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Abstract: During emergencies LTE/5G-based public mobile land networks (PLMNs) restrict network
access by normal users, which means a lack of service reliability which limits application of LTE/5G
for machine-type communication (MTC) in critical applications, such as power systems This paper
shows how existing LTE/5G features can be used to differentiate MTC of devices in a microgrid from
other MTC or human-to-human (H2H) communication and ensure that these microgrid devices have
service during emergencies, which enables use of LTE/5G communication to co-ordinate the use of
distributed energy resources (DER) in microgrids, so that they can autarkically perform blackout
recovery of an islanded microgrid. It is shown that this method allows the blackout recovery 100 times
faster than with a conventional black start. The microgrid blackout recovery is demonstrated using
the LTE/5G PLMN Access Barring feature. The disadvantage of using PLMN-based Access Barring
is the need to define two separate PLMNs in one radio cell, which is an inefficient use of radio
spectrum. However, this can be avoided by using the Extended Access Class Barring (EAB) override
or application-specific congestion control (ACDC) features of the CAT-M1 low-power wide-area MTC
technology, which are included in LTE and 5G standards.
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1. Introduction

The operation of power systems relies on communications networks, which themselves rely on the
power supply, so that power systems and their communications networks form a mutually dependent
cyber-physical system. However, loss of communication can lead to power failures and power failures
can lead to loss of communications, with consequential cascading failures [1]. Disasters can cause
severe damage to the communications networks and also cause overload situations due to the high
demand for communications during emergencies. Hybrid redundant communications systems [2] can
fail if the redundant systems both depend on the grid power supply.

The aim of this paper is to show how 5G/LTE-based PLMNs can provide reliable communications
in a microgrid during blackouts. Existing works on reliability of communications in power grids and
microgrids do not address communication systems that continue to work with a widespread loss of
mains power but assume that mains power is present [2–5].

In the context of a microgrid, having reliable communications during a blackout means that
the microgrid can continue to manage itself during blackout, i.e., even when the distributed energy
resources (DER) in the microgrid are connected to a de-energised grid, the distributed controllers at
the DER sites can continue to communicate with each other. It was shown in [6] how an islanded
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microgrid can recover from blackout on its own if its devices can communicate with each other.
The approach of this paper is to use LTE/5G-based public land mobile networks (PLMN) to provide
reliable communications for the exemplary microgrid blackout recovery use case. Being able to
recover from blackout means that the failure modes of the power system and the communications
system are decoupled, so that the cyber physical system (CPS) they form together is less vulnerable to
catastrophic failure.

Our focus on how a particular concrete communications technology can be made reliable in the
worst-case fills a gap in the existing work on communications reliability in smart grid applications in
that it focuses on how to practically apply a specific technology to provide reliable communications in
a specific use case.

The theoretical study of the topological conditions between power grid stability and
communication failures performed in [7] treats communication failures without considering their
cause, developing a communications topology to cope with link failures. A distributed architecture
for control of a distribution grid is presented in [8], and the mitigation of failures of communications
to devices at different levels of the control hierarchy is considered. However, neither of these works
considers the case where there is a global communications failure, such as would occur in a blackout.

Communications reliability is treated in an undifferentiated way, i.e., considering the overall
communications system reliability without considering reliability under different network operating
conditions, but only the overall reliability requirements of different applications [3]. There is, to the
authors’ knowledge, no literature specifically considering communications reliability during blackout.

Equipping smart grid IoT devices with two UMTS Subscriber Identify Module (USIM) cards
for different mobile networks will ensure continuity of service in case one network fails [9], but this
method would not work if a power outage affected both mobile networks.

Literature treating specific communication requirements of smart grid applications, such as
latency [4], implicitly assumes that the underlying basic communications system is actually working.
This paper addresses the issue of actually ensuring a basic communications service during blackout.

Ultra-reliable communications (URC) in 5G wireless systems is discussed by Popovski [10] outlines
the problem of multiple devices trying to share communication resources but does not propose a
solution and does not consider how to provide reliable communications during blackouts. Providing
URC for services with different latency requirements is considered in [11]. However, no distinction is
made in URC literature between communication under normal power grid operation conditions and
under blackout conditions.

The contribution of this paper is to show how LTE/5G PLMN communication can ensure reliable
communications for selected MTC devices during emergency conditions, without giving these devices
additional priority over other network users during normal conditions or adversely affecting the service
to prioritised users during emergencies. This makes LTE/5G PLMN usable for critical applications
where reliable communications are needed.

The paper demonstrates this by firstly developing the communication requirements to enable
an islanded microgrid to recover from blackout (Section 2). Then we examine how LTE/5G PLMN
communication can ensure reliable communications for selected MTC devices during emergency
conditions, without giving these devices additional priority over other network users during normal
conditions or adversely affecting the service to prioritised users during emergencies (Section 3).
Then the use of one such LTE/5G communication feature, the PLMN-based Access Barring method,
to achieve reliable MTC communication during blackout is demonstrated in a lab environment
(Section 4). Finally, we quantify the reduction in recovery time, using Continuous Time Markov
Chain (CTMC) modelling of the recovery of the power and communications systems from blackout by
conventional means compared to the autarkic microgrid-based approach (Section 5).
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2. Communication Requirements for Autarkic Microgrid Blackout Recovery

In this section the requirements to be fulfilled by the communications system to allow an islanded
microgrid to recover on its own from blackout are developed. The autarkic microgrid blackout
recovery method presented in [6] assumes that the MV/LV grid is divided into a set of microgrids
(Figure 1), which can be operated in island mode and are assumed to be autarkic, meaning that they
have sufficient local energy generation and storage to be self-sufficient, and autonomous, meaning
that they can manage themselves, although in normal operation they may be managed by distribution
grid (DG) management systems external to the microgrid. Microgrid management is performed by
means of a multi-agent system (MAS), the individual agents being located at the DER sites. Microgrid
management is supported by communication between the agents. The MAS could support a number
of different microgrid management use cases. However, in this section, we focus on the communication
requirements for autarkic microgrid blackout recovery.
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Figure 1. Autarkic Microgrids (each islanded microgrid can autonomously recover from blackout using
only its own DERs).

If communications from the microgrid to external management systems are working, the microgrid
can perform autarkic blackout recovery under their direction. If, however, there is a loss of
communication from the microgrid to external management systems, the microgrid can autonomously
perform the autarkic blackout recovery. In any case, the autarkic blackout recovery relies on having
communications which continue to function locally in the microgrid during blackout to allow the
agents to act together to perform a black start using local DERs. Hence, the main communications
requirement is reliability, defined as the ability of a system or component to perform its required
functions under stated conditions for a specified period of time [12]. In our black start use case,
reliability of the local communication between the microgrid agents during a blackout is required. It is
not required that external communication from the microgrid is working.

Availability is defined as the proportion of time that a system delivers its service. Availability is a
prerequisite for reliability. Availability refers to the overall percentage of time that a system delivers
its service, not its availability during blackout. While there is no specific requirement on system
availability from the autarkic microgrid blackout recovery use case, better system availability under
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blackout conditions is desirable. A way of improving the communications service availability for MAS
MTC devices using PLMN is shown in Section 3.2 and modelled in Section 5.

Because the number of agents is large and geographically extensive, a large-scale, wide-area
communications network is needed. The agents communicate using MTC [13] so the network must
support MTC. Latency of 100 ms and throughput of <1 kBps per DER are acceptable [6] for the
black start use case. The autarkic microgrid black start use case illustrates how reliability of the
communications system during blackout can be used to make it possible that the power system can
recover from failure.

3. Using LTE/5G-based Public Mobile Land Networks for Autarkic Microgrid Blackout Recovery

In this section, we examine how an LTE/5G-based PLMN can fulfil the requirements stated in
Section 2 on communications reliability, latency and throughput for the autarkic microgrid black
start use case. PLMN addresses limitations of the current communications technologies used for DG
management: Internet communications generally require power to be available at the DER sites, so are
vulnerable to blackouts. Using wireless technologies such as LoRa requires that the wireless network
be set up to be reliable and available during blackouts. The communication range of broadband PLC is
limited by its sensitivity to noise, making it unsuitable for this application.

Mobile networks fulfil the requirement for having wide-area network, while using PLMN avoids
the cost of having to roll out a separate network for grid management purposes. Crucially, they
also offer a high degree of reliability [3]. However, using a public network means that microgrid
management traffic shares the same public mobile network with H2H traffic and MTC traffic from
other applications, becoming just another application to be supported by the network, with a particular
QoS requirement.

3.1. CAT-M1 for LTE/5G Public Network Support of DG Management Communication

In LTE [14], MTC end-user equipment (UE) contains the same USIM card as H2H traffic, so
that LTE does not handle MTC traffic differently from H2H traffic in the radio network. Massive
MTC applications (e.g., smart metering or sensor applications) typically send small data volumes,
are latency-tolerant, but require low cost, long battery life and superior coverage in hard-to-reach
areas such as basements or deep indoor environments. Support for massive MTC applications was
introduced in 3GPP Release 13 [15] in the form of two LTE-based technologies: NB-IoT and LTE
CAT-M1, which are suited for different types of use cases.

Narrowband-Internet of Things (NB-IoT) [15] is a low-power wide-area (LPWA) technology
which provides greatly improved coverage compared to LTE CAT-M1, supports a massive number
of low throughput devices, enables ultra-low device cost, and has low device power consumption.
However, NB-IoT’s latency can be up to 1–10 s, which is not suitable for the autarkic microgrid black
start use case.

LTE CAT-M1 is a LPWA air interface that connects MTC devices with medium data rate
requirements (375 kb/s upload and download speeds in half-duplex mode) and latencies of 50–100 ms,
which satisfy the requirements of the autarkic microgrid black start use case. It enables long battery
lifecycles and greater in-building range. It supports the EAB Override and ACDC mechanisms
discussed in Section 3.4 below. As well as being in LTE, it will continue to be supported in the 5G
specifications [16].

3.2. eNodeB Support for Microgrid Blackout Recovery

The eNodeB is the LTE/5G node which operates the radio cells. The UEs connect to the eNodeB.
Blackout conditions can reduce the availability of the mobile core network. Loss of the mobile core
network normally means that the eNodeBs cease to handle traffic. However, the Isolated E-UTRAN
Operation for Public Safety (IOPS) [17] feature of 3GPP Release 13 [15] allows eNodeBs to continue to
handle traffic within their own radio cell even if the mobile core network is unavailable. IOPS requires
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additional hardware and software in the eNodeBs. IOPS enables the MAS agents to communicate as
long as the eNodeB is available (regardless of the availability of the rest of the PLMN), thus enhancing
the communications service availability during blackouts.

In order to give MAS MTC devices preferential handling during blackouts, the eNodeBs should
know that a blackout has occurred and distinguish it from other emergency situations and congestion
situations. If there is a large-scale blackout, an administrative procedure can be performed centrally in
the PLMN so that all eNodeBs pre-emptively give priority access to MAS MTC devices, even if there is
no local blackout. To cover the eventuality that local eNodeBs may, due to a sudden blackout, lose
contact with the mobile core network and must act autonomously, eNodeBs should themselves be
able to detect a local blackout. To aid their situational awareness, the eNodeBs may themselves act as
agents in the MAS. Such an agent is like a UE located at the eNodeB: it has an interface towards the
equipment it represents in the MAS (the rest of the eNodeB) and a communications interface towards
the rest of the MAS (acting like a UE). During blackouts, eNodeBs may fail, in which case the UEs
they were hosting will roam into surviving eNodeBs’ cells. Network dimensioning should ensure that
enough eNodeBs have standby power supplies or battery packs to support the traffic during blackouts.

3.3. Access Barring Mechanisms

In 3GPP mobile communications systems up to and including LTE, MTC and H2H communication
compete for the same radio resources in case spectrum is shared. UEs used by normal subscribers have
a randomly allocated access class (AC) value between 0 and 9 [14], which is stored in the USIM card.
Specific high priority UEs may also be allocated AC 11 to 15, e.g., for emergency services.

In network congestion and emergency situations, PLMN restricts traffic by using the Access Class
Barring (ACB) and/or Extended Access Class Barring (EAB), functions to bar UEs from connecting
to the network. AC barring mechanisms take effect during the random access procedure (RAP) [15],
which results in the UE being given an initial uplink bandwidth assignment which it uses for the
radio resource control (RRC) procedure. In RRC, admission control functionality checks the UEs’ QoS
parameters such as QCI (QoS class identifier) and allocation and retention priority (ARP). Successful
RRC results in allocation of a radio bearer and an evolved packet system (EPS) bearer, a tunnel between
UE and packet gateway (PGW). Hence, to actually achieve the QoS to which it is nominally entitled,
the UE must first successfully complete the RAP, which is affected by access barring in congestion
or emergencies.

In ACB [14], UEs with normal AC values generate a random number which must be below a level
(the Barring Factor) broadcasted by the eNodeBs for the UE to connect to the network, otherwise the
UE must wait for a period defined by the eNodeB. In EAB [15], the eNodeB broadcasts an order to UEs
without the required class level to stop transmitting for a period. UEs may be configured to override
EAB, effectively giving them a priority over other UEs. ACB or EAB restrictions mean that MTC-type
devices which are not already connected would not be able to transmit, limiting the usage of MTC to
non-critical or always-connected applications.

The fact that the number of microgrid MAS MTC devices is of the same order as there are houses
or people in the area precludes allocating the devices any special priority handling compared to
other MTC devices or H2H users, except during the blackout. Also, giving the MAS MTC devices
service during blackout should not interfere with the service to users with higher AC values, such as
emergency services and so should keep AC values in the range 0 to 9.

However, during blackouts, microgrid MTC devices should reliably be able to access the network,
while other normal human and MTC-type users are excluded. To achieve this, it must be possible,
at least during blackouts, to bypass the network access restriction of MAS MTC devices based on their
access class.
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3.4. Preferential, Differentiated MTC using CAT-M1 in LTE and 5G

The requirement for reliability of the local MAS communications during a blackout stated
in Section 2 means that the mobile access network of the PLMN must be able to distinguish the
MAS MTC devices from other MTC and H2H users and give them preferential handling during
network emergencies. Preferential, differentiated MTC is supported in the 3GPP standardisation since
3GPP Release 8 through the EAB Override [14] and application-specific congestion control for data
communication (ACDC) [15] functions. However, these functions are currently not implemented in
commercially available PLMNs and UEs. EAB Override allows UEs to access the network under EAB
conditions by requesting a packet data network (PDN) connection for which EAB does not apply [15].
To ensure that MAS MTC devices can communicate during EAB conditions, MAS MTC devices could
be configured with multiple PDNs, one PDN for general communication and connectivity, and second
PDN specific to the blackout scenario.

ACDC applies for UEs with AC < 10 and allows or prevents connection attempts from UEs on a
per-application basis. The MAS MTC devices could be defined as an ACDC application whose devices
are always allowed to connect, fulfilling the microgrid black start communication reliability requirement.

Hence, either of the CAT-M1 EAB Override and ACDC functions could ensure that MAS MTC
devices can communicate reliably during emergencies. ACDC has the advantage over EAB Override
of not requiring multiple PDNs. Both ACDC and EAB allow reliable MTC communication during
blackout to be achieved while using radio resources more efficiently than the PLMN-based Access
Barring described in the next Section 3.5, as they allow the microgrid MTC devices to use the same
PLMN as other MTC and H2H devices. In the long-term, MAS use cases, including autarkic microgrid
black start, can be run on CAT-M1 (massive IoT) networks, which are part of both the LTE and
5G standards.

3.5. Preferential, Differentiated MTC Using PLMN-Based Access Barring in LTE

In LTE, the UE is responsible for selecting a PLMN for subsequent cell selection. A PLMN consists
of a radio access network and a core network, and has a unique id. A UE can only be in a single PLMN
at any time. A single cell can belong to multiple PLMNs, so the network may broadcast a list of PLMN
identities. Separate access control parameters can be set for each PLMN id for network sharing.

In this method, the radio spectrum resources are divided between two separate PLMNs with
separate PLMN ids. We use network sharing access control (based on PLMN id), which allows access
barring to differentiate based on PLMNs in a mobile network cell. One PLMN supports the MAS MTC
devices, which shall receive preferential access barring treatment and continue to be able to connect
to the network and communicate in the particular emergency situation of a blackout. The second
PLMN supports normal smartphone users and other MTC devices which shall be subjected to ACB
restrictions during the blackout.

When there is a blackout in the islanded microgrid, the eNodeB will apply ACB restrictions in the
second PLMN. The first PLMN (with the MAS MTC devices) will not be subject to ACB restrictions
during the blackout. In this way, the method results in the required preferential, differentiated handling
of the MAS MTC devices during emergencies. This method allows the operator to easily, quickly
and dynamically apply preferential policies for the MAS MTC devices, differentiating them from the
normal UEs and other MTC devices in the network. This method is functionally equivalent to using
EAB Override or ACDC but has the disadvantage that it means statically pre-allocating scarce radio
channel resources, which means that this solution is not generally viable. Also, assigning different
PLMN ids in the network has the disadvantage that it is not a scalable solution when different type of
MTC devices and services are supported by the network: the number of different PLMN ids is limited
to roughly 50 per country, so that the number of different ways of handling different MTC use cases is
also limited. An advantage of the method is that ACB and multiple PLMNs are supported in currently
commercially available LTE networks and device ecosystems.
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4. Laboratory Test of PLMN-Based Access Barring for Communications Reliability during
Blackout Recovery

The test system setup is shown in Figure 2. The lab tests in this work mimic the situation where
an LTE network provided by a telecom operator is shared between an Energy Utility’s MTC network
and other users (including other MTC devices, normal Smartphone users and users with ACB > 10).
The tests were performed using a commercially available LTE system, set up to make a private mobile
network in a lab environment.
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The Private LTE system consisted of Evolved Packed Core (EPC), which provided access to external
packet IP networks and perform several core network related functions (e.g., QoS, security, mobility
and terminal context management); User Data Consolidation (UDC), which provided management of
subscription data; Radio and Transport components; Enterprise Operations Support System (E-OSS)
which provided local operations for enterprises; Remote Radio Units and Indoor Radio Units for
connecting to the user equipment. The private LTE system established data connectivity between the
user equipment and a connected external (private) mobile network. The private LTE system connected
with one antenna. It provided all the functionality of LTE but with a small footprint and compact
deployment. The modulation technique used was adaptive modulation and coding (AMC), so that the
exact modulation changes based on the radio signal strength, direction, distance of the user.

CAT-M1 functionality was not available in the test LTE network, so that the tests were limited to
the PLMN Access Barring method.

The test electrical DG grid is a real-time simulation of an AC microgrid, connected by a circuit
breaker to the main grid. As tested, the microgrid consisted of four photovoltaic generators and four
battery storage systems feeding four dynamic loads. The generators and storages are connected to the
grid via inverters which implement a distributed consensus-based secondary control algorithm [6].
The inverter control algorithms are implemented on Raspberry PI microcomputers which receive grid
measurements from the grid simulation and send control signals back. Each inverter interfaces to an
agent on the same Raspberry PI. The agents form a MAS, implemented using the Calvin framework [18].
The Raspberry PIs have dongles through which the agents communicate peer-to-peer with each other
over a private LTE network to implement the autarkic microgrid black start use case.

Two PLMNs are configured in a single network cell, the first PLMN serving the MAS MTC devices
(instantiated in dongles inserted in the Raspberry PIs hosting the individual agents) and the second
PLMN serving a number of normal smartphones. The MAS MTC devices are attached on PLMN1
and the smartphones on PLMN2. Then a simulated microgrid blackout was initiated. In the test, we
assume that this blackout leads to emergency conditions in PLMN2, leading to blocking of normal
subscribers by setting the Barring Factor to 0 for ACs 0 to 9. In PLMN1, no ACB restrictions were set
for the MAS MTC devices during the blackout emergency.
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The observed result was that only PLMN1 UEs i.e. MAS MTC devices could access the cell, and
that PLMN2 UEs were barred from accessing the network. The tests confirmed that, by having a shared
LTE network environment with two separate PLMNs configured in the network cell, different Access
Barring treatment can be provided to different UEs registered in different PLMNs by broadcasting
different Access Barring factors to the different PLMNs’ devices.

The lab tests confirmed that the method enables the MAS MTC devices to receive temporary
preferential treatment under particular emergency circumstances so as to be able to continue to
communicate with each other during the blackout, enabling a black start to be performed in the
islanded microgrid.

4.1. Measurement of Latency

Latency measurements between two MAS MTC devices (USB dongles connected with the
Raspberry PIs in the above test setup) were performed by pinging from one device to the other and
capturing and logging the traffic on both devices with tcpdump. The packet size was 56 bytes plus
8 byte of header = 64 bytes to be sent between the UEs via the mobile network nodes shown in
Figure 3, so that the latency includes that of the private radio access network and private mobile core
network outside the lab’s radio access network. There was no other traffic (public users’ traffic) on the
network during the test, which reduces the latency to the minimum possible. Each test was done with
20,000 packets, with a periodicity of 1, 10 or 100 ms.
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Figure 3. Packet Flow in Latency Tests.

Figure 4 shows that average latency achieved is 20 ms. With periodicity of 10 ms, more than
3000 packets were received within 22 ms delay. The maximum latency observed is 40 ms. This includes
(Figure 3) the latencies of the two radio links, the core network and the message flow of packets over
the private LTE network.
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The result was that 95% of packets were received within 23 ms and the maximum latency was
40 ms, satisfying the use case’s latency requirement.

4.2. Evaluation

It has been shown that PLMN specific access barring feature can bar the Smartphone devices
in emergency situations and give simultaneously access of the network to smart grid MTC devices,
thus providing a resilient communications solution. It has also been shown that the LTE can provide
latency of below 40 ms for smart grid devices. The results demonstrate that the PLMN specific Access
Barring feature is directly applicable to real LTE networks. The lab tests demonstrate reliable MAS
MTC communications during emergencies by preferential, differentiated use of an LTE mobile network.
The reliable communications allowed the microgrid to autonomously perform black start in an islanded
microgrid, while other communications network users lost service.

5. CTMC Estimation of improvement in Blackout Recovery Time with Autarkic Microgrids

In this section, continuous time Markov chain (CTMC) modelling of the power grid and
communications network is used to quantify the expected improvement in the blackout recovery time
using the autarkic microgrid method [6] compared to the conventional top-down black start method.
CTMC is a state space based stochastic modelling technique to calculate the reliability and availability
of a system given the stochastic operational status of its constituent components [19]. It is specifically
used for systems in which the operational state of a component depends statistically on the operational
state of other components.

Grid restoration after a large-scale blackout is conventionally done by first starting power stations
with black start capability, then expanding the re-energised grid to include more large synchronous
power stations, and expanding the re-energised grid. In this way, MV and LV levels are re-energised
hierarchically and top-down, i.e., from the transmission level. The CTMC model of conventional grid
restoration is based on the following assumptions, as shown in Figure 5a:

• the DERs in the DG act independently without external control and without
external communications;

• in case of blackout, they disconnect from the power line;
• the substations receive control signals from, and send measurements to, a DG grid control centre;
• the areas enclosed by dotted lines correspond to the grids served by the substations;



Telecom 2020, 1 190

• the substations and the control centre have a private communications network available, and this
network continues to operate during blackouts.
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Figure 5. (a) Conventional grid restoration (hierarchical top-down blackout recovery) and (b) autarkic
microgrid restoration (each islanded microgrid autonomously recovers from blackout).

In the autarkic microgrid blackout recovery method the MV/LV grid is divided into a set of
autarkic microgrids, as shown in Figure 5b, which are islanded in case of blackout. The DERs remain
connected to the grid and continue to use their MAS MTC devices to communicate with each other
and with the DG control centre during the blackout [6]. To simplify the modelling, we assume each
microgrid has its own eNodeB equipped with an emergency power supply. Two test cases are modelled:
Test Case 1 compares the blackout recovery times of the conventional and autarkic microgrid methods;
Test Case 2 compares the availability of communications in the autarkic microgrid with and without
the IOPS function.

• Test Case 1, Scenario 1: Conventional hierarchical top-down blackout recovery: no use is made
of DERs present in the MV and LV levels to assist in the blackout recovery. The simplifying
assumption is made that the communications network continues to function in the blackout.
The blackout recovery steps are: to re-energise the grid control centres (SCADA) and bring up
generation units; to re-energise the transmission grid; and to re-energise the DG and loads.

Table 1. CTMC States in conventional hierarchical top-down blackout recovery (Scenario 1).

State State Meaning

S1 Blackout
S2 SCADA_Up, Generator_Dn,Network_Dn, Load_Dn
S3 SCADA_Dn, Generator_Up,Network_Dn, Load_Dn
S4 SCADA_Up, Generator_Up,Network_Dn, Load_Dn
S5 SCADA_Up, Generator_Up,Network_Up, Load_Dn
S6 Grid Restored

The different CTMC states and mean state transition times are tabulated in Tables 1 and 4 and
shown in Figure 6. The state transition sequence and the mean time taken for individual steps of the
restoration process are derived based on the recovery from the Italian blackout of 2003 [20] and the
US-Canada blackout of 2003 [21].
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Table 2. CTMC States in autarkic microgrids blackout recovery (Scenario 2).

State State Meaning

S1_MG Blackout

S2_MG MG controller up, real time MG capability and
topology identified

S3_MG Microgrids restored
S1_MG Blackout
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Table 3. CTMC Transitions in Autarkic Microgrids Blackout Recovery (Scenario 3).

Transition Transition Purpose: Time to Value (hours)

T_MG_NBR_IDENTIFICATION bring up SCADA 0.02
T_MG_CON_RES bring up the generators 0.08

Table 4. CTMC Transitions in conventional hierarchical top-down blackout recovery (Scenario 1).

Transition Transition Purpose: Time to Value (hours)

T_SCADA bring up SCADA 1
T_GEN bring up the generators 10
T_NET energise the transmission grid 4
T_LOAD_RES restore the load 6

• Test Case 1, Scenario 2: blackout recovery using autarkic microgrids: autarkic blackout recovery
is performed in the microgrid using MTC-based MAS communications but without the IOPS
function, so that, if the eNodeB loses service from the mobile core network, the communication in
the MAS fails. It is assumed that the eNodeBs are equipped with emergency power supplies, so
that they continue to provide service in the blackout. Here, the microgrids autarkically perform
black starts. The steps in the blackout recovery procedure in the microgrid are, firstly, to identify
which nodes in the MAS are working; secondly, to identify the current microgrid topology and
DER capacity; and, thirdly, to re-energise the microgrid and the loads. The CTMC states and
conservative estimates of the state transition values are given in Tables 2 and 5.
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• Test Case 1, Scenario 3: Improved blackout recovery using autarkic microgrids and continuous
preparation for blackout: this is a further development of Scenario 2, but with the MAS
continuously preparing during normal operation for blackout. It continuously monitors which
agents are reachable, and deduces the current microgrid topology and what the DER production
is. Based on this situational awareness, it knows whether it is able to perform black start in case
of all possible combinations of nodes failing. Table 3 shows the neighbour identification time
(T_MG_NBR_IDENTIFICATION), which includes the identification of the working MAS nodes
and the actual grid topology. Furthermore, the value assumed for the time to coordinate the
different MAS nodes to restore the microgrid (T_MG_CON_RES) is also shown.

Table 5. CTMC Transitions in autarkic microgrids blackout recovery (Scenario 2).

Transition Transition Purpose: Time to Value (hours)

T_MG_NBR_IDENTIFICATION bring up SCADA 0.75
T_MG_CON_RES bring up the generators 2

Figure 7 shows the mean blackout recovery time and the probability of blackout recovery for
the three scenarios of Test Case 1. It can be seen that the grid is restored faster with the autarkic
microgrid-based blackout recovery where individual microgrids are energised in parallel and quicker
than in the traditional top-down method of Scenario 1. The mean restoration time is reduced by
a factor of the order of 10 for the restoration with autarkic microgrids (Scenario 2) and reduced
further by more than 10 times for the restoration with autarkic microgrids with continuous preparation
(Scenario 3), where the steps of restoration are faster due to having pre-processed information regarding
the identification of the available MAS nodes and the consequent contingency.
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Test Case 2 shows how the availability of the communication infrastructure is improved with
the public safety (IOPS) function [17]: as shown in Figure 8, IOPS ensures that eNodeB continues to
function if the mobile core network fails.
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When the eNodeB is configured with IOPS, the communication link between the microgrid
devices, which traverses the eNodeB, fails only if the eNodeB fails. This is because all the core network
functionalities are deployed within the eNodeB. In the case of absence of IOPS functionality, the
intra-MAS communication link fails when either eNodeB fails or the core network fails. The stochastic
failure model of the two eNodeB configurations is shown in Figure 8. The failure probability
distributions are modelled as exponentially distributed [22].

The eNodeB failure rates assumed are given in Table 6, derived from the failure rates proposed
in [23]. The probability of intra-MAS communication link failure and the mean time for the link to
fail is shown in Figure 9. The results show the reduced intra-MAS link failure for the eNodeB with
IOPS. The mean-time-to-failure of the eNodeB with IOPS is almost three times the mean-time-to-failure
without the IOPS, increasing the intra-MAS communication link availability accordingly.

Table 6. Core Network, eNodeB mean times to failure [23].

Transition Transition Purpose: Time to Value (hours)

T_eNodeB Mean time for eNodeB failure 0.002
T_Core_Net Time to bring up the DERs generation 0.003
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6. Conclusions

Reliable communication is the enabler of black start in autarkic DER powered microgrids.
LTE/5G-based PLMNs can be used to provide reliable communications to MTC devices in a microgrid



Telecom 2020, 1 194

even during a blackout by differentiating the microgrid MTC devices from other MTC and H2H users
and giving them preferential handling in emergencies.

Using LTE/5G-based PLMN for microgrid communications allows re-use of any existing PLMN
which covers the area of the microgrid. This means that reliable MTC can be achieved without having
to build a separate network, which cannot be achieved with other wireless technologies such as LoRa.

CTMC modelling of the use of PLMNs shows blackout recovery time being reduced by a factor of
the order of 100 compared to the conventional black start method. The direct consequence is reduced
power outage duration locally in the microgrid. Furthermore using the DERs for blackout recovery
will reduce the need for central generators to provide black start ancillary service.

PLMN-based Access Barring, which is available in commercial PLMNs, can provide this
preferential, differentiated handling and its use to achieve reliable MTC communication during
blackout is demonstrated in this work. However, its use requires an inefficient static pre-allocation
of radio network resources to the microgrid MTC devices into a separate PLMN. In future, reliable
MTC communication during blackout may be achieved more efficiently by using the Enhanced Access
Barring (EAB) Override or Application specific Congestion control for Data Communication (ACDC)
features instead, when these features are available in commercial PLMNs.
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