuses on one of the popular deep learning algorithms called long short-
term memory (LSTM), which is known to be able to learn and memorize long-term de-
pendencies [11]. LSTMs consist of one cell state and various gates. The cell state is the
“memory” part of the LSTM, which can be altered by various gates, each comprising of a
sigmoid neural network layer and a pointwise multiplication operation [12]. While differ-
ent variants of LSTMs exist, such as peephole connections [13] and gated recurrent unit
(GRU) [14], this paper uses the standard LSTM as it is ideal for classifications of sequence
data. A detailed explanation of the LSTM process can be found in [11].

3. Related Works

This section classifies and analyzes the literature on multi-tier handovers under three
solution approaches: multi-connectivity, AI, and cloud/edge-based approaches, and high-
lights key areas for improvement.

3.1. Multi-Connectivity Approach

Multi-connectivity refers to the situation when a user is connected to more than one
BS to ensure that its connection to the network is not lost. Soft handovers, considered in
this paper, are a type of multi-connectivity, as when handing over, the user is connected to
multiple BSs at once for a small amount of time. In the following, we review the literature
that employs multi-connectivity for multi-tier handovers.

In [15], the issue of high handover latency and signaling overhead was addressed.
The authors proposed that the UE is always connected to two 5G millimeter-wave access
points (mmAPs) and one LTE BS. The proposed scheme compares the predicted RSS of the
active set of 5G-mmAPs and one LTE-BS to another candidate, LTE-BS or 5G-mmAP. If
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the candidate device has a better RSS, the network will initiate a handover request to the
core network. The proposed algorithm is compared to two systems: A3 event-based logic
and the current scheme but without prediction. Simulation results show that the average
throughput of the proposed scheme is improved by 12% under moderately high mobility
(30–50 km/h). Additionally, the number of handovers is also reduced by 5%. However, it
is observed that although the system is a multi-tier network, it lacks a detailed study on
multi-tier handover as the focus is primarily on the 5G-mmAPs. It is also observed that
the resulting channel efficiency is reduced since the UE uses three forms of connectivity to
achieve minor improvements. This issue can pose a major constraint when this is deployed
in a populated environment.

The same channel efficiency and signaling overhead issues are accentuated in [16],
where the authors aim to address the issue of mm-waves being highly susceptible to
blockages and degradation in channel quality. The proposed solution consists of a hetero-
geneous dual-connectivity solution that connects UEs to both 4G LTE and 5G mm-wave
BSs, providing rapid switching from 5G to 4G for failures on any link. Additionally, the
solution added the complexity of including static and dynamic TTT delays. The proposed
algorithm is compared with that of 3GPP for vertical handover. In terms of the number
of handovers executed, the 3GPP algorithm is more efficient by 5–10%, as the proposed
dual-connectivity approach requires the handovers to occur more frequently as user re-
quirements change. However, the handover latency is reduced by 70%, while the overall
throughput is marginally improved by 2–5%.

In [17], the authors proposed a combination of soft and hard handover solutions for
horizontal and vertical handover in a vehicular network. The proposed algorithm uses
circular geometric calculations to model the cell’s coverage, relying on the vehicle’s GPS
coordinates to trace the path accurately. It also uses soft handover between roadside units
(RSUs) and hard handover between RSU and BS. Additionally, the handover latency is
considered when the algorithm executes its decision, resulting in a combination of the cell
with the lowest latency and the best QoS. The proposed solution is compared with the
3GPP threshold and signal hysteresis methods to determine if the number of handovers
and HOFs are reduced. The algorithm provided a reduction of 30% in handovers and a 25%
reduction in HOFs at speeds of 100 km/h. However, there are two potential drawbacks to
this proposed solution: (i) The signal overhead for RSU and BS will increase dramatically
as the density of vehicles grows. Hence, the equipment cost on the network side to support
this will increase. (ii) The system present in the vehicle requires at least three other separate
systems to be able to execute handovers, which would further add to the cost of the system.

3.2. AI Approach

AI-based handover is where the system learns user patterns and dependencies and
attempts to find the most optimal solution through its learning. AI can include forms of
ML as well as other forms of evolutionary learning. This section divulges details of the
improvements that AI-based schemes can provide for multi-tier handovers.

The authors of [18] proposed to use fuzzy logic to solve issues relating to redundant
handovers and HOF ratios in dense small cell networks in LTE. A self-optimizing system
that analyses the user velocity and radio channel quality and adapts hysteresis values for
handover decisions is proposed. The inputs for the system are the user velocity, RSRP, and
reference signal received quality (RSRQ). The proposed algorithm is compared to four other
algorithms: Best Connection, Conventional LTE handover, Fuzzy Multiple-Criteria Cell
Selection integrated with TOPSIS, and Self-Tuning Handover Algorithm. The proposed
algorithm reduced the average number of handovers by 20%, the overall HOF ratio by
25%, and the ping-pongs events by 50%. However, the impact on latency and throughput
has not been analyzed, which could insinuate a possible increase in computational strains,
resulting in a reduction in the user’s quality of experience.

In [19], the authors addressed the inefficiencies of handover for in-building systems.
The proposal is to optimize these inefficiencies through ML and data mining techniques by
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developing a clustering algorithm based on shapelets and wavelet decompositions at the
cell’s edge. The considered environment consists of two in-building systems on a university
campus and a three-sector macro-cell. The authors developed objective functions for three
scenarios of loading the macro-cell and in-building systems (assuming UEs are exiting the
building) to achieve the optimal operating point, which is a combination of the A2 and
A3 handover thresholds and a TTT period. The optimal operating points were based on
HOF, ping-pong, and average data rates. The achieved data rate gain by this algorithm is
between 25% and 65% over the static A3 algorithm. The authors discussed ping-pong and
HOF rates but did not provide evidence of improvements in these areas. It is also unclear
how the proposed algorithm would perform when there are mass user movements, such
as leaving the building when a class finishes.

A DL approach was analyzed in [20], where the authors proposed to significantly
reduce service traffic that is transmitted through the 5G communication channels and to
optimize handovers. The proposed algorithm uses gated recurrent units (GRUs) to provide
a rapid response to changes in the environment. The GRU is used to predict how many
users would be in a particular cell for a given the time of day. The prediction scheme varies
the size of the cell coverages based on the time of day. This allows underloaded cells to be
easily handed over and overloaded cells to become harder to connect into. The authors
used supervised learning for these predictions and compared them to a DL LSTM over
300 epochs. It is shown that the GRU can achieve a better result than the LSTM in a short
time frame, although the LSTM becomes more accurate as the number of epochs increases.
It is also shown that the GRU can accurately model daily user traffic with an accuracy of
90%. However, the authors did not state when all cells are overloaded, which would cause
the coverages to become so small that dead zones appear, causing mass radio link failures
for the users.

In [21], the authors proposed a hybrid user mobility prediction approach based on
vector autoregression (VAR) and gated recurrent unit (GRU). The proposed approach
is shown to predict user future trajectory with less error than methods based on GRU
alone, recurrent neural network (RNN), and LSTM. The approach is then applied to
handover management in mobile networks to reduce the amount of handover processing
and transmission costs. However, user mobility is only one factor that could affect the
connectivity of the users to the network. There are other factors that could affect the
user’s connectivity, such as fading and shadowing effects on the channel conditions and
the interferences from other transmitting users. The fading and shadowing effects are
propagation environment-dependent, e.g., built-up vs. open-space, while the interferences
are dependent on the presence of other concurrent transmissions in the same frequency
band, particularly at the cell edges. These critical factors were not considered in the
above work.

3.3. Cloud/Edge-Based Approach

The industry was the major force behind the push for many cloud and edge-based
solutions. This has also applied to handover solutions, such as cloud and edge computing,
and can provide significant benefits in terms of lower latency and higher throughput when
compared to systems that do not utilize them.

This can be observed in [22], where the authors addressed the issues with cooper-
ative interference mitigation and handover management in heterogeneous cloud small
cell networks (HCSNet). This is a type of network architecture that combines the cloud
radio access network (RAN) with small cells. The authors specifically target UEs moving
between macro cells and small cells. A low complexity handover management scheme
was proposed, and its signaling procedure was analyzed. The authors developed their
algorithm based on UE speed estimations (using an autocorrelation function) and UE
latency requirements. Additionally, to avoid user interference at the cell’s edge, the authors
proposed a coordinated multipoint (CoMP) joint transmission clustering scheme using
affinity propagation methods. The results show that the signaling overhead related to call
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holding time and high mobility users are reduced significantly by 40% and 90%, respec-
tively. Although the solution provides an effective reduction in signaling overheads, there
is a lack of analysis of other key performance indicators such as the number of handovers,
ping-pong rate, and handover latency.

In comparison to the previous effort, the authors in [23] focus on the latency benefits
of using a cloud RAN architecture, as this is an important enabler for URLLC services for
high mobility applications. The authors analyzed the performances of different cloud RAN
architectures and then developed a new concept called early admission control (EAC) for
reducing the handover preparation time. This algorithm is created with respect to syn-
chronous handovers without random access and then compared to the current distributed
RAN configurations. The results show a clear reduction in handover preparation time of
up to 30% when compared to cloud RAN architectures without EAC and more than 60%
when compared to distributed RAN architectures (resulting in better throughput and lower
signaling overheads). Although this proposed approach is promising, it was observed that
the authors could have moved the EAC preparation closer to the edge of the RAN in order
to achieve an even lower latency, which is the concept being investigated in this paper.

In [24], the authors considered a 5G-MEC network where MEC servers are co-located
with 5G BSs to support the computation-intensive, and delay-sensitive mobile augmented
reality (MAR) applications. They proposed a handover scheme for users of MAR ap-
plications that considered not only the RSS of BSs but also the computation load of the
co-located MEC servers. Hence, handovers can be triggered when the RSS of the serving
BS is sufficiently degraded or when its co-located MEC server is sufficiently overloaded. It
was shown that the proposed scheme could improve UE experienced delay significantly
and is relatively robust to different UE speeds. However, it is conceivable that the proposed
scheme can also cause UEs to be handed over to BSs with less loaded MEC servers as well
as lower RSS, resulting in a deteriorated performance of non-MEC applications that may
be executing on these UEs.

3.4. Summary

Table 3 summarizes the related works. Where works are found to share similar pros
and cons, the discussion of their benefits and drawbacks are merged.

Table 3. Summary of related works.

Approach Ref. Solution Summary Benefits and Drawbacks

Multi-
connectivity

[15]

• Proposes to always connect
UE to two 5G mm-wave ac-
cess points and one LTE BS to
reduce HO latency and signal-
ing overhead Benefits:

• Reduced number of HOs and
HO latency

• Increase throughput

Drawbacks:

• High signaling overhead
• Inefficient use of radio

resources
• No comprehensive study of

multi-tier HOs despite
having a two-tier scenario

• Focuses mainly on one tier
and uses the other tier as a
fall-back system

[16]

• Proposes a dual-connectivity
solution that connects UE to
both 4G LTE and 5G
mm-wave BSs

• This mitigates issue of
mm-waves being susceptible
to blockages and degradation
in channel quality

[17]

• Proposes HO decision
scheme for vehicles based on
geometrically calculated cell
coverage, vehicle trajectory,
and HO latency

• Uses soft HO between RSUs
and hard HO between RSU
and BS
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Table 3. Cont.

Approach Ref. Solution Summary Benefits and Drawbacks

AI-based

[18]

• Proposes to use fuzzy logic to
reduce redundant HOs and
HOF rates in dense small cell
networks

• Analyzes UE velocity and
radio channel quality to
adapt hysteresis margins for
HO decisions

Benefits:

• Reduced HOs, HOF, and
ping-pong rates

Drawbacks:

• No latency, throughput
results

• High computational load

[19]

• Proposes to use ML and data
mining techniques to learn
and identify cell
characteristics and then
optimize the HO parameters
for in-building BSs

• The considered HO
parameters are A2 and A3
handover thresholds, and
TTT period

Benefits:

• Good throughput
• Low latency

Drawbacks:

• No results on HOF, number
of HOs, and ping-pong rates

• Only focused on exiting UEs

[20]

• Proposes a GRU-based
scheme to predict the number
of users in a cell for a given
time of day

• The prediction is used for
varying cell sizes, making it
easier for UEs to be handed
over to underloaded cells or
harder for UEs to connect to
overloaded cells

Benefits:

• Predict up to 90% accuracy
• Cell sizes variable for more

balanced loading

Drawbacks:

• When all cells overloaded,
radio link failures increase

• Need plenty of data to learn
• Lower accuracy than LSTMs

[21]

• Proposes a hybrid VAR-GRU
scheme to predict the future
trajectories of users in a
mobile network

• The prediction is applied to
HO management to reduce
HO processing and
transmission costs

Benefits:

• Higher prediction accuracy
than GRU, RNN, and LSTM

Drawbacks:

• No consideration of
propagation effects and
interferences on user
connectivity

Cloud/Edge-
based

[22]

• Proposes a CoMP
transmission scheme and a
HO management scheme for
HCSNets with macro and
small cells

• Determines if UEs can
handover from macro to
small cells based on their
speed/latency requirements

Benefits:

• Less HO signaling overhead

Drawbacks:

• No other metrics evaluated
• Mainly focuses on

macro-to-small cell HOs

[23]

• Proposes an EAC scheme for
reducing HO preparation
time in cloud RAN

• Focuses on synchronous HO
that enables predictable and
fast HO to support URLLC
services in high mobility
applications

Benefits:

• Reduced HO preparation
time and overall latency

Drawbacks:

• Only uses cloud; may
improve latency by utilizing
MEC
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Table 3. Cont.

Approach Ref. Solution Summary Benefits and Drawbacks

[24]

• Proposes a HO algorithm for
users of MAR applications in
5G-MEC network

• Jointly considers RSS of BSs
and computation load of
co-located MEC servers

Benefits:

• Reduced UE experienced
delay

Drawbacks:

• Potential performance
tradeoff between MEC and
non-MEC applications

In summary, this discussion of related works shows that research gaps that can be
addressed still exist. Despite our exhaustive search, very few works on multi-tier handover
were found to combine all three approaches above. This presented a unique opportunity
for us to explore and propose a new mechanism for multi-tier handover.

4. System Model

Figure 2 shows the 5G RAN architecture considered in this work. It is a type of Cloud
RAN with three tiers, namely macrocells, microcells, and femtocells. The macrocell BS,
i.e., gNB, can be functionally split into one centralized unit (CU) and one or more active
antenna units (AAU) and distributed units (DU). The AAU is an antenna-integrated remote
radio head (RRH), while both DU and CU constitute the base band unit of the Cloud RAN.
The DU comprises the physical, medium access control, and radio link control sublayers,
whereas the CU comprises the remaining higher sub-layers. Both microcells and femtocells
operate the same 5G radio access technology as the macrocell, but with different operating
parameters such as different frequency, bandwidth, and transmit power.

Figure 2. Three-tier 5G RAN architecture with MEC deployment.

This work also considers the deployment of two types of MEC platforms: aggregated
edge at the CU of gNB and far edge at each microcell. By using the network function
virtualization (NFV) technique, instances of two 5G core network functions, AMF and UPF,
can be deployed and hosted in the aggregated edge. The virtualized AMF can reduce the
handover latency, while the virtualized UPF, along with the far edge at microcells, can
improve the performance of user application traffic.

Finally, three types of users, namely motorists, cyclists, and pedestrians, are consid-
ered, representing users of high, medium, and low mobility, respectively. As the users
move, their connectivity to the network can be switched between cells of the same or
different tier, as determined by the handover mechanism.
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5. Proposed Algorithm

Before detailing the proposed algorithm, we describe the benchmarking scheme to be
used, which is the 3GPP defined handover logic and procedure described in Section 2.1.1
but adapted with aggregated edge components for enabling lower latencies.

5.1. Benchmarking Scheme
5.1.1. Handover Logic

For the UE to trigger a handover, its RSS has to be greater than the A3 entry condition.
Table 4 describes the equations and offset values used. This table is used for the decision
made after the TTT period, whether it is an A1 or an A3 handover.

Table 4. A1 and A3 handover conditions.

A3 Event A1 Event

target gNB RSS > source gNB RSS + A3
offset (3 dB)

source gNB RSS > A1 threshold
(minimum RSS for a CQI of 1)

If it is an A1 handover, it will revert back and remain connected to the source gNB. If it
is an A3 handover, the UE will move on to the handover initiation phase. Otherwise, if the
UE’s CQI for the serving BS drops below a value of 1 during this process, the UE becomes
idle and begins to reconnect to the base station that meets the A1 handover conditions. For
all cases, the handover trigger instance will be recorded.

5.1.2. Handover Procedure

Key communication delay parameters for the handover procedure are given below.
All latency values are obtained from [23,25]:

• Handover request from source gNB to target gNB: 2 ms between their respective
distributed units;

• Admission control: 1ms for admission control at the target gNB;
• UE handover initiation message: 1ms for data transmission over air interface;
• UE handover configurations:

# Handover request processing: 5 ms;
# Handover reconfiguration: 10 ms;

- Status transfer from source gNB to target gNB: 1 ms;
- Target gNB and UE synchronization messages: 2 ms.

Additionally, two handover failure (HOF) types are identified:

1. If at any point during the handover procedure, the desired BS’s CQI is < 1, the
handover is stopped, and the UE is moved to the connected state;

2. If 16 or more communication failures occur in a set handover period, these are
considered gross handover failures [26], then the UE will be disconnected from the
BS and become idle.

5.2. Proposed DL LSTM Algorithm

In this work, we propose a DL LSTM handover decision algorithm. To develop a
DL LSTM, an understanding of what the inputs and outputs must be realized. First, the
desired outputs are decided. These are based on what is desirable and what challenges
that this proposal is trying to address. The metrics are:

1. User CQI: This is chosen to be an output to ensure that data connections are never
lost, and a good QoS is maintained;

2. User data rate requirements: This is required to ensure that the user’s data rate (DR)
requirements are met for as long as possible;

3. User velocity: This ensures that the algorithm is dependent on user mobility when
connection requirements become more important.
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The parameters above were chosen because it provides the algorithm the best oppor-
tunity to meet the UEs’ QoS and QoE requirements. Therefore, from these desired output
metrics, the key input dimensions were chosen. This LSTM consists of four dimensions.
The UE’s velocity is split into direction and speed for a smoother and faster learning process
for the DL LSTM.

First Dimension: User CQI
This is the UE’s CQI rating for the potential BS, and only BSs that have a CQI ≥ 1

are considered. This eliminates any BSs which are not within the range. This method, if
implemented correctly, can reduce signaling overheads and UE costs. This is because there
is no longer a need for the capability to monitor and report on a minimum of eight (four
Inter-RAT and four Intra-RAT) BSs, as stated in [27].

Second Dimension: User data rate ratio
The UE’s data rate ratio (DRR) is derived as DRR = minimum DR that BS can sup-

port/maximum user DR requirements. The maximum data rate is the maximum of the uplink
and downlink requirements. The minimum data rate that BS can support is given by:
minimum BS DR for a CQI of 3/number of UEs attached (if attached UEs > 0); or minimum DR
that BS can support for a CQI of 3 (if there is no attached UE).

A CQI of 3 was chosen as this is the average CQI that a UE will have when connecting
to a BS at a distance equivalent to approximately 70% (±10–20%) of the BS’s coverage. This
distance was chosen as, in most cases, the CQIs of potential BSs that can be handed over to
will not be higher than 50–70% of the BS coverage. Thus, a value of 20% of the maximum
CQI value of 15 was taken. The variation takes into consideration of small-scale fading and
shadow fading effects, which can cause a ±10–20% variation in the channel quality.

Third and Fourth Dimensions: User direction and speed
Both dimensions are measured using RSS values in dBm. Firstly, the UE’s direction is

measured from the variation in RSS between two successive measurement reports (MRs)
of the potential BS. A negative value denotes a user is moving away, while a positive value
denotes the user is moving closer to the potential BS.

Additionally, the variation in speed is calculated as an absolute value of RSS variation.
All the following values are with respect to RSS variations:

UE direction =

{
Closer to potential BS ∆RSS ≥ 0
Away from potential BS ∆RSS < 0
UE speed = |∆ RSS|

(1)

where ∆ RSS = RSSt − RSSt−1
A variation of 5 dBm or more was chosen to be the value of a fast-moving user, as

a 1 m variation in 100 ms (equivalent to a vehicle traveling at approximately 36 km/h)
accounts for an RSS change of 10–15% in free space.

In addition, due to further pathloss factors such as wall losses and user noise interfer-
ences, a 3 dBm offset is added to avoid potential misrepresentations. From these definitions,
each of the input dimensions was classified and concatenated into one output. These are
specified in Table 5.

Table 5. DL LSTM classification categories.

Dimension Classification Letter Code Value Range

User CQI
Good G CQI > 5

Ok O 3 < CQI ≤ 5
Poor P CQI ≤ 2

User DRR
Met M DRR ≥ 1

Not Met N DRR < 1
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Table 5. Cont.

Dimension Classification Letter Code Value Range

User Direction
Closer C ∆ RSS ≥ 0 dBm
Away A ∆ RSS < 0 dBm

User Speed Fast F |∆ RSS| ≥ 5 dBm
Low L |∆ RSS| < 5 dBm

With these chosen output types and classifications, there are 24 possible combinations,
which are shown in Table 6.

Now that the classifications and their reasonings are clarified, the adjustment to the
handover logic and procedures are discussed below.

Table 6. All 24 classification of the proposed DL LSTM.

Index Code
Classification

CQI DRR Direction Speed

1 GMCF

Good

Met

Closer
Fast

2 GMCL Low

3 GMAF
Away

Fast

4 GMAL Low

5 GNCF

Not met

Closer
Fast

6 GNCL Low

7 GNAF
Away

Fast

8 GNAL Low

9 OMCF

Ok

Met

Closer
Fast

10 OMCL Low

11 OMAF
Away

Fast

12 OMAL Low

13 ONCF

Not met

Closer
Fast

14 ONCL Low

15 ONAF
Away

Fast

16 ONAL Low

17 PMCF

Poor

Met

Closer
Fast

18 PMCL Low

19 PMAF
Away

Fast

20 PMAL Low

21 PNCF

Not met

Closer
Fast

22 PNCL Low

23 PNAF
Away

Fast

24 PNAL Low

5.2.1. Handover Logic

This algorithm relies on the previous MRs to predict the best BS to handover to. This
decision happens in the current MR time stamp. Each UE’s last seven MRs for potential BSs
are stored in the aggregated edge of the MEC. In addition, the connected BS CQIs are also
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stored for the past seven timestamps. These seven CQIs are averaged to ensure shadow
fading and small-scale fading effects are minimized. Furthermore, the same is performed
for the actual data rate to ensure fluctuations are filtered out. If the BS has a CQI that is
higher than 1 for longer than seven consecutive time stamps, MR variations are considered
to save power for low mobility UEs. The pseudocode below describes these logical steps
(Algorithms 1 and 2).

Algorithm 1 Classification logic

1. procedure: Classify BSs based on MRs
2. for each potential detected BS
3. if CQI ≥ 1 then
4. Calculate all remaining parameters to input into the LSTM
5. Predict potential BS classification based on the inputs
6. Store the classification for the user at the aggregated edge
7. end if
8. end for
9. end procedure

Algorithm 2 MR variation logic

1. procedure: Vary measurement reporting with UE mobility
2. if consecutive MRs for potential BS = 7 then
3. UE state = potential BS handover
4. if UE speed is fast for ≥5 MR instances, then
5. Decrease MR interval by 40 ms
6. if MR interval is ≤80 ms then
7. MR interval = 80 ms
8. end if
9. end if
10. if UE speed is low for ≥5 MR instances, then
11. Increase MR interval by 40 ms
12. if MR interval is ≥400 ms then
13. MR interval = 400 ms
14. end if
15. end if
16. end if
17. end procedure

The reasons why these MR occurrence limits were chosen are highlighted below:

• For high mobility UEs, the MRs will not go below 80 ms, as it will drain the UE’s
battery at a high rate;

• For low mobility UEs, the MRs will not go above 400 ms, as this will impact the
response of a handover decision if it is required for sudden changes in movements.

For this algorithm, the TTT is replaced with a dynamic LUT-based trigger mechanism.
LUTs provide a very fast and simple approach to solving repetitive problems. Additionally,
outcomes can be easily modified to achieve the desired outcomes.

All handover decisions require 5 (~70%) or more instances of each predicted clas-
sification. For example, if a UE is fast-moving, the classification ‘fast’ within the last
seven predictions must occur at least five times. Otherwise, it will be considered a slow-
moving UE.

Table 7 shows the possible handover decisions based on the predicted classification for
the potential BS and the parameters of the current connected BS. The classification for the
potential BS is the classification obtained from executing Algorithm 1 for the new detected
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BS to which the UE may connect. The “1” decision denotes a handover to be performed,
while a “0” decision implies no handover is required, and the UE remains connected with
the current BS. The “1*” decision refers to an exception handover that should only occur if
the CQI of the potential BS is better than that of the current BS to avoid the risk of radio link
failure. If the resulting decision is to handover, the UE proceeds to the handover procedure
phase, where the current BS initiates the handover to the desired potential BS.

Table 7. LUT for handover decisions based on DL LSTM classifications.

Classification
for Potential

BS

Parameters of Current BS

DR Met DR Not Met

CQI < 3 CQI ≥ 3 CQI < 3 CQI ≥ 3

GMCF 1 0 1 1
GMCL 1 0 1 1
GMAF 1 0 1 1
GMAL 1 0 1 1
GNCF 1 0 1 0
GNCL 1 0 1 0
GNAF 1 0 1 0
GNAL 1 0 1 0
OMCF 1 0 1 1
OMCL 1 0 1 1
OMAF 1 0 1 0
OMAL 1 0 1 1
ONCF 1 0 1 0
ONCL 1 0 1 0
ONAF 1 0 1 0
ONAL 1 0 1 0
PMCF 1* 0 1* 0
PMCL 1* 0 1* 0
PMAF 0 0 0 0
PMAL 0 0 0 0
PNCF 1* 0 1* 0
PNCL 1* 0 1* 0
PNAF 0 0 0 0
PNAL 0 0 0 0

5.2.2. Handover Procedure

The handover procedure proposed in this section implements a faster variation to the
currently used procedure. The proposal is to make the admission control happen at the
same time instant that the UE begins to process the handover command. This can be made
possible because of the aggregated edge architecture, where, due to its centralized nature,
the MEC can orchestrate both events to execute simultaneously. Hence, a reduction of 3 ms
could be made to the handover procedure latency discussed in Section 5.1.2.

Figure 3 shows the flow diagram of the modified handover preparation phase for the
proposed algorithm and considers RAN architecture, where virtualized AMF and UPF
instances are hosted on the aggregated edge at the CU of gNB. All other remaining parts of
the handover procedure, i.e., the handover execution and completion phases, remain the
same as described in Section 2.1.1.
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Figure 3. Flow diagram of the modified handover preparation phase.

6. Simulation Environment and Performance Metrics
6.1. Simulation Environment

The simulation tool used is the Vienna 5G system-level simulator [28], which we
augmented with several advanced toolboxes from MATLAB. The BS and UE scheduler
used is a 5G new radio scheduler available from the 5G toolbox of MATLAB [29]. This
scheduler is compliant with the 3GPP standards and combined with the Vienna simulator
to develop a fully functioning uplink and downlink 5G system-level simulator. The round-
robin scheduler mode was chosen as it has low complexity and provides long-term fairness
for all users regardless of their priorities and CQIs.

In terms of modeling user mobility, there are three categories of users considered in
this simulation: pedestrians, cyclists, and motorists. Their mobilities are modeled using an
application named Driving Scenario Designer, which requires the use of the automated
driving toolbox of MATLAB [30].

The handover logic and procedure implemented in this simulator follow key 3GPP
standards. The handover simulations involve a total of 40 mobile UEs, and each simulation
run is conducted for 200 s. This duration excludes the initial 10 s “warm-up” phase of the
simulation before results are recorded.

The deep learning is simulated using the Deep Network Designer Application, which
requires the use of the Deep Learning Toolbox of MATLAB [31]. The Adam solver is
applied for training the DL system. The initial learning rate is set to 0.001, as a higher
value creates a less accurate model, while a smaller value takes very long for the system to
learn with little to no improvements. The gradient threshold is set to two to prevent the
gradients from diverging from the desired learnings.

The LSTM is taught to learn a sequence of 4 dimensions and 24 classifications, as
described in Section 5. The number of epochs and hidden units is varied to find the optimal
values. For the DL LSTM, a training and testing data set of 25,000 data points are taken
based on simulated movements of 10 users (four motorists, four pedestrians, two cyclists):
eight are used for training (20,000 points), two are used for testing the prediction accuracy
(5000 points). BSs are only considered if their CQI ≥ 1. User data point sizes varied from
2200 to 2700 based on the number of BS coverages that could be quantified as a potential
base station.

The region of interest is rectangular, spanning 600 m by 700 m (0.42 km2) with varying
building heights between 10 and 45 m. The simulated region is based on New York
University (NYU) with Manhattan-style building configurations, as shown in Figure 4a,b.
Building widths and lengths are mapped in blocks of 25 m by 25 m. Street widths are 25 m
wide, which can accommodate all types of users and split easily into pedestrian walkways
(2.5 m on either side), cyclist ways (2.5 m on either side), and road lanes (7.5 m per lane:
4.0 m wide lane for moving vehicles, and 3.5 m wide land for off-street parking). The
colored dots in Figure 4b depict the BSs. There is a total of 69 BSs: 2 macrocells (dark blue
dots), 43 microcells (red dots), and 24 femtocells (teal dots).



Telecom 2021, 2 461

In addition to BSs, there are 44 MEC deployments, 1 aggregated edge server at the CU
of a macrocell, and 43 far edge servers (one per microcell). Tables 8 and 9 summarize the
simulation parameters used for the BS, and UE, respectively.

Figure 4. (a) Vertical and oblique aerial views of the NYU campus; (b) Corresponding views of the
simulated environment modeled after the NYU campus.

Table 8. BS simulation parameters.

Parameters Macro Cell (Wide
Area BS)

Micro/Pico Cell
(Medium Area BS)

Femtocell
(Local Area BS)

Number of BSs 2 43 24
BS coverage range 500–1000 m 50–100 m 10–20 m

BS height 50 m 10 m 6.5 m
Min distance to UE 35 m 5 m 2 m
Carrier frequency 2.0 GHz 3.5 GHz 26 GHz

Bandwidth 20 MHz 40 MHz
Duplex mode FDD

Transmit power 40 W 6.31 W 0.25 W
Antenna gain 0 dBi

Number of antennas 1 TX/RX pair
Pathloss model
(LOS/NLOS) 3D-UMa 3D-UMi Free-space + other

loss factors *
Shadow fading 4 dB

Wall losses 13 dB
* Wall losses, shadow fading, and user noise interferences.

Table 9. UE simulation parameters.

Parameters Motorists Cyclists Pedestrians

Number of UEs 22 4 14
Speeds 0−80 km/h 0−20 km/h 0−5 km/h

Channel model Vehicle A Typical Urban Typical Urban
Number of
antennas 2 TX/RX pairs (one operates at 2/3.5 GHz; the other at 26 GHz)

Transmit power 1 W
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6.2. Performance Metrics
6.2.1. Deep Learning Metrics

For this work, the learning time and prediction accuracy of the proposed DL LSTM can
be evaluated by varying two key parameters:

• Number of hidden units: This parameter can correlate to the computational latency of
the network. The key reason behind this parameter being varied is to find a balance
between the number of hidden units and computational speed;

• Number of epochs: This parameter is varied to determine the optimal time required for
training the system.

For both of these parameters, a range of values is considered to ensure overfitting and
underfitting are effectively captured. These concepts are further discussed in Section 7.

6.2.2. Handover Metrics

For the evaluation of multi-tier handovers, there are eight key metrics, which can be
split into two categories: one evaluating the handover performance (QoS metrics) and the
other evaluating the throughput performance (QoE metrics). All throughput metrics are
measured for uplink and downlink communications.

Handover performance metrics (QoS metrics):

1. Total handovers: This is the total number of handovers in the whole network, inclusive
of failed handovers;

2. Number of ping-pong handovers: This is the number of handovers that occur back and
forth between two BSs in a short amount of time;

3. Number of handover failures (HOFs): This is the number of handovers that failed due
to either desired BS CQI dropping to a value lower than desired or due to a gross
handover failure (described in Section 5);

4. Average handover latency: This includes the time it takes for a HOF to become successful
after retransmissions but excludes gross failures as they are rare occurrences and can
significantly skew the latency.

Throughput performance metrics (QoE metrics):

1. Total throughput: This is the total throughput for the uplinks and downlinks of the
whole network in megabytes per second (MBps);

2. Average UE throughput: This is the average throughput per UE in MBps;
3. UE satisfaction rate: This is defined as the percentage of time that the UE data rate

requirements are met.

7. Results and Discussion
7.1. Deep Learning Performance

The training is based on supervised learning, where the LSTM is made aware of all
24 classification variations. The number of epochs and hidden units is varied to evaluate
their impacts on the performance results in terms of learning time (s) and prediction
accuracy (%). The results are averaged over three simulation runs with percentages
rounded to the nearest 0.01% and time rounded to the nearest second.

Table 10 shows the effects of increasing the number of hidden units on the perfor-
mances in each simulation run with the number of epochs fixed at 1000. The results
illustrate an example of all three types of capacity fittings [32]:

1. Underfitting: where the solution is not sufficiently complex to understand the data,
causing a bias underfitting issue. This can be seen with 5 and 10 hidden units;

2. Overfitting: where the solution learns the training data but fails to generalize the
training set for new unseen testing data. This can be slightly observed with 40 hid-
den units;

3. Appropriate fit: where the solution can generalize as well as learn the trend to predict
new data accurately. This is observed with 20 hidden units.
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Table 10. Effects of the number of hidden units (1000 epochs).

Number of
Hidden Units

Learning Time (s) Prediction Accuracy (%)

Run 1 Run 2 Run 3 Mean Run 1 Run 2 Run 3 Mean

5 241 239 254 245 81.35 76.94 73.35 77.21
10 273 284 294 284 88.44 71.08 86.32 81.95
20 352 353 360 355 99.45 99.86 99.47 99.59
40 540 550 533 541 94.12 98.82 99.27 97.40

Table 11 further shows the effects of increasing the number of epochs on the perfor-
mances in each simulation run with the number of hidden units fixed at 20. Similarly, all
three types of fits are visible. Based on the results obtained from varying these two param-
eters, the combination of 20 hidden units and 1000 epochs is chosen for the evaluation of
handover and throughput performances in the next section.

Table 11. Effects of the number of epochs (20 hidden units).

Number of
Epochs

Learning Time (s) Prediction Accuracy (%)

Run 1 Run 2 Run 3 Mean Run 1 Run 2 Run 3 Mean

10 4 4 4 4 22.12 8.17 19.86 16.72
100 37 34 34 35 57.03 67.89 54.17 59.70

1000 352 353 360 355 99.45 99.86 99.47 99.59
2000 710 819 739 756 90.05 90.68 99.35 93.36

7.2. Handover Performance
7.2.1. Total Handovers

Figure 5a shows the total number of handovers for both algorithms. Interestingly, it
can be noticed that the proposed algorithm has a higher number of handovers than its
3GPP counterpart. In order to gain better insights into this phenomenon, we also analyzed
the number of handover triggering events for each algorithm, as shown in Figure 5b. It
was found that in the proposed algorithm, each handover was triggered only once (when
it needed to proceed to the handover procedure phase), while in the 3GPP scheme, each
handover was triggered 2.8 times on average. This is due to the 3GPP scheme only taking
the current time instance to compare the RSRP, subjecting its handover decisions to greater
impact by random channel effects.

Figure 5. (a) Total number of handovers and (b) number of triggering events.
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The higher total handovers by the proposed algorithm can be attributed to its focus
on providing links with the best possible CQI to improve the user data rates, i.e., users
could be handed over to achieve higher data rates, not only when they are at risk of losing
the link to their current serving BSs due to mobility.

7.2.2. Ping-Pong Handovers

Figure 6a,b shows the number of ping-pong handovers for both algorithms, and
their proportion as a percentage of the total handovers, respectively. The results show the
proposed algorithm has fewer ping-pong handovers than the 3GPP scheme and much fewer
when considered as a percentage of the total handovers. The key feature that contributes
to this outcome is the averaging of the CQIs over seven timestamps, therefore mitigating
potential ping-pong effects and providing a more stable transition to the desired BS.

7.2.3. Handover Failures

Figure 7a shows the number of HOFs for both algorithms. The result shows that
the proposed algorithm has a higher number of HOFs than the 3GPP scheme, which is
somewhat unexpected. However, this absolute number of HOFs can be misleading as the
proposed algorithm also performed a much higher number of handovers, as explained in
Section 7.2.1. Indeed, if we consider the HOFs as a percentage of the total handovers, the
proposed algorithm is found to fail 30% less than the 3GPP scheme, as shown in Figure 7b.

Figure 6. (a) Number of ping-pong handovers and (b) ping-pong handovers as a percentage of total handovers.

This can be attributed to the more confident decision-making by the proposed algo-
rithm as it checks the LUT conditions for the average value of the past seven instances.
Additionally, it can be attributed to the faster response of the proposed algorithm to higher
mobility UEs due to its variation in the frequency of MRs with mobility.
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Figure 7. (a) Number of handover failures and (b) handover failures as a percentage of total handovers.

7.2.4. Average Handover Latency

Figure 8a shows the average latency of successful handovers for both algorithms. The
results show the latency of the proposed algorithm is marginally lower than the 3GPP
scheme. Since a handover may be attempted multiple times due to retransmission of failed
handover communications, we also analyzed the proportion of handovers that made a
different number of attempts before they became successful.

Figure 8. (a) Average handover latency and (b) percentage of handover attempts.
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Figure 8b shows the percentage of handover attempts after a set number of retrans-
missions (abbreviated as reTx in the figure). It shows that most of the successful handovers
were attempted only once (0 retx) or twice (1 retx) for both algorithms. Despite having a
slightly lower proportion of handover that becomes successful after the first attempt (0
retx) than the 3GPP scheme, the proposed algorithm is still found to incur a lower average
latency. This may be due to the simultaneous activation of admission control and UE
handover procedure by the proposed algorithm as described in Section 5.2.2, which helps
to reduce the impact of the handover retransmissions.

7.3. Throughput Performance
7.3.1. Total Throughput

Figure 9 shows the total throughput for the downlink and uplink of both algorithms.
The result shows that the proposed algorithm achieves higher throughput by approximately
45% in both downlink and uplink, which is a significant improvement over the 3GPP
scheme. This result is expected as the proposed algorithm was designed to provide users
with links having the best possible CQI to improve their data rates rather than to simply
maintain their connectivity.

7.3.2. Average UE Throughput

Figure 10 shows the average downlink and uplink throughputs of each of the 40 UEs
for both algorithms. This result shows that the average UE throughput for the proposed
algorithm is generally higher. For example, the 3GPP scheme has 17 UEs with an uplink
data rate of below 1 MBps compared to only 9 UEs for the proposed scheme, i.e., a 47%
reduction in the number of low throughput users. Similarly, the 3GPP scheme has 16 UEs
with a downlink data rate of below 1 MBps compared to only 8 UEs for the proposed
scheme, i.e., a 50% reduction in the number of low throughput users. This finding is
generally consistent with the total throughput result in Section 7.3.1.

Figure 9. Total throughput.



Telecom 2021, 2 467

Figure 10. Average UE throughput for (a) downlink and (b) uplink.

7.3.3. UE Satisfaction Rate

Finally, Figure 11 shows the UE satisfaction rate for both algorithms. It refers to the
percentage of time that the data rate requirement for each UE is met. The result clearly
shows that a larger number of UEs are satisfied by the proposed algorithm is compared to
the 3GPP scheme. If we consider UEs who are satisfied at least 50% of the time with their
uplink and downlink data rates, then the proposed algorithm has outperformed the 3GPP
scheme by approximately 40%.
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Figure 11. UE satisfaction for (a) downlink and (b) uplink.

8. Conclusions

A DL LSTM handover decision algorithm utilizing LUTs and MEC was proposed, and
its impact on UEs and BSs against the benchmark 3GPP scheme was investigated. The
results showed that the QoE targets are achieved with improvement in the UE satisfaction
rate by 40% over the 3GPP scheme. By replacing the TTT with a dynamic triggering
function, the proposed algorithm provided a very fast response to UE mobilities when
the LUT requirements were met. This allowed the QoS targets to be met with lower
HOF and ping-pong rates than the benchmark by 30% and 86%, respectively. These
performance gains are achieved despite a higher occurrence of handovers. This is due to
the algorithm attempting to accommodate user data rate requirements and/or user CQI
expectations. Furthermore, the proposed modification to the admission control process
resulted in handovers with lower latencies that approach the user plane eMBB latency
target. As future work, we plan to extend our approach to enhancing inter-RAT handovers
as coexistence between legacy and successor systems has always been a requirement in
different generations of cellular networks. We also plan to use reinforcement learning to
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make our LSTM models autonomously adaptive to changing future environments and
user requirements.
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Nomenclature

3GPP 3rd Generation Partnership Project
4G/5G 4th/5th Generation
AI Artificial Intelligence
AMF Access and Mobility Management Function
BBU Base Band Unit
BS Base Station
CoMP Coordinted Multi-Point
CQI Channel Quality Information
DL Deep Learning
DR Date Rate
DRR Date Rate Ratio
EAC Early Admission Control
eMBB Enhanced Mobile Broadband
FDD Frequency Division Duplexing
gNB Next-generation NodeB
GPS Global Positioning System
GRU Gated Recurrent Unit
HCSNet Heterogeneous Cloud Small Cell Network
HOF Handover Failure
LOS Line-of-Sight
LSTM Long-Short Term Memory
LTE Long Term Evolution
LUT Look-Up Table
MBps Mega Bytes per second
MEC Multi-access Edge Computing
ML Machine Learning
mmAP Millimeter-wave Access Point
MR Measurement Report
NFV Network Function Virtualization
NLOS Non-Line of Sight
NYU New York University
QoE Quality of Experience
QoS Quality of Service
RAN Radio Access Network
RAT Radio Access Technology
reTX Retransmission
RNN Recurrent Neural Network
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RSRP Reference Signal Received Power
RSS Received Signal Strength
RSU Road Side Unit
RX Receive
TOPSIS Technique for Order Preference by Similarity to Ideal Solution
TTT Time-to-trigger
TX Transmit
UE User Equipment
UPF User Plane Function
URLLC Ultra-Reliable Low Latency Communication
VAR Vector Autoregression
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