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Abstract: The exigency for continuous use of electrical devices has created greater demands for
electricity along with more efficient transmission techniques. Energy from natural resources can
be solar, thermal, vibration, friction, or Radio Frequencies (RF) signals. This state-of-the-art work
provides a summary of RF energy harvesting techniques and can be used as a guide for the manufac-
ture of RF energy scavenging modules. The use of Radio Frequency (RF) Energy Harvesting (EH)
technique contributes to the development of autonomous energy devices and sensors. A rectenna
system includes three main units: the receiving antenna, the impedance matching network, and the
rectifier. We thoroughly analyze how to design a rectenna system with special emphasis given on the
design of the rectifier. At the same time many works of the last 10 years are presented. This review
article categorizes the used topologies depending on the type of antennas, IMNs, and rectifiers and
comparatively presents their advantages and disadvantages.

Keywords: radio frequency energy harvesting; wireless power transfer; antennas; impedance match-
ing network; rectifier; voltage multiplier; power conversion efficiency; Dynamic Threshold MOSFET

1. Introduction

Energy harvesting (EH) is the process in which energy is harvested from the envi-
ronment and converted into electrical power. The aim of energy harvesting is the energy
autonomy of systems that would normally use batteries or were connected to a power
supply network. This can be achieved by designing autonomous energy systems that
can function in a variety of applications, such as in the diagnostic and therapeutical field
(medical implants) with very low power consumption. Energy from the natural resources
can be solar, thermal, vibration, friction, or Radio Frequencies (RF) signals and behave
differently over time, depending on the operating environment of the system. In this
work, we focus on RF Energy Harvesting and wireless power transfer (WPT techniques as
potential sources in autonomous energy systems) [1].

There are two different approaches of energy transfer: the dedicated transfer that
means high power values or the harvesting of ambient energy that means low power
values [2]. A circuit that harvests RF energy, from a dedicated source at a short-range is
expected to produce power levels in the 50 nW/cm2 range. An example is an RFID chip
that is powered by an RFID reader. The dedicated source enables embedded devices to
recharge batteries. On the other hand, a circuit that harvests RF energy from an ambient
source, can exploit this energy to charge various storage systems. This type of circuit is
expected to produce power levels in the 2 nW/cm2 range. Typical ambient sources include
Wi-Fi, GSM/Cellular, FM/TV/DTV, Bluetooth, etc. This type of source is common for
applications for which is very difficult or impossible to replace batteries [3]. RF energy
scavenging circuits are known for more than 60 years, but only a few have been able to
harvest energy from ambient RF sources [4].
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Maxwell formulated the first theoretical knowledge about wireless power transfer in
1864. Almost two centuries ago Nikola Tesla described how to transfer energy between
two points without the need for a physical connection to a power source as “all-surpassing
importance to man”. Hence the idea of wireless power transfer (WPT) has been around
since the inception of electricity [5]. William C. Brown in the 1960s with the development
of wireless communication technologies developed a rectifying antenna named “rectenna”.
As a follow-up to this invention, his team conducted several experiments in 1968 on the
transmission of microwave power, which were successful [6]. Figure 1 illustrates a typical
RF energy harvesting system that consists of a transmission antenna and a rectenna that is
comprised of receiving antenna, an impedance matching network (IMN), a rectifier, and a
power management circuit. From all the parts of the rectenna, we discuss in detail about
the synthesis of the rectifier. The challenge, during the design of a low input power rectifier,
is the combination of a high output voltage and a high power conversion efficiency.
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Figure 1. Block diagram of a typical RF harvesting system.

The remainder of this review work is structured as follows. Firstly, the details and
the parameters of the review process, as well as our contribution to this research topic are
introduced in Section 2. In Section 3, a detailed analysis of the rectenna parts is performed
and their qualitative and quantitative characteristics are described. Section 4 discusses the
main results and remarks of this review work. Finally, Section 5 outlines the concluding
remarks of this work.

2. Materials and Methods

During the last years, the RF energy harvesting and the design of rectenna systems are
gaining popularity and have attracted the attention of several researchers. A bibliographic
search using the keyword “RF energy harvesting” in the Scopus database shows that there
are 1893 conference papers and 1442 journal papers related to RF energy harvesting from
2010 to 2020. Figure 2 displays the number of papers related to RF energy harvesting for
the last 10 years. The purpose of this work is to describe in-depth the design process of a
rectenna system and to present selected recent works about this scientific topic. Note that
we emphasize on the design of the rectifier circuit. In this state-of-the-art work, we mention
the most relevant works that had in their title the keywords “RF energy harvesting “or “RF
to DC rectifier “or “DTMOS RF energy harvesting” and were published within the last
10 years.

At first, we introduce few works that are categorized according to the type of receiving
antenna. It should be noted that the antennas will not be analyzed in depth but we will only
mention some basic designs, because such an analysis is out of the scope of this work. Then
we present many works that are divided depending on the type of diode, the topology of
the impedance matching network, and the topology of the rectifier circuit. We mention
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the pros and cons of each topology for both rectifiers and impedance matching networks.
Presenting these works in this way, we aim to provide a detailed guide for the process of
the rectenna design.
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3. Results
3.1. Design Methology

The design methodology includes 4 steps:

• The procedure of choosing the right energy harvesting circuit topology.
• The selection process of a suitable diode.
• The design of an appropriate impedance matching network.
• The design, the optimization, and the simulation of the whole system [7].

Figure 3 illustrate this process.
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3.2. Design Specification

As it was mentioned in the introduction, a rectenna (rectifying antenna) is a combina-
tion of a jointly working antenna and an RF-to-DC rectifier. The antenna captures the RF
electromagnetic energy, while the rectifier converts the input AC voltage into DC voltage,
that can be used for low-power battery-operated devices. Additionally, another component
between the RF-to-DC rectifier and the antenna is included, which is an impedance match-
ing network and whose function is to adjust the impedance between these two elements. In
this application, the input is the free space, while the output is the antenna port connected
to the rest of the harvesting circuit.

3.2.1. Receiving Antenna

The main function of the receiving antenna is to scavenge as much RF radiation-power
as possible. The main factors that are taken into account in its design are the reflected power
at the input of the antenna, the impedance, the gain, and the antenna efficiency, as well as
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its weight and size. Several types exist in antenna design and various materials are utilized.
The most common types are Bowtie antennas [8,9], log-periodic dipole arrays [10], dipole
antennas [11], monopole antennas [12], loop antennas [13,14], Yagi-Uda antennas [15–17],
planar inverted-F antennas [18], dielectric resonator antennas (DRAs) [19], etc. One of
the most famous type of antennas for RF EH is the microstrip antennas, due to their
comparative advantages [20–23].

In [8] we can find a broadband bowtie antenna, which operates as an energy harvester
at 845 MHz and 3.5 GHz. The authors in [9] designed a modified printed bowtie antenna,
operating in the frequency band of 5G NR mobile commutation networks. The log-periodic
antenna in [10] was manufactured to harvest energy from six bands within the frequency
range of 650 MHz to 2500 MHz. A compact rectenna with RF-based energy harvesting for
IoT smart sensors is presented in [11]. The antenna of this system is a dipole antenna that
operates in the range 902 MHz to 928 MHz. In [12] we can find a monopole antenna for
ambient RF energy harvesting at the 600–1500 MHz band. The authors in [13] designed
a loop antenna for RF energy harvesting at GSM-1800 band. Another loop antenna that
operates at dual bands is described in [14]. The authors in [15] manufactured a rectenna
using a Yagi-Uda antenna that can harvest RF power of GSM-1800 and UMTS-2100 bands.
In [16,17] we can also find systems that use Yagi-Uda antennas. The first system operates
at 2.45 GHz and the second at GSM-900 and GSM-1800 frequency bands. The authors
in [18] designed a planar inverted-F antenna operating in the frequency bands GSM-900,
GSM-1800. In [19] a dielectric resonator antenna is presented, which operates as an energy
scavenger in the frequency band from 1.67 GHz to 6.7 GHz. The authors in [20] designed a
differential microstrip antenna for the GSM900 band (890–960 MHz). Stacking two single-
port patch antennas back to back gives us a compact dual-port L-probe patch antenna [21].
The measurement results show that there is an efficiency greater than 40% for the whole
rectenna. In [22] we can find a dual-band E-shaped (modified) patch antenna, which
operates as an energy scavenger at the frequency bands of two different systems; Narrow-
band Internet of Things (NB-IoT) and EGSM-900 Mobile Communication Systems. Also,
the same authors in [23] designed, optimized, and fabricated a multiband patch antenna
that was operating in the frequency bands of LoRaWAN, GSM-1800 UMTS-2100. The
proposed antenna showed acceptable performance for RF energy harvesting applications.
Table 1 summarizes different types of antennas that have been utilized in RF energy
harvesting systems.

Table 1. Type of antennas that have been applied in RF energy harvesting systems.

Reference Design/Type Frequency Bands

[8,9] Bowtie Antenna 845 MHz, 3.5 GHz
EGSM-1800

(1800 MHz), UMTS (2100 MHz)
[10] Log-Periodic Dipole Antenna 650 MHz–2500 MHz
[11] Dipole Antenna 902 MHz–928 MHz
[12] Monopole Antenna 600 MHz–1500 MHz

[13,14] Loop Antenna GSM1800
DTV, Cellular radio waves

[15–17] Yagi-Uda Antenna
GSM-1800 and UMTS-2100

2.45 GHz
GSM-900, GSM-1800

[18] Planar Inverted-F Antenna GSM-900, GSM-1800
[19] DRA 1.67 GHz–6.7 GHz
[20] Differential Microstrip Antenna 890–960 MHz

[21–23] Microstrip Patch Antenna
GSM- 900, GSM-1800, UMTS-2100

(NB-IoT), EGSM-900
GSM-1800, UMTS



Telecom 2021, 2 373

3.2.2. Impedance Matching Network

The design of an impedance matching network is indispensable for the design of the
rectenna because when the impedance of the rectifier does not match the impedance of the
antenna, a percentage of the power from the source is not absorbed and is reflected in the
environment. Therefore, the impedance of the antenna and the rectifier must be matched
at the desired operating frequency so that the impedances are complex conjugates of each
other [24]. An ideal circuit of this type for RF energy scavenging must not only provide
the desired impedance matching between the antenna and rectifier but must further do so
with minimum losses so that the amount harvested can be maximized [25].

The complex source impedance (RSource + jXSource) has to be matched with the load
impedance (RLoad + j0). This can be achieved with a matching network (−jXMatch), which
has equal and opposite reactance from the source. In this way, the opposite reactance gets
canceled thereby matching the source and the load (assuming RSource = RLoad). Theoretically,
if the impedances of the source and the load are completely matched, we will have a transfer
without losses, all the energy from the source will be transferred to the load. Therefore,
it can be understood that the IMN makes a condition in which we have left only pure
resistance value at the source and the load. This can be achieved if the load impedance
changes into a complex conjugate of the source impedance.

At this point we have to say that the circuit’s reactance depends on frequency, hence
the impedance match between the source and the load will be achieved at a specific
frequency. The frequencies in which the impedance is matched determined by the “Q”
factor of the matching network, which depends on the network design. The Bandwidth
is given by the following equation, in which BW is the Bandwidth, F is the operating
frequency and Q is the measure of energy stored in reactance to that being dissipated.

BW =
F
Q

(1)

In many applications, due to the limitation of small sizes of PCBs, used antennas
with higher Q. Thus, the design of a high Q-factor IMN for a high Q antenna can display
performance problems that are caused by the matching components. Therefore, it is
important to keep the Q factor of the IMN at low levels. The value of the Q factor is a
key parameter that should be chosen carefully on the design of the impedance matching
network. The interested reader may find additional details in [26].

Figure 4 depicts the four most widely used matching networks, which are the L, the
reversed L, the π, and the T network. The selection process of an adequate adaptation net-
work depends on the intended goal. One of most popular impedance matching networks
is the L network. The L network got its name of the positions of its elements, which form
an “L” shape. There are also different L network variations like as the inverted L section
and the reverse L section networks. The L-network is simple and elegant, and it is the key
building block of any other impedance matching network design. But it has a limitation,
its Q-factor. That is the source, and the load impedance are determined but the Q factor
is defined. The designers do not have control over the Q factor’s value because its value
is a function of the value of the resistance of the series and the parallel components. So,
while designing the L-type network the designers have, as a result, a fixed Q, or a fixed
bandwidth, which may not achieve the circuit requirements.

According to the Equation (1), the Q factor defines the bandwidth of the matching
network, which is a key parameter when we design an impedance matching network. If
a wideband matching network is required, an L-type IMN would be sufficient. But if we
have to limit the bandwidth, it is not to be possible to achieve a high Q matching network
with L-type network architecture. In that case, we want a network with three elements
that provides an additional freedom degree. Thus, with a network with three elements,
the designers can choose any value of the Q factor that is higher than that can be possibly
achieved by an L-type network. There are two possible configurations, the π-type network
and the T-type network [27].
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A common application of the π-network is matching a high antenna impedance to the
low rectifier impedance. The T-network got its name because the elements form a T-shape
as shown in Figure 4c. The T-network is the dual of the π-network. The T-network can be
considered as a series combination of two back-to-front L networks.

The performance of the system depends on different features such as the quality of
components, frequency, cost, the size, hence we could not select one of these topologies
for every application. The networks that are looking to maximize the absorption from the
antenna and the output voltage gain have to be designed taking into account the tradeoffs
created by the components in the specific circuit [3]. The L matching is frequently used
and has only two components, which makes the design and control process match more
simple. On the other hand, for example, if a band-pass HF filter needs to be designed, it
is better to choose a T or π impedance matching network that achieves wider bandwidth
than the L network.

In more detail, if we want to design efficient filters, it is important to understand
which type of IMN is better for each application. The LPF (Low Pass Filter) configuration
appears a low or high impedance at the harmonic frequencies in order to suppress them. If
the LPF presents a high-impedance, then it reflects the harmonics to the source, while if
it presents a low-impedance, then it diverts the harmonic energy to the ground plane. In
high-impedance LPF commonly a T-type network configuration is used, where the starting
element is a series inductor. On the other hand, a low-impedance LPF uses a π-type network
configuration, the starting element is a parallel Capacitor. Thus, the most suitable IMN
type is determined by the load impedance and/or the source impedance at the harmonic
frequency. As it is recommended in [26] commonly we use a T-type network to match
low-value impedances (<50 Ω) and an π-type network to match high-value impedances
(>50 Ω) [26].

Depending on the circuit requirements, we can create several configurations of
impedance matching networks as a combination of the simple types (L, π, T), either
with lumped elements, such as capacitors and inductors (Figure 5) or with distributed
elements, such as stubs and microstrip lines (Figure 4). Distributed elements are preferred
at microwave frequencies (3–300 GHz), while lumped elements are generally used at lower
frequencies (below 3 GHz). The lumped elements parasitic reactance is avoided in the
design and they are operated below the self-resonance frequency [7,28].
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For instance, in [29,30] a self-startup RF power scavenging system with storage ca-
pability was designed an impedance matching network with lumped elements (LC). The
authors in [31] presented two rectifiers, one half-wave rectifier and one voltage doubler
rectifier with the maximum efficiency of the voltage doubler up to 70%. To achieve this,
they use an L-matching network. In [32] though, a triple-band rectifier with open stubs
operates at 1800, 2100, and 2600 MHz with conversion efficiency to reach 35% at an input
power of −20 dBm. The authors in [33] designed an N-stage rectifier. The key research
area of this work is the impedance matching network that was used. In addition to the
L matching network used, a microstrip line network was designed. The L-network in
combination with the microstrip line network is equivalent to the T-network. Figure 6
illustrates an example of the previously mentioned design.
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In [34], a triple band differential rectenna was designed with a maximum efficiency
of 56% at 3.5 GHz. The impedance matching network of the differential rectenna was
consisted of a combination of radial stubs, open stubs, and meander line stubs. The same
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approach to the impedance matching network with the previous circuit is applied in the
dual-band rectifier in [35]. Table 2 lists the aforementioned works of this section.

Table 2. Different types of Impedance Matching Networks.

Reference Matching-Network Type of Elements

[29] L-Type Lumped
[30] T-type Lumped
[31] L-Type Distributed
[32] Multiband Distributed
[33] L + µStrip Line Network Distributed
[34] Combination of different types of Matching Networks Distributed
[35] 2 Reverse L Distributed

3.2.3. Diodes

In rectifier design, one important step is the selection of a diode. The characteristics
of the diode determine the overall efficiency of the circuit as it can be the main source for
losses because depending on their values, changes the voltage drop across the diode [36].
Conventionally, a Schottky diode was selected because of its low junction capacitance, low
threshold voltage, low barrier (high saturation current), and high switching capacity [37].
Low threshold voltage allows more efficient operation at frequencies in which we operate.
The junction capacitance will determine the maximum operating frequency at which the
diode will operate. These characteristics (Cj is the junction capacitance, Rs is the series
resistance, Rj is the junction resistance) are presented in Figure 7a. Figure 7b illustrates
the I-V characteristic of a Schottky diode and Figure 7c depicts the symbol of Schottky
diode [38].
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Table 3 presents the Schottky diodes and their parameters, which are used in several
papers in the literature. There are some issues that we need to consider for the proper
diode selection. For example, the diode has a nonlinear behavior [39], hence the RF to
DC conversion efficiency varies with different power levels of the input. The main goal
of the designers is to maximize the harvested RF power; hence they have to minimize the
forward voltage drop of the diode and maximize the input voltage level of the rectifier. If
the input voltage level of the rectifier is not larger than the forward voltage drop of the
diode, then the rectifier circuit doesn’t work. In addition to that, the diode doesn’t work if
the reverse breakdown voltage is exceeded [40].
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Table 3. Schottky diodes.

Diode
Minimum Breakdown

Voltage VBR
(V)

Maximum Forward
Voltage
VF (mV)

Maximum Forward
Volage

VF (V) @ IF (mA)

Maximum Reverse
Leakage IR

(nA) @ VR (V)

Maximum
Capacitance CT

(pF)

Typical Dynamic
Resistance RD

(Ω)

HSMS282x 15 340 0.5–10 100–1 1.0 12
SMS7630-079 2 60–120 50 - 0.3 5000
HSMS-285C 3.8 150–250 1 0.175–2 0.3 -
HSMS 286C 3 250–350 0.35–1 - 0.3 -

The most commonly used Schottky diodes are the HSMS-285X (n-type) and the HSMS-
286X (p-type). The first one has a high fence and low values of Rs, whereas the second
one has a low barrier and high values of Rs [7]. In [41] a dual-stage voltage doubler was
manufactured for operation at a frequency of 3.5 GHz using HSMS-2820 diodes. In [42]
the authors designed three rectifiers and connected them in series. Each rectifier is a single
series diode rectifier. For this design, they used an SMS7630-079 diode. A voltage doubler
was manufactured in [43] with an efficiency of 50.7% at 2.45 GHz and 20.1% at 5.85 GHz.
The authors used the SMS-7630 diode [44].

According to the above, the diode greatly affects the efficiency of the rectifier. The
energy conversion efficiency increases when we have a decrease of turn-ON threshold
voltage or decrease of junction tension Vj and decreases when we have an increase of
resistance Rs or decrease of junction capacitance Cj [7].The authors in [45] designed a
dual-band (1800 MHz, 2.1 GHz) rectenna in which the rectification was achieved with a
single diode rectifier (by the use of an SMS7630 diode). The efficiency of this work is 33%
for−7 dBm input power. The authors have used HSMS-285C diodes in [46] to manufacture
and compare a 1-stage Dickson rectifier and a 3-stage Dickson rectifier. The circuits tune in
1 GHz and for −7 dBm input power. The first circuit achieved 70.5% efficiency while the
second circuit achieved 77% efficiency. The authors in [47] designed a rectenna in which
HSMS-286C diodes were used. The circuit resonates at 868 MHz. The maximum efficiency
is 44.5% at−10 dBm. Table 4 lists the most common types of diodes that are used in various
rectifiers’ designs.

Table 4. Types of diodes that are utilized in various rectifiers’ designs.

Reference Diode Circuit

[41] HSMS2820 Dual-Stage Voltage Doubler
[42] SMS7630-079 3 Rectifiers in Series
[43] SMS7630 Voltage Doubler
[45] SMS7630 Single Diode Rectifier
[46] HSMS-285C 1-Stage Dickson Rectifier
[47] HSMS 286C Rectifier

3.2.4. Rectifier

The rectifier is the fundamental circuit of the rectenna, and its role is to convert the
AC output voltage of the receiving antenna to DC voltage. It consists of passive elements
(capacitors, coils, resistors) and diodes or diode-connected transistors.

As Figure 8 depicts, there are three basic types of rectifier designs: single diode,
voltage multiplier, and bridge of diodes. Single diode and bridge rectifiers can provide a
DC voltage to the load, but the amplitude of the output signal is lower than the amplitude
of the received signal. More specifically, a half-wave rectifier is the simplest rectifier
circuit, but it is rarely used because it diminishes half of the input power [40]. The bridge
rectifier circuit rectifies both cycles of the AC input. This circuit has 4 diodes operating
simultaneously, hence there is a higher drop voltage. On the other side, a voltage multiplier
is a rectifier circuit that not only converts the AC input to DC output but boosts it. At RF
energy harvesting systems with a demand of high efficiency and high output power, at low
input voltages, the full-wave rectifier is the best choice [48]. When the rectified power is
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insufficient and there is a demand for further increasing voltage, a better approach is the
use of stacking single rectifiers into series (Figure 9), making a voltage multiplier [6,44].
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In [49] the authors manufactured a rectifier prototype with a single HSMS-2860 Schot-
tky diode at 2.45 GHz. The authors in [50] have designed a rectifier based on the approach
of a multiplier. Also, to improve the efficiency of their circuit, they placed a coil at the input
of the circuit. As a result, they achieved an efficiency of 81.65% for 0 dBm input at 868 MHz.
A different approach of designing a rectifier in a rectenna is presented in [51,52]. In both
works, the authors manufactured a modified Greinacher rectifier that receives input from a
rat-race coupler, that was used to divide the input RF signal into two signals with equal
power and a 180◦ phase shift. The conventional Greinacher circuit was placed inside the
rat-race coupler structure. In the first design, the efficiency enhanced over 5% for input
ranges from −20 dBm to −10 dBm. In the second design, the maximum efficiency is 71%
for 4.7 dBm input power.

A common practice to improve the efficiency in RF energy harvesting systems is to
add a boost converter to the output of the rectifier [53]. In [54], the authors manufactured a
low-complexity double diode rectifier that was connected to a commercial boost converter.
Implementing this practice, they achieved an efficiency of 21% for input power of−15 dBm
at 97.5 MHz. In [55], a design of a compact rectifier for ambient wireless energy harvesting
is presented that operates in two frequency bands, namely at 2.4 GHz and 5.8 GHz. The
proposed rectifier consists of a dual-band matching network and a voltage quadrupler. It
has an efficiency over 70% and can boost up the voltage level up to 9 Volts. In [56] we can
find a Latour rectifier. This circuit is practically a modified voltage doubler. The authors
achieved 38% efficiency for input −10 dBm at 850 MHz. In [43,57–60], rectifiers that are
voltage doublers can be found. These circuits operate at different frequencies and differ in
the choice of materials (capacitors, diodes) and the substrate.

The choice of substrate and diode are two factors that are very important in the design
of a rectifier. The authors in [61] designed a Karthaus-Fischer voltage multiplier that which
operates at 2.45 GHz. In [62] we can find a 7-stages voltage multiplier that resonances at
900 MHz. A system that works at 575 MHz, 900 MHz, and 2.45 GHz, can be found in [63].
The efficiencies for this system are 55%, 45%, and 30% for each frequency, respectively.
In [64] there are four design approaches about differential connection. In [65] there is a
3-stage multiplier that operates at 915 MHz and at 2.4 GHz. The authors in [66] design a
rectifier at 2.34 GHz with an input power of −25 dBm. A voltage doubler at 900 MHz can
be found in [67] with an efficiency of 78.70% for input power of less than 10 dBm. In [68] a
voltage multiplier with multistage Wilkinson was designed. The authors in [69] designed
their dual-band rectifier on a polyimide-based substrate, a nonrigid substrate. They achieve
at 900 MHz a 20% RF-DC efficiency for −15 dBm input and a 30% for −5 dBm input. At
2.4 GHz they achieve 10% efficiency. The authors of [70] design their rectifier on paper. This
is a single diode rectifier because the input power is very low. The authors in [71] designed
a single-stage voltage multiplier that operates at 900 MHz. They achieved 50.2% and 49.1%
efficiencies for 14 dBm and 16 dBm, respectively. In [72] we can find an RF combiner. This
circuit concatenates the RF signals of many rectifiers. Each rectifier is a triple band rectifier
(GSM1800, UMTS2100, Wi-Fi). The whole system achieves 40% efficiency. In [73] we can
find step by step the process of designing a rectenna on a thin flexible substrate. The whole
system can achieve efficiency up to 60%.

The designs of rectifiers with diodes suffer from the high-dropout voltage across
the diodes. So, in order to overcome this limitation, the diodes must be replaced with
diode-connected MOSFETs (metal-oxide-semiconductor field-effect transistor). Figure 10
below displays a 4-stage Dickson multiplier (Figure 10a) and a conventional differential
rectifier (Figure 10b). Over the years and the evolution in circuit design, CMOS technology
is preferred, because it assists in custom designing in electronics but also because CMOS
transistors, at low voltages, are more sensitive than Schottky diodes [44]. On the other
hand, MOS transistors suffer at high RF power due to a reverse current that drains some
of the scavenged energy back to the input [74]. For instance, the authors in [37] designed
a CMOS Villard multiplier that operates at 400 MHz and 2.4 GHz. The specific circuit
achieves a 160% increase in output power over traditional circuits at 0 dBm of input power.
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To overcome some of the limitations such as the low-efficiency and limited working
range of the RF energy scavenging systems, many designers manufacture rectennas with
reconfigurable rectifiers. For instance, in [29] we can find a self-startup RF power scaveng-
ing system with storage capability. The authors in [75] designed a reconfigurable 12-stage
rectifier with MPPT (Maximum power point tracking) for input power from −22 to 4 dBm
at 915 MHz. A reconfigurable multistage RF rectifier circuit at 900 MHz can be found
in [76] with an efficiency of 45% for input power from −15 to 20 dBm. In [77] the authors
designed a single-stage receiver in which they used a 3-mode reconfigurable rectifier. The
circuit was fabricated in a standard CMOS 0.35 um. This circuit works at 6.78 MHz and
achieves 92.2% power efficiency.

Designers constantly try to take advantage of lower input voltages looking for new
ways of designing. In a standard CMOS process, a diode is usually replaced more easily
with a transistor MOS connected as a diode. The conventional way to implement the
MOS-connected (BTMOS) diode with parasitic diodes is shown in Figure 11a, in which
the gate is connected to the drain and the bulk to the source. This common connection
displays a disadvantage during OFF mode, allowing high reverse current. To overcome the
limitation, one solution is to use transistors with a dynamically adjustable threshold voltage,
VTH. In the DTMOS (Dynamic Threshold MOSFET) architecture shown in Figure 11b the
substrate (bulk) and the gate are connected to dynamically change the VTH of the transistor,
using the following equation. In which VTH is the threshold voltage, VT0 is the zero bias
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threshold voltage with VSB = 0, γ is called body-effect coefficient or body factor and ϕF is
the inversion layer voltage.

VTH = VT0 + γ
√
|2ΦF|+ VSB −

√
|2ΦF| (2)
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Figure 11. Diode connected transistors: (a) BTMOS (b) DTMOS.

This not only improves power flow but also minimizes reverse leakage current.
Figure 12 shows how the threshold voltage changes to BTMOS and DTMOS for various
VSB voltage values [78,79]. The authors in [80] designed a N(1,2,3)-stage rectifier used the
DTMOS technique. They achieved for 1-stage at 900 MHz efficiency 79.4% and sensitivity
−32 dBm.
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Figure 12. VT-VSB (The red color refers to DTMOS and the dark blue to BTMOS). 

All rectifiers of this section are listed in Table 5. Table 6 consists of the same rectifiers 

separated by topology. 

Table 5. Different rectifier circuits in bibliography. 

Reference Rectifier’s Topology Diodes 
Efficiency 

(Max) 
Input Power Frequency 

[29] CMOS Reconfigurable System - 25% −14.8 dBm 915 MHz 

[35] Dual Band Voltage SMS-7630 30.40% −20 dBm 925 MHz 

[43] Dual Band Voltage Doubler SMS-7630 57.10% 
−10 dBm to −30 

dBm 
2.45 GHz, 5.8 GHz 

[49] Single Diode Rectifier HSMS-2860 1.3% −20 dBm 2.45 GHz 

[50] Voltage Multiplier HSMS-2850 81.65% 0 dBm 868 MHz 

[51] 
Greinacher Rectifier with Rat-Race 

coupler 
SMS-7630 5%  

−20 dBm to −10 

dBm 
2.45 GHz 

[52] 
Greinacher Rectifier with Rat-Race 

coupler 
HSMS-285C 71%  4.7 dBm  1850 MHz 

[54] Double Diode Rectifier SMS7630-040LF 21% −15 dBm 97.5 MHz 

[55] Voltage Quadrupler HSMS-2862 75.108% 20 dBm 2.4 GHz, 5.8 GHz 

[56] Latour Structure (Doubler) - 38% −10 dBm 850 MHz 

[57] Voltage Doubler SMS7630–005LF 75% 15 dBm 0.1 GHz to 2.5 GHz 

[58] Voltage Doubler SMS7630-005LF 68% −10 dBm 2.45 GHz 

[59] Half-Wave Voltage Doubler HSMS-2852 57% <200 μW/cm2 1.7 GHz 

[60] Cockcroft-Walton Voltage Doubler HSMS-2852 - −22.5 dBm 900 MHz 

[61] Karthaus-Fisher Voltage Multiplier HSMS-2862 70% 23 dBm 2.45 GHz 

[62] 7-Stage Villard Voltage Doubler HSMS-2850 - 0 dBm 945 MHz 

[63] Dickson Multiplier HSMS-2852 55% 0 dBm 
575 MHz, 900 MHz, 2.45 

GHz 

[64] Differential Doubler SMS-7630 53% 2 dBm 1800 MHz 

[65] 3-Stage Voltage Multiplier HSMS-285C 80% 8 dBm 915 MHz 

[66] Balanced RF Rectifier HSMS-2860 74.90% 
Different input 

power levels 
2.34 GHz 

[67] Greinacher Voltage Doubler HSMS-2852 78.70% −10 dBm 900 MHz 

[68] 
Voltage Doubler with Multistage 

Wilkinson 
HSMS-286B 78.06% 20 dBm 1.8 GHz 

[69] Dual Band Rectifier HSMS-2850 30% −5 dBm 900 MHz 

[70] Single Diode Rectifier HSMS-2850 28% −15 dBm 2.4 GHz, 2.5 GHz 

[71] Single Stage Voltage Multiplier HSMS-2850 50.2% 14 dBm 900 MHz 

Figure 12. VT-VSB (The red color refers to DTMOS and the dark blue to BTMOS).
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All rectifiers of this section are listed in Table 5. Table 6 consists of the same rectifiers
separated by topology.

Table 5. Different rectifier circuits in bibliography.

Reference Rectifier’s Topology Diodes Efficiency
(Max) Input Power Frequency

[29] CMOS Reconfigurable
System - 25% −14.8 dBm 915 MHz

[35] Dual Band Voltage SMS-7630 30.40% −20 dBm 925 MHz

[43] Dual Band Voltage
Doubler SMS-7630 57.10% −10 dBm to −30 dBm 2.45 GHz, 5.8 GHz

[49] Single Diode Rectifier HSMS-2860 1.3% −20 dBm 2.45 GHz
[50] Voltage Multiplier HSMS-2850 81.65% 0 dBm 868 MHz

[51] Greinacher Rectifier
with Rat-Race coupler SMS-7630 5% −20 dBm to −10 dBm 2.45 GHz

[52] Greinacher Rectifier
with Rat-Race coupler HSMS-285C 71% 4.7 dBm 1850 MHz

[54] Double Diode Rectifier SMS7630-040LF 21% −15 dBm 97.5 MHz
[55] Voltage Quadrupler HSMS-2862 75.108% 20 dBm 2.4 GHz, 5.8 GHz

[56] Latour Structure
(Doubler) - 38% −10 dBm 850 MHz

[57] Voltage Doubler SMS7630–005LF 75% 15 dBm 0.1 GHz to 2.5 GHz
[58] Voltage Doubler SMS7630-005LF 68% −10 dBm 2.45 GHz

[59] Half-Wave Voltage
Doubler HSMS-2852 57% <200 µW/cm2 1.7 GHz

[60] Cockcroft-Walton
Voltage Doubler HSMS-2852 - −22.5 dBm 900 MHz

[61] Karthaus-Fisher
Voltage Multiplier HSMS-2862 70% 23 dBm 2.45 GHz

[62] 7-Stage Villard Voltage
Doubler HSMS-2850 - 0 dBm 945 MHz

[63] Dickson Multiplier HSMS-2852 55% 0 dBm 575 MHz, 900 MHz,
2.45 GHz

[64] Differential Doubler SMS-7630 53% 2 dBm 1800 MHz

[65] 3-Stage Voltage
Multiplier HSMS-285C 80% 8 dBm 915 MHz

[66] Balanced RF Rectifier HSMS-2860 74.90% Different input power
levels 2.34 GHz

[67] Greinacher Voltage
Doubler HSMS-2852 78.70% −10 dBm 900 MHz

[68] Voltage Doubler with
Multistage Wilkinson HSMS-286B 78.06% 20 dBm 1.8 GHz

[69] Dual Band Rectifier HSMS-2850 30% −5 dBm 900 MHz
[70] Single Diode Rectifier HSMS-2850 28% −15 dBm 2.4 GHz, 2.5 GHz

[71] Single Stage Voltage
Multiplier HSMS-2850 50.2% 14 dBm 900 MHz

[72] Rectifier with RF
Combiner HSMS-2850 40% −30 to −10 dBm GSM1800,

UMTS2100, Wi-Fi

[73] Single Stage Full-Wave
Rectifier SMS7630-079 60% - 800 MHz

[74] CMOS Rectifier - 86% −18.2 dBm 900 MHz

[75] CMOS Reconfigurable
System - 99.8% (MPPT) −22 to 4 dBm 915 MHz

[76] Reconfigurable System SMS7630-005LF 45% −15 to 20 dBm 900 MHz

[77] CMOS Reconfigurable
System - 92.2% - 6.78 MHz

[37] CMOS Villard
multiplier - - 0 dBm 400 MHz, 2.4 GHz

[80] DTMOS N-stage
rectifier - 79.4% −32 dBm 900 MHz
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Table 6. List of rectifiers based on their topology.

Rectifier’s Topology References

Dual Band Rectifier [35,43,69]
Single Diode Rectifier [49,70]

Voltage Multiplier [50,71,73]
Greinacher Rectifier with Rat-Race coupler [51,52]

Voltage Doupler [54,56–60,62,64,67,68]
Voltage Quadrupler [55]
Voltage Multiplier [61,63,65]

Balanced RF Rectifier [66]
Rectifier with RF Combiner [72]

Reconfigurable System [29,75–77]
CMOS Rectifier [37,74,80]

3.2.5. Load

The most basic parameter that characterizes the quality of RF to DC conversion
systems, as shown in the above analysis, is the power conversion efficiency (PCE). PCE
refers to the amount of energy transferred from the device and is defined as:

n =
Pin
Pout

, Pout =
V2

out
RL

(3)

Pin is the RF input power, Pout refers to the output power with Vout as the output
voltage and RL as the output load. To achieve maximum efficiency of the device, the load
resistance must be adjusted. However, high voltage requires high resistance, according
to Ohm’s law. Therefore, trade-off becomes inevitable. From the above equation, we
understand the importance of choosing the proper load value. The load can be capacitive,
inductive, or purely ohmic. For this reason, all works involved in the design of such circuits
are given a special study of what load will be used. As can be deduced from [43,54], the
efficiency of the system decreases when the load increases. As a result of the previous
analysis, we notice that it is very important that the load impedance be carefully selected for
a specific energy harvesting circuit [81]. Figure 13 depicts the change of the PCE depending
on the output loads for various power inputs [82].
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4. Discussion

Energy harvesting is the process in which energy is harvested from the environment
and converted into electrical power. The aim of energy harvesting is the energy autonomy
of systems. Energy from the natural resources can be solar, thermal, vibration, friction,
or Radio Frequencies (RF) signals and behave differently over time, depending on the
operating environment of the system. We focused on RF Energy Harvesting and how an
RF EH system, a rectenna, can be designed.

There are two different approaches of energy transfer: the dedicated transfer that
means high power values or the harvesting of ambient energy that means low power values.

A rectenna consists of a receiving antenna, an impedance matching network, and a
rectifier. The design process includes the selection of the proper energy harvesting circuit
topology, the selection of a suitable diode, and the design of an appropriate impedance
matching network. At the end of the design process, there is the optimization and simula-
tion of the whole system.

We categorized many designs according to the type of different modules (antennas,
impedance matching networks, rectifier circuit) and we mentioned the pros and cons of
each topology. Furthermore, we came to some basic conclusions about the design of each
unit of the rectenna, which we mention below.

Some antennas are made from several materials and in several designs, such as dipole
antennas, Yagi-Uda antennas, microstrip antennas, etc. From the bibliographic research
that was performed, no design is used or preferred more than the rest. Maybe in the near
future and due to their easy fabrication as well as their small size, microstrip antennas will
be preferably selected.

In terms of the design of the impedance matching circuit the most used matching
networks, are the L, the reversed L, the π, and the T network. The L matching is frequently
used and has only two components, which makes the design and control process match
more simple. In some designs it’s better to choose a T or π impedance matching network
because these topologies achieve wider bandwidth than the L network. Additionally, the T
matching network can be used to improve the output voltage levels. In addition to that,
the vast majority of the authors chose to use distributed elements in their designs that are
preferred at microwave frequencies (3–300 GHz). The lumped elements are generally used
at lower frequencies (below 3 GHz).

The selection of diodes is one of the most critical steps in the design of the rectifier.
Usually, Schottky diodes are used because of their low junction capacitance, low threshold
voltage, low barrier, and high switching capacity.

A rectifier, which is the fundamental circuit of the rectenna, can be designed with
diodes or with MOSFETs. There are benefits to both. But one thing that is clear from
all these works is that circuit designers at these frequencies (4G, 5G, etc.) prefer diodes
because MOS transistors suffer at high RF power due to a reverse current, which drains
some of the scavenged energy back to the input. On the other hand, CMOS technology
(BTMOS, DTMOS) sometimes is preferred, because CMOS transistors when operating in
low voltages are more sensitive than diodes. Also, as shown in Table 6 above, most designs
are voltage doublers and not multipliers because if we use more stages, then we will have
a higher drop voltage. In most cases, this is not acceptable.

Many designers design reconfigurable rectifiers to overcome some of the limitations
such as the low-efficiency and limited working range of the RF energy scavenging systems.
Another practice to improve the efficiency in RF energy harvesting systems is to add a
boost converter to the output of the rectifier.

One of the most basic parameters that characterize the quality of a rectenna system is
the power conversion efficiency (PCE), which mainly depends on the load, which in turn
can be capacitive, inductive, or purely ohmic. In addition to that, in most of the designs
studied, the characteristic impedance of the circuits is at 50 Ω and most authors agree
on the use of the substrate, with the FR4 substrate being the most common because it is
quite cheap.
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Energy harvesting is without a doubt a very attractive technique for a large num-
ber of self-powered microsystems. Examples of such systems are wireless sensors, im-
plantable medical devices, military surveillance devices, remote weather stations, calcu-
lators, watches, Bluetooth, or even mobile phones. There are already companies on the
market that have launched mobile phones that charge using RF energy harvesting. With the
great development of the Internet of Things (IoT) in recent years, the RF energy harvesting
will play a very important role because RF signals are all around us and are inexhaustible.
A rectenna system will be very useful in Smart Cities and Smart Homes which is also
a huge new scientific field. It aims to solve the power supply problem of the countless
sensors used in the IoT to monitor and develop data collection, thus contributing to the
need to reduce their battery or power supply.

Finally, we made an extensive analysis of the design of the RF energy harvesting
system, but it is not necessary to limit energy scavenging to RF power if other sources
are abundantly available. As we mentioned before, other energy sources can be kinetic,
chemical, friction, heat radiation, solar, etc. Hence, the future of energy harvesting could be
the combination of these types of energy to improve efficiency. This approach is the hybrid
systems. Nowadays, for example, hybrid vehicles are the future of the car industry.

5. Conclusions

In this work, we focus on RF Energy Harvesting and wireless power transfer. We
have summarized the state-of-the-art RF energy scavenging technology during the last
10 years. A basic RF energy scavenging unit is composed of the following: the antenna,
the impedance matching network, and the rectifier. All modules were presented, but we
emphasized mostly on the rectifier’s design, which can be designed with diodes or with
MOSFETs (BTMOS, DTMOS). Additionally, the power conversion efficiency (PCE) depends
on the load of the system and characterizes the quality of a rectenna system. After this
literature research, we concluded that most authors use distributed elements to design
their impedance matching networks and choose the doubler topology in a rectifier circuit.
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