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Abstract: Vehicular communications is expected to be one of the key applications for cellular networks
during the following decades. Key international organizations have already described in detail a
number of related use cases, along with their requirements. This article provides a comprehensive
analysis of these use cases and a harmonized view of the requirements for the latest and most
advanced autonomous driving applications. It also investigates the extent of support that 4G and
5G networks can offer to these use cases in terms of delay and spectrum needs. The paper identifies
open issues and discusses trends and potential solutions.
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1. Introduction

Autonomous driving is one of the hot topics for cellular telecommunications networks.
The International Society of Automotive Engineers (SAE) has created a roadmap of six
evolutionary levels [1]. The less advanced levels simply provide the transmission of
warnings and momentary assistance messages (e.g., automatic emergency break, blind
spot warning, etc.), whereas the most advanced level addresses full driving automation
under any environmental condition (i.e., local driverless taxi).

Although autonomous vehicles can rely on their on-board systems, enabling them
to communicate can improve their performance by enhancing their perception area and
allowing the execution of collaborative maneuvers. Vehicle to Everything (V2X) com-
munications is one of the enablers that can be employed to improve traffic safety and
efficiency. For example, in [2,3], the reader will discover a wide range of services that
require the communication among vehicles. These descriptions have been provided by the
3rd Generation Partnership Project (3GPP). The data exchange among vehicles includes
the transmission of simple Cooperative Awareness Messages (CAM) and Decentralized
Environmental Notification Messages (DENM), as well as specific trajectory information
and sensor data. The end-to-end (E2E) delay for this information exchange typically ranges
from 100 to 10 ms and in some extreme cases, even down to 3 ms. The throughput ranges
from a few kbps up to 1 Gbps, whereas the reliability varies from 90% to 99.999% [2].

The requirements described [3] were addressed with the provision of Long Term
Evolution-Vehicle (LTE-V), Release 14 [4]. This Release offered two types of direct commu-
nication between vehicles: One coordinated by the network, representing so-called Mode
3, and one where the vehicles communicate autonomously, without network assistance,
representing the so-called Mode 4. These use cases (UCs) and the related solutions were
rather limited, and lacked sophistication, in terms of reliability and Quality of Service
(QoS) guarantees for the end users. Following an evolution path, 3GPP defined the first 5G
specification (Release 15) with enhancements for Mode 3 and Mode 4 (e.g., 64 Quadrature
amplitude modulation (QAM) and shorter Transmission Time Interval (TTI)), still aimed at
initial deployments and fundamental UCs [4,5]. In Release 16, 3GPP considering inputs
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from verticals started addressing more advanced UCs and provided sophisticated solu-
tions [6]. These solutions included more complex tools, such as mobility prediction, data
analytics, and slicing support, as well as information received from the applications.

Most of the abovementioned descriptions of UCs and requirements were mainly based
on the input from telecommunication-related industries. Therefore, the need for a closer
collaboration between the telecom industry and the automotive industry was apparent. In
2016, the 5G Automotive Association (5GAA) (https://5gaa.org/) was established, with
the aim of identifying realistic scenarios; studying architectural proposals; dealing with
the defined scenarios; and analyzing business, deployment, and regulatory aspects. 5GAA
has produced a very thorough set of UCs and requirements and addressed methodological
aspects that may have been ignored in the past.

In the telecommunication research domain, EU-funded projects, such as METIS
2020 [7] and METIS 2020-II [8], have also provided descriptions of V2X safety and ef-
ficiency scenarios that closely match those discussed by telecommunication alliances [9].
More recently, dedicated V2X projects, such as 5GCAR [10], 5GCroCo [11], and 5G CAR-
MEN [12], further elaborated on the definition of UCs for cooperative, connected, and
automated mobility. Furthermore, they focused on the development of technologies, such
as Mobile Edge Computing (MEC) and the evolution of the air-interface, targeting spe-
cific demonstrations and trials (e.g., tele-operated driving and see-through) in complex
environments (such as cross-country border crossings). These cross-border demonstrations
are very challenging as all UCs must be supported with minimal service disruption, even
when the serving operator has to change in real time [13].

In the research community, several attempts have been made to define UCs for V2X
communications. The authors in [14] created an initial V2X UC description using the
early inputs from EU projects and from the Next Generation Mobile Networks Alliance
(NGMN). In [15], the authors provided an analysis of UCs presented in research projects
and identified tele-operated driving, vulnerable road user discovery, traffic efficiency, and
cooperative sensing and movement as the key categories of V2X UCs. Then, the authors
investigated which of these UCs could be supported by the technologies available at
the time (i.e., LTE-V and 802.11p), as well as new technological enablers (i.e., millimeter
wave (mmWave) and vehicular Visible Light Communication-VLC). This analysis did not
provide full details in terms of specific performance indicators, such as the delay, reliability,
throughout, etc. Further V2X survey papers, such as [16] and [17], mainly focused on
testing and security issues, respectively.

The success of V2X communications depends on both the level of driving automation
and the respective level of support by the cellular networks. Although research projects
offer innovative ideas and concepts, 5GAA and 3GPP are the main organizations driving
the evolution of V2X. As there are a plethora of UCs specified by these organizations, one
of the key contributions of our paper is to provide further insight for the most advanced
UCs (called autonomous driving and advanced driving assistance by 5GAA) and identify
the commonalities and differences set by 5GAA and 3GPP. Moreover, we have thoroughly
investigated whether delay and capacity requirements can be supported by existing 4G
and 5G networks standards. To do this, we have conducted a complete and detailed
analysis of the delay factors of both systems for the control and the user planes and
through all communication interfaces (e.g., Uu and PC5) and types of communication (e.g.,
broadcast, multicast, and unicast). As for the capacity analysis, we have considered 3GPP’s
urban grid and have evaluated the needs for the most advanced UCs following evaluation
assumptions specified by 5GAA. The paper also provides a discussion of potential solutions
and technological trends that tackle existing shortcomings.

The rest of the paper is organized as follows: Section 2 analyzes the UC definitions
in 5GAA and 3GPP and presents the specified performance requirements; Section 3 dis-
cusses 3GPP’s 4G and 5G network architecture designed to support V2X communications;
Sections 4 and 5 provide a thorough delay and capacity analysis for both 4G and 5G net-
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works and compare the findings against the UCs’ requirements; Section 6 discusses open
issues and future trends; and Section 7 concludes the paper.

2. V2X Use Cases

V2X UCs involve various scenarios with different application requirements. Conse-
quently, they are typically characterized by diverse network performance requirements
in terms of latency, reliability, and throughput. In UC definitions, E2E latency is the time
needed to transfer a given piece of information from a source to a destination, measured at
the application layer [18]. Reliability is defined as the proper reception of a message within
specific time constraints [19]. The experienced throughput is the bit rate required for the
delivery of the service [8].

5GAA has defined a methodology for describing V2X UCs and respective service
level requirements. All UCs have been grouped according to whether they serve user
safety, assist with driving, enhance vehicle operation, provide convenience, improve the
traffic efficiency, or enable autonomous driving [20]. Furthermore, UCs are classified as
“initial/day-1” or “advanced” UCs, partly based on the support level in various releases
of 3GPP’s Cellular-V2X (C-V2X) specifications, and partly based on 5GAA’s analysis of
whether they will be used from the first phase of C-V2X deployments or in later phases.
Regarding the classification of the mode of communication, Vehicle to Vehicle (V2V) refers
to direct communication between on-board units (OBUs) of different vehicles, using the
C-V2X (PC5) interface, and in bands that are designed to support Intelligent Transportation
Systems (ITS) services (e.g., the globally harmonized 5.9 GHz band). It should be noted
that V2V communications using the C-V2X (PC5) interface (also called sidelink) can—in
principle—also be accommodated in frequency bands that are designated for use by mobile
communication networks. Vehicle to Infrastructure (V2I) refers to communication between
the OBUs of vehicles and roadside units (RSUs) or locally relevant application servers.
Vehicle to Network (V2N) refers to communication between the OBUs of vehicles and the
base stations (BS) of mobile communication networks, using the C-V2X (Uu) interface.
Because day-1 UCs have non-demanding requirements, it is assumed that these UCs will be
supported by LTE networks. As mentioned earlier, in our analysis, we have concentrated
on the most advanced UCs.

3GPP has defined its own UCs for the identification of functional and non-functional
requirements, as well as respective evaluations for various scenarios. The families of UCs
considered by 3GPP are as follows: (a) Non-safety V2X services (e.g., connected vehicles,
mobile hot spots, dynamic digital map updates, etc.); (b) safety-related V2X services (e.g.,
autonomous driving, car platooning, etc.); and (c) V2X services in multiple 3GPP Radio
Access Technologies (RATs) (LTE, 5G New Radio, or 5G-NR) and network environments.
These UCs are described in detail in [2,6].

The UCs proposed by the two organizations present some expected similarities and
some interesting differences, so we have attempted to harmonize the terminology. There-
fore Table 1, presents a mapping of UCs based on the desired service outcome, the underly-
ing functionalities, and the descriptions provided by the two organizations. As mentioned
above, the UCs examined and compared in this paper are those that fall under the overall
category of “advanced, safety and autonomous driving” UCs, as these demonstrate the
most stringent network requirements for Key Performance Indicators (KPIs). Table 1 also
presents the UC titles set by 5GAA and 3GPP and provides a short description of the
expected services per UC. As these two organizations have selected different names for
several UCs, we have provided a common nomenclature that is used in the following
sections, where information about the delay and the spectrum analysis is provided.
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Table 1. Vehicle to Everything (V2X) use cases employed for delay and spectrum analysis.

UC # 5GAA UCs 3GPP UCs Description Common Name

1 Vehicles Platooning in
Steady State

eV2X support for
vehicle platooning

A group of vehicles driving closer
in a coordinated manner Platooning

2 High-Definition Map
Collection and Sharing

Automotive: Sensor
and state map sharing

Sharing of raw or processed sensor
data to build a shared map

Sensor and State
Map Sharing

3 Tele-Operated Driving Support of
remote driving Remote control of a vehicle Remote Driving

4 Cooperative Lane Merging
Cooperative

lane-change of
automated vehicles

Cooperative vehicles’
communication to change a lane or

perform lane merging
Lane Change

5 Infrastructure-Assisted
Environment Perception

Collective perception
of environment

Infrastructure transmits
information about objects on the

road to the vehicles

Infrastructure-based
Perception of
Environment

6 Vehicle Decision Assist Cooperative collision
avoidance

Enable collision avoidance
through coordinated maneuvers Collision Avoidance

7 High Definition
Sensor Sharing

Information sharing for
highly/fully

automated driving

Exchange high resolution data
(e.g., video, lidar) for cooperated
manoeuvres to highest SAE levels

Collective Information
Sharing

8 See Through for Passing
Video data sharing for
assisted and improved

automated driving

Transmission of video during
car overtaking

See Through for
Passing

9
Cooperative Maneuvers of
Autonomous Vehicles in

Emergency Situations

Emergency trajectory
alignment

Exchange trajectory information
among vehicles under
challenging situations

Emergency Trajectory
Alignment

10 Automated Intersection
Crossing

Intersection safety
information

provisioning for
urban driving

Cooperative automated driving
information exchange when

crossing an intersection
Intersection Crossing

11 Coordinated, Cooperative
Driving Manoeuvre

Automated cooperative
driving for short

distance grouping

Exchange of information among
vehicles to coordinate their

trajectories under
different situations

Cooperative Driving

Network-related requirements per UC are summarized in Table 2. In some cases,
the delay, reliability, and throughput are reported as range values; this is done because
multiple scenarios for different levels of autonomous driving are being considered, even
in the context of the same organization. 3GPP has specified more stringent requirements
for most of the UCs, as the telecom experts want to prepare the networks for supporting
all UCs, even those belonging to the highest level of driving automation. It should also
be noted that there is not available information for all requirements. Our delay analysis
in Section 4 assumes 3GPP’s values of Table 2, whereas the spectrum analysis in Section 5
considers 5GAA’s estimations, which, although typically assuming more modest values for
services than their counterparts in 3GPP, are sufficient for indicating existing issues. For the
UC of “Cooperative Driving”, we have assumed 3GPP’s value as 5GAA has not yet defined
one. Moreover, note that 5GAA distinguishes the mode of communication in V2N/V2I
(i.e., uplink (UL) and downlink (DL)) and V2V (i.e., sidelink), where this information is not
defined in 3GPP specifications.

In the analyzed UCs, it should be noted that 3GPP underlines the need to support
automated driving in multi-Public Land Mobile Network (PLMN) environments; in 5GAA,
this is implied with the global geographical coverage, but it is not explicitly raised. As
we will explain in the following sections, this is an important issue that may considerably
affect the overall communication delay if not addressed properly.
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Table 2. V2X use case requirements.

Delay Reliability Throughput
UC # Title 5GAA 3GPP 5GAA 3GPP 5GAA 3GPP

1 Platooning Delay
Sensitive 10–25 ms - 90% 8–48 kbps -

2 Sensor and State Map
Sharing - 10 ms - 90% 4–47 Mbps 25 Mbps

3 Remote Driving Delay
Sensitive 5 ms - 400 kbps–36 Mbps 1–20 Mbps

4 Lane Change - 10–25 ms - 90–99.99% 120 kbps -

5
Infrastructure-based

Perception of
Environment

- 3–100 ms - 99.999% 4–155 Mbps 1 Gbps

6 Collision Avoidance - <10 ms - 99.99% 10 Mbps -

7 Collective Information
Sharing 10 ms 100 ms - High 120 kbps 50 Mbps

8 See Through for
Passing 50 ms 10–50 ms 99% 90–99.99% 8 Mbps 10–700 Mbps

9 Emergency Trajectory
Alignment - 3 ms - 99.999% 48 kbps 30 Mbps

10 Intersection Crossing - - - - 8–25 kbps 50 Mbps
11 Cooperative Driving - <5 ms - 99.99% - 384 kbps

3. 3GPP’s V2X Architecture

3GPP initially introduced the V2X architecture in Release 14 [21]. Apart from the main
4G network components, 3GPP has defined two additional functional entities, namely the
V2X Control Function and the V2X Application Server (V2X AS). The former is the logical
function that is used to control and provide the User Equipment (UE) with parameters
that are required to access V2X communications. The primary service of the V2X AS is
to receive UL data from the UE over unicast and deliver the data to the target UEs over
unicast, multicast, or broadcast. In addition to the functional entities, ref. [21] defines the
basic UE reference points for V2X communications, which are the PC5 a.k.a. sidelink for
Modes 3 and 4 and the LTE-Uu. The PC5 reference point is used for Proximity Services
(ProSe) direct communication and the LTE-Uu is the air interface between UE and the
Evolved Universal Mobile Telecommunications System Terrestrial Radio Access Network
(E-UTRAN).

5GAA has analyzed the 4G architectural options and proposed architectural recom-
mendations for the V2X communications [22]. One of them was the introduction of the
Common Cloud Entity (CCE). CCE can distribute the PC5 parameters to the V2X Control
Functions and the Cloud Entities (i.e., Proprietary Cloud Entity (PCE)) of the various stake-
holders, which, upon their turn, will provide the PC5 configuration to the UE. The interface
between the CCE and the PCE has to be standardized according to the recommendation of
the 5GAA; however, this action has not yet been performed.

The 5G cellular system has improved the Radio Access Network (RAN)—the so-called
5G-NR—in terms of an increased throughput, reduced delay in the control and user planes,
and more sophisticated support of QoS. It is definitely more suitable for supporting the
most demanding V2X UCs. However, the overall system is not complete as parts of the
picture are still missing (e.g., multicasting and broadcasting in 5G networks over the Uu
interface).

Figure 1 presents the 5G Architecture for V2X communications comprising infor-
mation from [23,24]. In [23], the following network functions further support the V2X
communication:

• The Policy Control Function (PCF) is responsible for providing authorization and
policy parameters and retrieving V2X information from the Unified Data Repository
(UDR);
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• The Access and Mobility management Function (AMF) handles mobility manage-
ment and obtains V2X subscription information from the Unified Data Management
(UDM). Additionally, it retrieves PC5 QoS information from the PCF, and provides
the aforementioned parameters to the NG Radio Access Network (NG-RAN);

• The V2X AS provides V2X parameters to the UE and the 5G core network. It receives
UL data and sends DL data from/to the UE over unicast. Furthermore, it may request
to receive notifications about potential QoS modifications in a specific geographic area.
This information may be received through the Network Exposure Function (NEF).
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In relation to the PC5 reference point, which relates to direct communication among
the UEs, it is considered for V2X communication by both LTE and 5G-NR. In LTE’s Mode 3,
the network allocates the resources to be used by the UEs. In Mode 4, the UEs autonomously
select the resources to use for direct communication [25]. For LTE, the broadcast mode is
the only supported communication mode. In 5G-NR, the respective communication modes
are Mode 1 and Mode 2, which are enhanced compared to those of LTE, in order to improve
the efficiency and provide QoS for the UEs. Additionally, broadcast, multicast, and unicast
modes can be supported over the PC5 interface [23].

Regarding the 5G Uu interface, multicast and broadcast communication types have not
yet been specified. In [24], various solutions have been proposed for providing multicast
services. One of them is Multimedia Broadcast Multicast Services (MBMS), which has
been used in E-UTRAN. According to the latter, multiple UEs receive the same content
from a BS. However, such an approach requires multiple enhancements in the network
so as to (a) enable the UEs to obtain the multicast IP, (b) enable the BS to transmit this
content to multiple UEs, and (c) handle multicast session control. Note that in Figure 1 we
have included the MBMS for reasons of completeness, although the exact solution will be
specified in Release 17. As we will discuss later, the specific choices made for multicasting
and broadcasting may have a significant impact on the communication delay.

The network functions that are responsible for the control of the multicast are the
Session Management Function (SMF) and the Broadcast Multicast Service Center-Control
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Plane Function (BMSC-CPF). The SMF supports the MBMS bearer sessions and the IP
multicast addresses allocation. BMSC-CPF connects with the V2X and provides the Tem-
porary Mobile Group Identifier (TMGI) needed for the multicast communication. In
addition, it manages the MBMS session and location-related information. For the user
plane, the BMSC-User Plane Function (UPF) connects with V2X AS and transmits the
MBMS-related data.

In [26], 5GAA has analyzed the aspects of predictive QoS (for 5G systems). Consid-
ering that V2X applications in the vehicle can request one or more communication links
with a V2X AS, the latter can allocate various QoS levels to these links. However, due to
varying network conditions, unanticipated QoS degradation may occur. In such cases, if
the network can identify the QoS degradation in advance, it may enable the network or
application to act proactively. Therefore, the notion of the “In-advance QoS Notification”
(IQN) has been proposed. Finally, 5GAA has investigated in detail the support of commu-
nicating vehicles that are being served by different operators. Therefore, it has analyzed
specific solutions for direct or infrastructure-based communication among vehicles [22].
In these cases, some form of inter-operator collaboration is needed, at least for the very
demanding scenarios. This may include RAN sharing, regional roaming, local breakout
points, or the dynamic exchange of configuration parameters.

The selection of the communication interface and the type of communication (i.e.,
unicast, broadcast, or multicast) have a significant effect on the experienced delay, but also
on the needed network capacity, as we will explain in detail in the following sections.

4. Delay Analysis for V2X Communications

Latency is of pivotal importance for V2X systems given its relevance to the very fast
reactions to potential hazards that are required. As shown in Table 2 some UCs require
extremely low latencies (e.g., 3 ms). This is of course a very challenging goal for a cellular
network. The latency that can be supported by Long-Term Evolution Advanced (LTE-A)
and 5G-NR systems relates to inherent characteristics of the networks for specific control
and user plane functionalities. Delay evaluation has been performed by 3GPP [27,28],
5GAA [22], and 5G Infrastructure Association (5G-IA) [29] for both LTE-A and 5G-NR.
Moreover, the authors in [30] evaluated the IMT-2020 KPIs (including user and control
plane delay) for 5G-NR following the assumptions provided by 3GPP [28] and 5G-IA [29].
In this paper, we provide a thorough analysis, with additional delay components that have
not been presented in the aforementioned evaluations, such as handover, paging, and core
network delay for 5G. The following sections provide detailed information for both the
Uu and PC5 mode of communication in LTE-A and 5G-NR. For simplification, we only
consider the Frequency Division Duplex (FDD) mode.

4.1. LTE-A Delay

Cellular networks have multiple components that contribute to the total system delay,
including the control plane, core network, and user plane delay. These components are
analyzed in [27] for V2X applications. In the rest of this subsection, the latency components
for both the control and user plane are analyzed.

4.1.1. Control Plane

Control plane latency is related to the establishment of a signaling connection of a
UE with the network (Radio Resource Control (RRC) connection establishment), paging,
and handover (HO). The delay during these control functions may seriously affect the
performance of an autonomous driving application, especially if the vehicles involved do
not already have a connection to the network (i.e., IDLE RRC state).

RRC connection establishment switches the RRC protocol from the IDLE to the CON-
NECTED state [27]. To do this, the UE initially performs the Random Access Channel
(RACH) procedure. It transmits a preamble to the Evolved Node B (eNB) to request re-
sources to transmit in the UL channels. Then, once the resources are granted from the eNB,
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the UE performs the RRC connection establishment procedure [31]. This procedure may
include security tasks. The overall procedure is decomposed in its steps and is presented in
Table 3, together with the time required for each one of them. The time required for steps
11–14 is left null. This is due to the fact that steps 11–14 are performed concurrently with
the steps 15–17 and are expected to finish before them, thus making the calculation of the
delay for these steps irrelevant.

Table 3. Radio Resource Control (RRC) connection establishment in Long-Term Evolution Advanced
(LTE-A) [32].

Step Description Time (ms)
1 RACH scheduling period 0.5
2 RACH preamble transmission 1

3–4 Preamble detection and transmission of RA response 3
5 UE processing 5

6 Transmission of RRC Connection Request and Non-Access
Stratum (NAS) request 1

7 eNB processing (L2 and RRC) 4
8 Transmission of RRC Connection Setup (+ UL grant) 1
9 UE processing (L2 and RRC) 12
10 Transmission of RRC Connection Set-up Complete 1
11 eNB processing (Uu -> S1-C)
12 S1-C transfer delay
13 Mobility Management Entity (MME) Processing Delay
14 S1-C Transfer delay
15 eNB processing (S1-C -> Uu) 4

16 Transmission of RRC Security Mode Command and Connection
Reconfiguration (+TTI alignment) 1.5

17 UE processing (L2 and RRC) 16
Total 50

The overall delay of 50 ms can be considered as a significant delay, especially for V2X
UCs that require a fast response time, even from vehicles that are in an RRC IDLE state.

Paging is the procedure performed by the network to locate a UE with the accuracy
of a cell. It is an RRC procedure that occurs when incoming information (data, system
information, etc.) is intended for a UE. As defined in [27], paging latency is considered
from the point that a packet has already arrived at an eNB. The paging cycle varies from
320 ms to 2.54 s; an additional 2.5 ms of transmission and processing time is considered [27].
Upon reception of a paging message, a UE has to follow the RRC connection establishment
procedure as described above. As the combined delay of paging and RRC connection
establishment appears to be high, in relation to V2X UCs, V2X applications should take
this into serious consideration.

For vehicles already involved in active communication (i.e., RRC CONNECTED),
the disruption time during the execution of HOs needs to be considered. This procedure
relates to the transfer of the UE context from one cell to another, the establishment of radio
resources in the new cell, and possibly the switching of the core network’s established data
paths. In LTE, the HO procedure is of the break-before-make type, meaning that there is a
data interruption period where data transmission is paused; the interruption varies from
17 to 50 ms and it may even go up to hundreds of ms [33]. The HO procedure consists of
the following phases, described in detail in Table 4:

• The HO preparation, starting with the transmission of the RRC measurement report
from the UE to serving eNB. The eNB processes the request, coordinates with the
neighboring eNB, and sends the HO command to the UE.

• The HO execution, which starts upon the reception of the HO command message
from the UE. During this phase, the data transmission stops and the UE proceeds
to RRC reconfiguration. Consequently, the UE attempts to reach the target cell via
the RACH. The procedure is finalized when the UE transmits the RRC Connection
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Reconfiguration complete message to the target cell, and the target cell resumes data
transmission.

Table 4. Handover delay in LTE-A [33].

HO Phase Description Time (ms)

H
O

pr
ep

ar
at

io
n

RRC: Measurement report 11
HO decision 15

X2: HO request 10
Admission control 22

X2: HO request ACK 10
RRC: HO command 6

Process HO command 15
Total HO preparation 89

D
at

a
in

te
rr

up
ti

on
ti

m
e

H
O

ex
ec

ut
io

n UE reconfiguration 20
Synchronization 3.5

UE allocation and TA transmission 8
RRC: Reconfiguration Complete 11

Total HO execution 42.5

TTI alignment 0.5
Data transmission from target 1

Decode 3
Total data interruption time 47

It should be noted that LTE supports dual connectivity, where the UE simultaneously
connects to two BSs. This may enable uninterrupted service continuity during an HO, at a
penalty of using additional resources.

4.1.2. User Plane (Uu Interface)

User plane delay is the time needed by a UE from the transmission of a packet to
its reception by another end device. During this procedure, a packet usually traverses
through the core network (including the Evolved Packet Core (EPC) and V2X AS), which
contributes to the total E2E delay. This delay consists of UL, DL, and network processing
delays.

The UL delay in the radio access network is the time required for a message to be
transmitted from a UE, until its reception by the eNB [27]. Three distinct cases can be
identified in relation to UL transmissions, namely dynamic scheduling with/without
a buffer status report (BSR) and semi-persistent scheduling (SPS) [27,34]. For dynamic
scheduling, the UE sends a Scheduling Request (SR) through the Physical Uplink Control
Channel (PUCCH) to the BS. The SR period is typically 10 or 1 ms; the average waiting time
(SR/2) is used for evaluation [27]. Upon the reception of the SR by the eNB, the latter will
process it and provide the UL grant to the UE, which will use it for the UL transmission.
In the case where the UE provides the BSR, an additional time of 8 ms is required. For
the SPS case, the eNB transmits the UL grant to the UEs, without the reception of SR, so
the total time required for the SR procedure can be omitted. Therefore, the total delay for
the SPS depends on the SPS period. The minimum SPS period is 10 ms, which should be
augmented from the time required to transmit the data to identify the overall delay [27].
The afore-described analysis is presented thoroughly in Table 5.
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Table 5. Uplink delay in LTE-A [27].

Scheduling Type Description Time (ms)

D
yn

am
ic

Average waiting time for PUCCH (SR = 1) 0.5
UE transmits the SR 1

eNB decodes and generates the UL grant 3
Transmission of UL grant 1

UE processing delay (decoding of UL grant and
L1 encoding of data) 3

Bu
ff

er
St

at
us

R
ep

or
tS

te
ps UE transmits the BSR 1

enB decodes BSR and generates the UL grant 3
Transmission of UL grant 1

UE processing delay (decoding of UL grant and
L1 encoding of data) 3

UE transmits the data (10% BLER) 1.8
eNB receives and decodes the data 1.5

Total (with BSR/without BSR) 19.8/11.8

Semi-persistent
Average time for SPS period (10 ms) 5

UE transmits the data 3
Total 8

In the DL, LTE can support both unicast and multicast/broadcast transmissions. The
multicast/broadcast transmission mode is provided through MBMS, which is categorized
as two service types: MBMS Single Frequency Networks (MBSFN) and Single Cell Point-
To-Multipoint (SC-PTM). The former one is based on multi-cell transmission, meaning
that UEs can receive the same message through different cells. In this case, the UE can
exploit the multi-cell transmission, by combining the received messages, in the same way
as multipath works, thus increasing the total reliability. In SC-PTM transmissions, the
transmission area is restricted in one cell. The scheduling delay for SC-PTM is lower, since
synchronization from multiple cells is avoided. Table 6 presents the DL delay, reported
in [27], and includes both unicast and multicast/broadcast transmission. In general, the
same values are considered for both transmission modes, except the scheduling periods.
For MBSFN, the scheduling period refers to the Multicast channel Scheduling Period (MSP)
and the SC-PTM scheduling period (SSP) is employed for single cell transmission. The
former uses the Multicast Traffic Channel (MTCH) to convey the data. In contrast, whilst
SC-PTM delivers the data through the Physical Downlink Shared Channel (PDSCH).

Table 6. Downlink delay in LTE-A [27].

Mode Description Time (ms)
Unicast eNB processing and scheduling 1.5
MBSFN Scheduling period (MSP = 40) MSP/2 + 1
SC-PTM Scheduling period (SSP = 1, 10) max (SSP/2 + 1, 2)
Unicast Transmission of DL data (10% BLER) 1.8

MBSFN/SC-PTM Transmission of DL data 1
All UE L1/L2 processing 1.5
All UE upper layer processing 3

Total Unicast 7.8
Total MBSFN 26.5

Total SC-PTM (SSP = 1/10) 7.5/10.5

Regarding the delay in the core network, this is also referred to as network processing
delay. In LTE, the packet needs to traverse through network components (i.e., Serving
Gateway S-GW and Packet Data Network Gateway P-GW) to reach the destined eNB.
For multicast/broadcast transmissions, the only difference that occurs in the DL phase is
when the packet is being communicated through the Broadcast-Multicast-Service Centre
(BM-SC). However, the network processing values for unicast and multicast/broadcast are
the same—20 ms [27]. Figure 2 provides the total delay in the cases where BSR is used (UL
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DS BSR) or not used (UL DS) and for SPS. Moreover, all types of communication, including
unicast, MBMS, and SC-PTM, are used. The E2E delay can be modeled as follows:

tE2E = tUL + tcore + tDL. (1)
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Figure 2. End-to-end (E2E) user plane (UP) latency in LTE-A (Uu).

To give an example, we can assume a unicast transmission with SPS. The tUL equals
8 ms (Table 5), the tDL for unicast mode is 7.8 ms (Table 6), and the tcore is always 20 ms,
leading to tE2E = 35.8 ms, as presented in the figure below.

Note that local breakout schemes enable the exchange of packets in a confined area
and avoid routing through the core network. The Selected IP Traffic Offload (SIPTO)
solution is an approach that could be considered for V2X communication as it would avoid
the delay when crossing the core network, but it cannot provide an uninterrupted service
under all scenarios [35].

4.1.3. User Plane (PC5 Interface)

As mentioned earlier, some of the late LTE’s versions supported direct communication
between UEs, through the so-called PC5 interface. PC5 used for vehicular communications
is categorized as two transmission modes, namely Modes 3 and 4 [22]. Mode 3 refers to
network scheduled transmission, whereas Mode 4 refers to transmission on autonomously
selected resources. In Mode 3, the eNB is responsible for providing the UEs with control
information, including the type of scheduling [22].

Mode 3 uses dynamic scheduling with BSR or semi-persistent scheduling. Dynamic
scheduling with BSR follows the same principle as in the UL transmission case, omitting the
last two steps (including UE transmission and eNB reception). In SPS, the UE may provide
feedback information to the eNB, in order to allocate the SPS resources effectively and
reduce the transmission latency. The latter can be achieved if the scheduling configuration
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is synchronized with the packet arrival time. Consequently, the data transmission occurs
immediately [22].

At this point, it should be mentioned that when a UE is in the RRC IDLE state, it
can only transmit a packet in Mode 4. A UE will have to switch to the RRC CONECTED
state to transmit using Mode 3. This implies that when the UE has delay-critical data to
transmit, this additional burden has to be considered for Mode 3 (50 ms for RRC connection).
On the contrary, this delay is optional for the UE in Mode 4, with the limitations of the
local view of sensing, which may phase collisions on the receiver’s side (e.g., the hidden
terminal problem). Another control plane component that should be considered for both
modes is the transmission of UE sidelink information for a resource configuration request
which occurs when the UE receives the RRC reconfiguration message from the eNB. The
assumption for this delay component is 29.1 ms [27].

The sensing period and the SPS delay relate to sensing windows and scheduling
windows, respectively, which may vary [22]. The analysis of these steps is presented in
Table 7 considering the min., mean, and max. values of the potential delays; the RRC
connection delay is not considered, since it is assumed that the UE is already in a condition
to transmit.

Table 7. Sidelink delay in LTE-A [22].

Mode Scheduling Step Component Description Min. Average Max.

3

Dynamic
Scheduling
with BSR

1 Sidelink Scheduling

Same as the first nine steps from (Table 5)
Min: SR/2 (SR = 1 ms)

Average: SR/2 (SR = 10 ms)
Max: SR (SR = 10 ms)

16.5 21 26

2 Transmission of data
+ SCI

Data and SCI are transmitted at the same
subframe (1 TTI) 1 1 1

3 Processing Receiver UE L1/L2 processing time 1.5 1.5 1.5
4 Receiver UE upper layer processing 3 3 3
5 Total - 22 26.5 31.5

Semi Persistent
Scheduling

1 Sidelink SPS
scheduling period

Min: The transmission of SCI and data can
be aligned with packet arrival time

Average: SPS period/2
Max: The UE misses the last transmission
opportunity and need to wait for one SPS

period

1 50 100

2
Processing

Transmitter UE L1/L2 processing 1.5 1.5 1.5
3 Receiver UE L1/L2 processing 1.5 1.5 1.5
4 Receiver UE upper layer processing 3 3 3
5 Total - 7 56 106

4 -

1
Timing of sensing

and resource
selection

Min: T1 = 1
Average: (T2 − T1)/2 = (100 − 1)/2 = 49.5

Max: T2 = 100
1 49.5 100

2
Processing

Transmitter UE L1/L2 processing 1.5 1.5 1.5
3 Receiver UE L1/L2 processing 1.5 1.5 1.5
4 Receiver UE upper layer processing 3 3 3
5 Total - 7 55.5 106

4.2. 5G-NR Delay

As mentioned in the introductory sections, 3GPP has considered that only the initial
UCs of V2X will be tackled by the 4G system. The 5G system should handle the more
demanding UCs. Therefore, 5G-NR introduces flexible resource allocation in the physical
layer [36], including different Subcarrier Spacing (SCS), Orthogonal Frequency Division
Multiplexing Symbol (OS) durations, and Cyclic Prefixes (CPs), usually referred to as
numerologies. In the time domain, physical transmissions correspond to frames with a
10 ms duration, which in turn are divided into ten subframes with a 1 ms duration, as
in LTE. One slot consists of 14 OS and subframes might have several slots, depending
on the numerology (i.e., SCS). For example, a subframe is equal to one slot in the case of
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14 OS using 15 KHz SCS (i.e., fixed transmission parameters in the LTE frame structure).
A physical resource block (PRB) is composed of 12 consecutive subcarriers for one OS,
contrary to LTE, which corresponds to a fixed slot of 0.5 ms (i.e., PRB = 12 subcarriers × 1
slot).

Resource mapping types [37] indicate how the Physical Uplink Shared Channel
(PUSCH) and PDSCH are allocated throughout the slot. For PUSCH, mapping type
A indicates that the allocation always occurs at OS 0 in the slot, while in mapping type
B, it might start midway through the slot. PDSCH follows the same frame structure for
both mapping types. Therefore, Demodulation Reference Signals (DM-RS) are used in
PDSCH allocation for channel estimation and the demodulation of physical channels. Type
A implies that DM-RS are located in the second or third symbol of a slot and type B implies
that DM-RS are located in the first symbol of the PDSCH allocation. Having the DM-RS at
the beginning of the allocation makes the demodulation faster. The delay analysis below
considers both control and user plane functions.

4.2.1. Control Plane

In order to reduce the need for repeated UE context retrieval from the network, every
time a UE performs an RRC Connection Request, 3GPP’s Release 15 introduces a new state
in respect to the RRC protocol called RRC INACTIVE [38]. The basic feature of this state is
that a UE maintains the connection with the core network. The Access Stratum context is
stored in the UE and the gNB. This new state is beneficial for the overall delay, since the
signaling for the transition in the RRC CONNECTED state is shortened and the UE context
is already available in the gNB.

According to [28], control plane latency is defined as the time required for the transi-
tion of the UE from the RRC INACTIVE to RRC CONNECTED state. The calculation of
the control plane latency is based on the following assumptions. The waiting time for the
transmission of a preamble through RACH is considered to be T1 = 0 ms. However, the
start time for the transition from the “battery efficient state” is not defined, so the RACH
scheduling period could be included, affecting the overall delay. The time required to
transmit the preamble T2 depends on different Physical Random Access Channel (PRACH)
symbol lengths (i.e., 2, 6, and 14). The next step is preamble detection and processing
in the gNB, calculated as T3 = tgNB/2. The processing time in the gNB is given by [37],
calculated as

tgNB =
max

[
N2(2048 + 144) · κ ·2−µ· Tc

2048 · ∆f
, 0

]
2

, (2)

where N2 depends on SCS and can be found in Table 6.4-1 and Table 6.4-2 in [37] for UE
processing capability 1 and UE processing capability 2, respectively; µ is the numerology;
and κ = Ts

Tc
= 64 is a constant to relate the NR basic time unit Tc = 0.509 ns and LTE basic

time unit Ts.
After the time required for the first frame alignment TFA1, the gNB sends the RA

response and the total time T4 depends on the configuration (slot or non-slot). The UE
processing delay T5 involves the decoding of the scheduling request, Cell Radio Network
Temporary Identifier (C-RNTI) assignment, and the L1 encoding of RRC resume request.
The UE processing time is calculated [39] as

T5 = NT,1 + NT,2 + Twait, (3)

where NT,1 (Table 5.3-1 [37]) is the time required to transmit N1 symbols for PDSCH
reception with processing capability 1 and an additional DM-RS configuration and NT,2
(Table 6.4-1 [37]) is the time required to transmit N2 symbols for PUSCH reception with
processing capability 1. Moreover, Twait is the average waiting time between the reception
and transmission of data, which is assumed to be 0.5 ms.

Once the RACH procedure has been completed and after frame alignment TFA2, the
UE transmits the RRC Resume Request message and the total time T6 also depends on
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the configuration (slot or non-slot). The assumption for the gNB processing the L2 and
RRC request is T7 = 3 ms. After frame alignment TFA3, gNB responds with the RRC resume
message alongside the UL grant and the time T8 depends on the configuration. The UE
processing (L2 and RRC) is T9 = 7 ms. The time required for transmission of the RRC
Resume Complete message is omitted, since the transmission occurs at the beginning of
the subframe with the actual data T10 = 0 ms. The above procedure results in different
values for the control plane delay that range from 11.3 to 17 ms, depending on the TTI
length, subcarrier spacing, resource mapping type, and UE capability, analyzed in [28].

Note that a UE can support an RRC INACTIVE state, even if attached to an eNB,
but only if the eNB is connected to the 5G Core network [31]. In [28], 3GPP evaluates
the control plane latency, compared to LTE-A, for the transition of the UE from the RRC
INACTIVE to RRC CONNECTED state (Table 8)—the impacted values are denoted in
bold. The evaluation follows the same sequence as the transition (RRC INACTIVE-RRC
CONNECTED), analyzed for the 5G-NR above. The only difference is that for the 5G-NR
case, there are a variety of numerologies. In comparison to Table 3, the processing values
for eNB and UE have been reduced [28]. As for the RACH scheduling period and the
transmission of the RRC Connection Resume Complete message, the assumption is the
same as in the 5G-NR case (0 ms).

Table 8. Control plane delay for the INACTIVE-CONNECTED state with the LTE Radio Access
Network (RAN) and 5G Core [28].

Description Time (ms)
RACH scheduling period 0

RACH preamble transmission 1
Preamble detection and transmission of RA response 3

UE processing 4
Transmission of RRC Connection Resume Request 1

eNB processing (L2 and RRC) 3
Transmission of RRC Connection Resume 1

UE processing (RRC, including grant reception) 7
Transmission RRC Connection Resume Complete and UP data 0

Total 20

In relation to the paging cycle, it is significantly more flexible in 5G systems than
in LTE, varying from 10 ms to 10.24 s [38]; additional transmission and processing time
should be considered, which would be in the range of 1–2 ms. Upon the reception of a
paging message, a UE has to follow the RRC connection.

Finally, 5G supports dual connectivity, as was the case in LTE. This feature can be used
to minimize the HO delay at the penalty of using more radio resources.

4.2.2. User Plane (Uu Interface)

The overall user plane latency for 5G is different for the UL and the DL. It is worth
mentioning that for DL, only the unicast mode is supported as of now by 3GPP standards.
The description for MBMS referenced in Section 3 is only a proposal adapted from [24].
3GPP has not yet standardized the MBMS architecture for 5G-NR.

For the UL procedure, grant-free transmissions can be used in order to reduce the
delay [28]. Since the UL grant is omitted, the UE only needs to process the data and wait
for frame alignment. The packet transmission delay depends on the length of the OS
needed. The gNB processes the data through PUSCH. However, grant-free transmissions
face the inherent problem of potential collisions on the receiver’s side. For the DL, the gNB
processes the data and waits for frame alignment. The packet transmission delay depends
on the OS length.

In case there is an error in the transmission/reception, the Hybrid Automatic Repeat
reQuest (HARQ) protocol is used for proper reception, which is based on retransmissions.
In UL, the gNB schedules the retransmission through the Physical Downlink Control
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Channel (PDCCH). Upon the decoding of the control information from PDCCH from the
UE, the latter needs to repeat the UL procedure. In DL, the UE transmits an ACK/NACK
to indicate proper reception or failure. The user plane procedure can be calculated as
follows [30]:

τ = τ1 + p(τ2 + τ3), (4)

where p is the probability of retransmission. The first transmission can be calculated
as follows:

τ1 = tgNB + tFA1 + tTTI + tUE, (5)

where tgNB is the processing time in the gNB (same as the control plane), tFA1 is the time
needed for frame alignment, tTTI is the actual transmission of data, and tUE is the processing
time in the UE:

tUE =
max

[
N1(2048 + 144) · κ ·2−µ· Tc

2048 · ∆f
, 0

]
2

, (6)

where N1 depends on SCS and can be found in Table 5.3-1 and Table 5.3-2 in [37] for UE
processing capability 1 and UE processing capability 2, respectively. If an error occurs, the
UE needs to ask for a retransmission (HARQ) and the time can be calculated as follows:

τ2 = tUE + tFA2 + tHARQ + tgNB, (7)

where tHARQ requires 1 OS. After receiving and processing the HARQ request, the gNB
retransmits the content (in the case of DL):

τ3 = tgNB + tFA3 + tTTI + tUE. (8)

In [40], 3GPP employs a specific numerology (i.e., UE capability 2, non-slot-based
PDSCH/PUSCH allocation of 2 OS) to meet the advanced V2X UC requirements. The
values are presented in Table 9.

Table 9. User plane delay for 5G-NR [28].

UE Capability 2
Mode

Resource
Mapping Type OS

Initial Error
Probability 15 KHzSCS 30 KHzSCS 60 KHzSCS

Downlink
(ms)

B
2

p = 0 0.49 0.29 0.23
p = 0.1 0.60 0.35 0.28

Uplink (ms) 2
p = 0 0.52 0.30 0.24

p = 0.1 0.62 0.36 0.28

The previous analysis for LTE considered the E2E values. However, this is not available
in 5G systems, since in the technical specifications and the literature, there are no agreed
values for the core network delay. In [22], 5GAA assumes a 3 ms delay each time a packet
traverses through an interface in the EPC. Moreover, using a local breakout scheme with a
standalone Local Gateway (L-GW), the overall core network delay for LTE may be reduced
from 20 to 12 ms [22]. In the case of the 5G core network, the packet needs to traverse from
gNB to UPF through the N3 interface and subsequently from UPF to the V2X AS through
the N6 interface (i.e., for unicast mode) [23], always assuming that the UE is in the RRC
CONNECTED state and the Protocol Data Unit (PDU) session is established. In order to
provide a complete picture of the E2E delay, we assume a 3 ms delay for each interface, as
in [22]. The assumptions for 5G-NR evaluation are presented in the UC Delay Evaluation
Section.

4.2.3. User Plane (PC5 Interface)

3GPP in 5G-NR Release 16 devoted significant effort to the development of solutions
related to V2X direct communications, in order to overcome some of the key deficiencies of
LTE PC5, related to unicast communication among UEs and QoS management. In parallel,
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enhancements have been provided to reduce the latency and increase the reliability by
reducing collisions [41].

As mentioned in Section 1, in 5G-NR, sidelink communication comprises Mode 1 and
Mode 2, which are direct enhancements of LTE Mode 3 and Mode 4, respectively. Therefore,
5G-NR Mode 1 refers to communication where the UE transmissions are scheduled by the
gNB, whereas in Mode 2, the UE autonomously selects resources [42].

In 5G-NR, the UE can transmit on a per slot basis (the frame length is 10 ms and the
subframe 1 ms), which has a length of 1, 0.5, 0.25, and 0.125 ms for subcarrier spacing of
15 (FR1), 30 (FR1), 60 (FR1 and FR2), and 120 kHz (FR2), respectively, thus facilitating a
reduction in the E2E delay [42].

Regarding the resource allocation, in Mode 1, there are two options. In the first one,
the UE performs the scheduling grant request once the data are available, whereas in
the latter, the UE requests the schedule grant request in advance (so-called grant-free
transmission) [42]. In the grant-free case, the UE reserves the resources in a periodic
manner. As in LTE’s Mode 3 transmission, if the UE is in the IDLE state, it should turn
to CONNECTED. This procedure, however, is only needed in the first scheduling grant
request, and for the rest of the transmissions, it will not introduce an additional delay. The
delay cost of this case is the same as in the Uu transmissions.

In Mode 2, the UE can start transmitting from the IDLE state. Once the data are
available, the UE performs the sensing procedure and the resource selection to identify
the less occupied resources and select the most appropriate to use [41]. Then, using the
Sidelink Control Information (SCI) message, it reserves the particular resource(s) to be used.
In order to reduce the latency, in the case of collisions, the UE may reserve resources for
the retransmissions from the initial selection. In case other UEs with more urgent services
need to transmit a message (or a set of messages), they may reserve an already reserved
resource; in this case, the UE initially accessing the spectrum resources will need to reselect
resources, thus increasing the latency. Interestingly, to perform QoS control (especially in
Mode 2), the UEs may report (according to their configuration) the channel busy ratio and
the channel occupation ratio to the gNB; the latter according to these will define the set of
spectrum and sensing parameters of the UE, thus impacting the delay [41].

4.3. UC Delay Evaluation

The purpose of the previous analysis was to identify which of the UCs described
by 3GPP and 5GAA can be covered by the existing systems and the gaps. Considering
the analysis on LTE and 5G and comparing the results to the UC requirements as they
have been described in Table 2, we produced Tables 10 and 11. The former considers
the 3GPP delay requirements and captures the achievable delay with LTE-A solutions,
whereas the latter considers the same requirements that can be achieved by the 5G-NR. X
means that the requirements are successfully met, whereas × is used for failures. Note here
that for some UCs, there are different scenarios with regard to the automation levels. For
instance, Infrastructure-based Perception Environment considers 3 ms for full automation
and 100 ms for partial automation. 5 indicates that the specific UC can only be fulfilled for
a lower level of automation.

As can been seen in Table 10, LTE-A can serve only a few of the advanced driving
UCs. Some of them can indeed be supported, but only for the lower levels of automation.
This was to be expected as the advanced V2X UCs are expected to require E2E delay values
that are much lower compared to what LTE-A systems can offer.
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Table 10. 3GPP use case (UC) evaluation for LTE-A.

Uu Interface PC5 Interface
UC Unicast MBMS SC-PTM Mode

3 DS
Mode
3 SPS

Mode
4

Delay (ms) 35.8 54.5 35.5 26.5 56 55.5
Platooning × × × × × ×

Sensor and State Map Sharing × × × × × ×
Remote Driving × × × × × ×

Lane Change × × × × × ×
Infrastructure-based Perception of

Environment 5 5 5 5 5 5

Collision Avoidance × × × × × ×
Collective Information Sharing X X X X X X

See through for Passing 5 × 5 5 × ×
Emergency Trajectory Alignment × × × × × ×

Intersection Crossing - - - - - -
Cooperative Driving × × × × × ×

× Cannot fulfil. 5 Fulfil only the lower levels of automation. X Fulfils

Table 11. 3GPP UC evaluation for 5G.

Uu Interface
UC UnicastNote1 UnicastNote2

(Localized)
MulticastNote3

(MBSFN)
MutlicastNote3

(SC-PTM)
Delay (ms) 18.59 12.59 35.8 16.8
Platooning 5 5 × 5

Sensor and State Map Sharing × × × ×
Remote Driving × × × ×

Lane Change 5 5 × 5
Infrastructure-based Perception of

Environment 5 5 5 5

Collision Avoidance × × × ×
Collective Information Sharing X X X X

See through for Passing 5 5 5 5
Emergency Trajectory Alignment × × × ×

Cooperative Driving × × × ×
Note 1: Assuming 3 ms for each interface, the core network delay for unicast (gNB -> UPF -> UPF -> V2X AS -> UPF -> UPF ->
gNB) is 18 ms.
Note 2: Assuming 3 ms for each interface, the core network delay for unicast using one UPF (gNB -> UPF -> V2X AS -> UPF ->
gNB) is 12 ms.
Note 3: Assuming 3 ms for each interface, the core network delay for multicast/broadcast (gNB -> UPF -> V2X AS -> MBSFN or
SCPTM) is 9 ms.

× Cannot fulfil. 5 Fulfil only the lower levels of automation. X Fulfils

In the case of 5G-NR, we have selected the following numerology, which is one of the
potentially good candidates for V2X communication according to [40]. We have assumed
resource mapping of type B, a zero initial error probability, 2 OS, and 30 KHz SCS. We
have also used the assumption from a packet that faces a 3 ms delay each time it crosses a
network interface (e.g., gNB to UPF). To obtain a complete picture, we have assumed delays
of LTE-A in the case of multicast communication as there is currently no such capability in
5G networks. In all cases, we also consider a link to the V2X application server. Table 11
presents the expected delay in the case of (a) E2E unicast communication (packets are
crossing two UPFs), (b) a local breakout scheme being used (only one UPF is used), (c)
Multicast through the MBMS, and (d) Multicast through SC-PTM. The results are compared
against the V2X requirements.

Based on this assumption, we observe that compared to the results of LTE-A, 5G-NR
can indeed support many more UCs. However, it is worth noting that even with a small
core network delay, many of the 3GPP UCs cannot be covered, even by 5G networks. This is
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because multiple delay-contributing network components (e.g., crossing multiple network
interfaces among network components in the core network and RRC establishment) have
been improved, but not to the extent that a total end-to-end delay of less than 10 ms is
reached. Therefore, innovative solutions are still needed for beyond 5G/6G networks to
reach these desired delay values.

5. 5G Capacity Analysis for V2X Communications

In this section, we evaluate the spectrum needed to support the V2X UCs of Table 1.
Our analysis adopts the framework provided by 5GAA in [20]; however, it also provides a
complete picture for the advanced UCs discussed in Section 2 for three distinct scenarios
that assume different vehicles’ density in the considered area. To analyze the capacity
requirements, we have considered the Urban Grid Environment [43], as shown in Figure 3.

Telecom 2021, 2,  19 
 

 

Figure 3. 3GPP’s road configuration for Urban Grid. 

The urban grid size is 1299 m × 750 m with lanes of 3.5 m. The vehicles in the urban 

grid are assumed to be stationary (red light) in the vertical lanes, or could be moving 

(green light) in the horizontal streets and in the perimeter lanes. For calculating the num-

ber of stationary vehicles, we have considered an average vehicle length of 4.5 m and a 

bumper-to-bumper separation of 1.5 m. This means that there is one car at every 1.5 + 4.5 

= 6 m per lane in the stationary direction of the grid. Across a total of 24 lanes, the total 
number of stationary vehicles is [(433 − 14) × 24]/6 = 1676. 

Regarding the number of moving vehicles, three cases are considered for different 

vehicle speeds, as shown in Table 12. The assumed inter-vehicle spacing is given as the 

sum of the typical vehicle length (4.5 m) and a bumper-to-bumper separation of 20.8, 10.4, 

and 3.5 m for vehicle speeds of 30, 15, and 5 km/h, respectively, which corresponds to a 

time to collision of 2.5 s. 

Table 12. Number of moving vehicles in the urban grid road environment for multiple speeds. 

Vehicle Speed 30 km/h 15 km/h 5 km/h 

Inter-vehicle spacing 20.8 + 4.5 = 25.3 m 10.4 + 4.5 = 14.9 m 3.5 + 4.5 = 8 m 

Number of moving vehicles 
[(750 × 12) + (1299 × 4)]/25.3 = 

562 

[(750 × 12) + (1299 × 4)]/14.9 = 

953 

[(750 × 12) + (1299 × 4)]/8 = 

1775 

We have assumed that stationary vehicles are in a state that does not require services, 

so we only take into consideration the moving vehicles for the spectrum analysis. We also 

assume that this area is covered by two gNBs, each of which has three sector antennas. 

The Inter Site Distance (ISD) between the gNBs is 500 m and the size of each sector is A =
1

2√3
ISD2 = 0.072km2. In the following analysis, we have also evaluated the cases where 

this geographic area is to be covered by 3 or 4 gNBs. 

Following the analysis in [20], the succeeding categories have been distinguished. 

The bandwidth B needed for repetitive V2V services that require the transmission of 

broadcast/multicast/unicast messages is given by 

B =  
M × T × a

e × u
, (9) 

Figure 3. 3GPP’s road configuration for Urban Grid.

The urban grid size is 1299 m × 750 m with lanes of 3.5 m. The vehicles in the urban
grid are assumed to be stationary (red light) in the vertical lanes, or could be moving (green
light) in the horizontal streets and in the perimeter lanes. For calculating the number of
stationary vehicles, we have considered an average vehicle length of 4.5 m and a bumper-
to-bumper separation of 1.5 m. This means that there is one car at every 1.5 + 4.5 = 6 m per
lane in the stationary direction of the grid. Across a total of 24 lanes, the total number of
stationary vehicles is [(433 − 14) × 24]/6 = 1676.

Regarding the number of moving vehicles, three cases are considered for different
vehicle speeds, as shown in Table 12. The assumed inter-vehicle spacing is given as the
sum of the typical vehicle length (4.5 m) and a bumper-to-bumper separation of 20.8, 10.4,
and 3.5 m for vehicle speeds of 30, 15, and 5 km/h, respectively, which corresponds to a
time to collision of 2.5 s.

Table 12. Number of moving vehicles in the urban grid road environment for multiple speeds.

Vehicle Speed 30 km/h 15 km/h 5 km/h
Inter-vehicle spacing 20.8 + 4.5 = 25.3 m 10.4 + 4.5 = 14.9 m 3.5 + 4.5 = 8 m

Number of moving vehicles [(750 × 12) + (1299 × 4)]/25.3
= 562

[(750 × 12) + (1299 × 4)]/14.9
= 953

[(750 × 12) + (1299 × 4)]/8 =
1775
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We have assumed that stationary vehicles are in a state that does not require services,
so we only take into consideration the moving vehicles for the spectrum analysis. We also
assume that this area is covered by two gNBs, each of which has three sector antennas.
The Inter Site Distance (ISD) between the gNBs is 500 m and the size of each sector is
A = 1

2
√

3
ISD2 = 0.072km2. In the following analysis, we have also evaluated the cases

where this geographic area is to be covered by 3 or 4 gNBs.
Following the analysis in [20], the succeeding categories have been distinguished.

The bandwidth B needed for repetitive V2V services that require the transmission of
broadcast/multicast/unicast messages is given by

B =
M × T × a

e × u
, (9)

where M is the number of vehicles actively participating in a V2X UC; T is the throughput
of the V2X service; a is the activity factor, e is the spectral efficiency, assumed to be 1.2 for
the UL 4 for the DL and 0.6 for the sidelink; and u is the channel utilization factor equal
to 0.336 for all UCs. This formula is applied to all UCs apart from UCs 2, 3, and 5, as
reported in Table 1. For the activity factor, we have assumed a value of 1 for all UCs (as
they are considered to be in a fully communicating state), apart from “Platooning” and
“Lane Merging” (0.1) and “Collective Information Sharing” (0.8), as also assumed in [20].

The spectrum needs for V2N UCs are given by

B =
T × MD × A

e
, (10)

where T is the required data rate per link in bit/s, MD is the density of (transmitting
or receiving) vehicles served per unit area in km−2, e is the sector spectral efficiency in
bits/s/Hz, and A is the area of the serving sector.

To introduce stochastic analysis in our evaluation, we used a program in MATLAB that
resulted in circa 5% of all available vehicles being active in each V2X UC, apart from “Lane
Merging” and “Emergency Trajectory Alignment” (3%) and “See Through for Passing”
(1%), and we have only considered one vehicle per sector to be remotely operated.

The estimated spectrum needs per gNB sector for the UCs examined in this section
are summarized in Table 13.

Table 13. Spectrum needs per gNB sector (2 gNBs) in the urban grid environment.

Spectrum Needs (MHz)
UC 30 km/h 15 km/h 5 km/h

Platooning 0.24(SL) 0.40(SL) 0.76(SL)
Sensor and State Map Sharing 2.88(DL) 7.2(UL) 4.9(DL) 12.24(UL) 9.21(DL) 23.04(UL)

Remote Driving 0.1(DL) 30(UL) 0.1(DL) 30(UL) 0.1(DL) 30(UL)
Lane Change 0.59(SL) 1.01(SL) 1.90(SL)

Infrastructure-Based Perception of Environment
(multicast on the DL is assumed and one group

of sensors on the uplink)
1(DL) 91.67(UL) 1(DL) 91.67(UL) 1(DL) 91.67(UL)

Collision Avoidance 3.97(SL) 6.74(SL) 12.69(SL)
Collective Information Sharing 25.79(SL) 43.85(SL) 82.54(SL)

See Through for Passing 39.68(SL) 39.68(SL) 39.68(SL)
Emergency Trajectory Alignment 2.38(SL) 4.05(SL) 7.62(SL)

Intersection Crossing 1.24(SL) 2.10(SL) 3.97(SL)
Cooperative Driving 19.04(SL) 32.38(SL) 60.95(SL)

Total (MHz): 225.78 270.12 365.13

From the above table, it is clear that most of the UCs have limited bandwidth needs.
Only a few of them require the transmission of a significant amount of information (i.e.,
“Remote Driving”, “Infrastructure-Based Perception of Environment”, “Collective Informa-
tion Sharing”, and “See Through for Passing”). It is exactly these UCs that dominate the
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spectrum needs. It is important to note that these UCs mainly use the SL or the UL, where
the spectral efficiency is much lower compared to that of the DL’s.

The above results consider the urban grid environment with the deployment of 2
gNBs, as shown in Figure 3. To visualize the spectrum needs in an ultra-dense environment,
we have also evaluated the case where 3 and 4 gNBs have been deployed to cover the same
area. Figures 4–6 present these results for the DL, UL, and sidelink, respectively. Since only
a few vehicles are involved in V2N UCs and the DL data rate requirements are low, the
resulting DL spectrum requirements are also notably low. As mentioned above, the DL has
a good spectral efficiency value.
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The UL spectrum needs are heavily dominated by two UCs, namely “Remote Driving”
and “Infrastructure-based Perception of Environment”. For these two UCs, we have
adopted the evaluation assumption of [20], that only a small number of vehicles will
execute such services in this area (i.e., one vehicle for “Remote Driving” per sector) and
only a single group of sensors will be transmitting on the UL for the “Infrastructure-based
Perception of Environment”. The spectrum needs for each of these two UCs were 30 and
91.67 MHz, respectively. The contribution of the “State and Sensor Map Sharing” depends
on the number of vehicles using the service in the area.

It is worth noting that V2V communication is expected to be used for most of the
considered advanced UCs. The spectrum needs for UCs 1, 4, 6, 9, and 10 are relatively
modest, due to low data rate requirements, and can be more or less addressed via about
10 MHz in an urban environment. On the other hand, UCs such as “Collective Information
Sharing”, “See Through for Passing”, and “Cooperative Driving” dominate the sidelink
spectrum needs and raise the system’s needs to 210 MHz in the case of 2 gNBs combined
with a high traffic urban environment.

As the spectrum needs of a mobile communication network are in principle the sum
of the spectrum needs of each individual supported UC, those that demand the exchange
of a significant amount of information (e.g., high-definition videos and maps) will create
significant challenges.

In conclusion, a critical factor that needs to be addressed is the significant improvement
of the spectral efficiency for the UL and SL. This means that the vehicles should be equipped
with more advanced modems capitalizing the benefits of Multiple Input-Multiple Output
(MIMO) systems.

6. Open Issues and Future Trends

Based on the previous analysis, it is evident that current cellular networks are able to
support a significant number of V2X UCs, but are still unable to fully support the vision of
fully autonomous driving under any environmental conditions. Indeed, LTE networks can
provide for services that have moderate requirements in terms of throughput and delay,
but need to address major challenges, such as the physical layer structure, synchronization
issues, MBMS challenges, and resource allocation and security issues, which are thoroughly
analyzed in [44], before the massive exploitation of vehicular communications. However,
not even 5G networks can fully support UCs with stringent requirements with today’s
technological solutions.
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As far as the delay is concerned, the analysis we provided in this paper has clearly
indicated that in LTE, the control plane delay required to switch to the CONNECTED state
is circa 50 ms (or 20 ms if the 5G core network is used), whereas the user plane delay varies
from 7 to 10 ms for unicast communication over the Uu interfaces up to 26 or 55 ms if the
sidelink is to be used. Additionally, a considerable 26 ms user plane delay is experienced
if MBMS is used. LTE network’s limitations, evaluated through network simulations,
are presented in [45], providing the limits of different parameter sets with regard to the
requirements of V2X-based applications. As expected, LTE is not a suitable solution for
tackling the advanced 3GPP requirements for fully autonomous driving. Design principles
for latency-aware V2X services, such as “one-OFDM-symbol” TTI (1/14 TTI) and sustained
RRC connections during V2X services, are proposed in [46] to satisfy the feasibility of V2X
services in terms of latency.

5G-NR has considerably improved the control plane latency (reduced it to 11.3 ms)
and is able to provide just a 1 ms delay for user-plane communication inside the radio
access network (i.e., measured as the time required to transmit data from a vehicle to a BS
and back to another vehicle). However, the control plane delay is significant and usually
not taken into consideration when evaluating the delay for V2X communications. The
assumption that all vehicles will always be connected to the network at all times does not
seem so realistic due to the scarcity of the spectrum. Therefore, in advanced cases, the extra
delay of 11.3 ms required to switch from the RRC INACTIVE to CONNECTED state may
result in a significant deviation from the expected performance of the network. A potential
solution would be that for some UCs, a connectionless transmission of brief messages for a
short period of time could be used to eliminate this delay. This will significantly impact the
way V2X services will be designed to operate and will have a big impact on standardization
activities.

As existing requirements suggest that the desired V2X communication delay for the
user plane should be in the range of 3 to 10 ms for advanced UCs, it is rather significant
to support local breakout schemes and avoid traffic passing through the core network or
reaching centralized application servers, where statistical multiplexing from a huge number
of vehicles may fail to guarantee the required QoS. It is important to remember that for
most V2X UCs, the data have a local significance and they do not need to propagate across
large distances. Therefore, future cellular networks should further investigate solutions to
support local break-out schemes and find solutions for fast data transmission in specific
cases (e.g., collision avoidance in urban crossroads [47]). Mobile edge computing (MEC)
is a key technology for addressing this challenge. The authors in [48] evaluate C-V2X
communications assisted by MEC for the vulnerable road users use case in a two-lane
freeway scenario. The evaluation considers LTE coverage (i.e., Uu interface) with the MEC
host collocated with a serving eNB. Additional transport and core network delays are
adopted from a realistic LTE environment with commercial terminals. The gain reported
compared to conventional LTE (i.e., w/o MEC) is in the range of 66–80%. However, the
massive deployment of MEC or local UPFs is expected to significantly increase the cost
and management complexity of the network. Additionally, issues related to the security of
data located closer to the edge of the network should be addressed. In the case of multiple
operators, the core network delay becomes even higher, making some UCs rather unlikely
to be deployed in multi-operator environments. RAN sharing or regional roaming could be
considered as potential solutions. However, this requires appropriate agreements between
the operators that are not always easy to achieve.

The design of a 5G MBMS is of paramount importance as its counterpart 4G system
has been designed for Mobile Broadband (MBB) communication and its use will incur
intolerable delays. This is expected to be addressed by 3GPP in Release 17 [49].

Potential future solutions may take advantage of additional contextual information.
Note that in fully autonomous driving, a network entity (e.g., the V2X AS) is expected to
know the path a vehicle will follow in the near future. Sharing this contextual information
with the network control functions (e.g., RRC, scheduling, etc.) may minimize the delay
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(e.g., control plane delay such as paging or handover) and simultaneously optimize the
experienced QoS.

Further network enhancements applied to minimize the delay should be considered
to avoid treating packets at the IP layer as the information is so localized that it could be
communicated in a layer-2 switch function to the neighboring vehicles or the neighboring
BSs [50]. This requires the 5G gNBs to operate as switches in the user plane, which is a
considerable difference from today’s systems.

Additionally, the case of border crossing should be considered when it comes to delay
analysis. Current standardization solutions [51] support inter-operator HO, but these solu-
tions are rather complex and require additional agreements between the operators, since
they need to expose their AMF deployment to other operators (which may be competitors).
In regions like Europe, where vehicles may cross multiple borders in a short period of time,
simpler solutions would be highly desirable. If vehicles are to be supported by multiple
operators then some unneeded delay may be experienced that is not easily addressable
until some out-of-the box ideas are considered, such as force regional roaming [52], which
may have some interesting implications in the operator business models themselves.

In future scenarios, especially in urban areas where the density of vehicles will be
high, the capacity is going to be the major issue. LTE will struggle to support a fraction of
vehicles, even for the most moderate usage of UCs. Apparently, such a problem will not
appear from day one, but as more and more vehicles start communicating, this problem
will become evident. Fully autonomous driving is highly unlikely to be easily supported,
even with the current 5G technology, as indicated from our analysis.

Most of the advanced V2X UCs have modest spectrum requirements. However, use
cases that demand the exchange of a significant amount of information (e.g., high-definition
videos and maps) will create significant challenges. To address this, one possible way
forward would be to merge several UCs that attempt to improve the vehicle’s perception
of the environment. Moreover, smart techniques employed to compress the information
needed to be transmitted are expected to play an important role. The extensive use of the
multicasting/geo-casting mode of communication will further minimize the need for the
spectrum.

PC5 communication (both in LTE and 5G) will improve the capacity situation, given
that short-range communication will enable higher frequency reuse, but it will not fix
the problem. Considering UCs such as “Remote Driving” and “Cooperative Driving”,
multiple networks may need to communicate with the application servers located in the
core network and in these cases, PC5 will not really be an option at all.

Another critical factor that needs to be addressed is the significant improvement of
the spectral efficiency for the uplink and sidelink. This means that the vehicles should be
equipped with more advanced modems capitalizing the benefits of Multiple Input-Multiple
Output (MIMO) systems.

Ultra-densification of the network is the obvious solution for supporting the advanced
V2X UCs. However, to support such a number of vehicles in an urban environment
would require a significant number of BSs, the Capital Expenditure (CAPEX) of which
will be significant. Moreover, this would result in a significant number of HOs and a
dramatic increase of the respected signaling. This suggests that new HO schemes should
be considered, together with the solutions, in order to increase the computing performance
at the edge of the network [53] and centralized RAN solutions. A possible solution for
handling HOs would be to use contextual information about the movement of the vehicles,
as mentioned before. In this way, the access network can act proactively and minimize any
disruption time, without requiring dual connectivity at all places.

Finally, one potential solution worth investigating further to provide more mature
results is the use of VLC for V2X [54] and THz communications [55]. The solutions can
provide significant segments of unused spectrum, but current technological obstacles need
to be bypassed to render them a viable solution for V2X communications.
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7. Conclusions

In this paper, we have presented the key requirements of advanced autonomous
driving UCs, as provided by the two main international organizations, namely 3GPP
and 5GAA. We have also provided a thorough delay and capacity analysis for these UCs
considering both the LTE and 5G networks.

As the paper focused on the analysis of the most demanding services, we have
identified current shortcomings in network technologies and also discussed research areas
that could be further investigated. V2X communication will pick up pace in the following
years. Therefore, all technological barriers should be lifted long before the number of
vehicles accessing such services reaches a point that will make fully autonomous driving
an unstable service. As a next step in our work, we plan to perform thorough simulations
to validate these preliminary results for delay and capacity.
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