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Abstract: Recent efforts of both researchers and regulators regarding particulate emissions have
focused on the contribution and presence of sub-23 nm particulates. Despite being previously
excluded from emissions legislation with the particle measurement programme (PMP), the latest
regulatory proposals suggest lowering the cut-off sizes for counting efficiencies and the use of
catalytic strippers to include solid particles in this size range. This work investigated particulate
emissions of a 1.0 L gasoline direct injection (GDI) engine using a differential mobility spectrometer
(DMS) in combination with a catalytic stripper. Direct comparison of measurements taken with
and without the catalytic stripper reveals that the catalytic stripper noticeably reduced variability
in sub-23 nm particle concentration measurements. A significant portion of particles in this size
regime remained (58–92%), suggesting a non-volatile nature for these particles. Digital filtering
functions for imposing defined counting efficiencies were assessed with datasets acquired with
the catalytic stripper; i.e., particle size distributions (PSDs) with removed volatiles. An updated
filtering function for counting efficiency thresholds of d65 = 10 nm and d90 = 15 nm showed an
increase in particulate numbers between 1.5% and up to 11.2%, compared to the closest previous
digital filtering function. However, this increase is highly dependent on the underlying PSD. For a
matrix of operating conditions (1250 to 2250 rpm and fast-idle to 40 Nm brake torque), the highest
emissions occurred at fast-idle 1250 rpm with 1.93 × 108 #/cm3 using the updated filtering function
and catalytic stripper. This setup showed an increase in particulate number of +27% to +390% over
the test matrix when compared to DMS measurements without the catalytic stripper and applied
counting efficiency thresholds of d50 = 23 nm and d90 = 41.

Keywords: gasoline direct injection (GDI); particulate matter (PM); particle number (PN); sub-23 nm;
catalytic stripper

1. Introduction

Particulate emissions have become an omnipresent topic in recent years. A 2016 report
by the World Health Organization (WHO) identified ambient air pollution as the single
biggest environmental risk to human health [1]. In particular, particulate matter (PM) is
known to be associated with respiratory and cardiovascular disease [2,3], where particulate
size is an important consideration. In regard to the environment, atmospheric soot is
considered second only to CO2 in terms of radiative forcing effects [4], and contributes
to snow-ice melting via deposition in polar regions [5]. The reduction of black carbon
emissions is a key target for the abatement of climate change, as the short-lived nature of
atmospheric soot in comparison to gaseous species such as CO2 means benefits may be
much more quickly realised [6].

Soot is a commonly observed by-product of the combustion of hydrocarbon (HC) fuel
in internal combustion engines. While water and CO2 are the only products of complete
combustion, non-stoichiometric fuel-air mixtures inevitably arise within the combustion
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chamber either by accident or by design [7]. A lack of oxygen during combustion tends
to arise locally due to inadequate mixing of the charge, or by the presence of liquid fuel
droplets/films in the cylinder [8]. Production of soot has long been known for diesel
engines but was traditionally insignificant for older gasoline engines. In the past, gasoline
engines made use of carburetors or port-fuel injectors (PFI) to ensure homogeneous mixing
of fuel and air prior to injection, but modern gasoline engines tend to use DI systems. The
transition from PFI to DI technology was strongly motivated by the goal to reduce CO2
emissions. Gasoline direct injection (GDI) engines offer improved efficiencies, as throttling
losses can be eliminated by stratified lean-burn operation and volumetric efficiency can
be increased due to charge cooling effects [9]. However, GDI engines suffer from elevated
levels of particulate emissions, as the direct injection of fuel into the cylinder allows less
time for vaporisation and mixing with air [10,11]. As such, particle emissions from gasoline
engines have become a growing concern in recent years.

In the European region, limits on PM were initially introduced with the Euro 1 stan-
dard at 140 mg/km [12] and these limits were gradually lowered to 5 mg/km with Euro
5(a)/6(a) [13]. Due to limitations in the resolution of particle mass measurements by gravi-
metric means below 5 mg/km [14], particle number (PN) limits were introduced with Euro
5b/6b [15] to continue the systematic increase in stringency needed to drive improvement
in the quality of vehicle emissions. Prior to the incorporation of PN measurements into the
Euro regulations, the particle measurement programme (PMP) was developed by the Joint
Research Council (JRC) of the European Commission to standardise the measurement of
exhaust PN [16,17]. Repeatability issues with particulate measurements for exhaust gas
often stem from artefacts due to volatile species, which can be attributed to the nucleation
mode of exhaust PM [18]. The PMP addresses this issue by prescribing a volatile particle
remover (VPR) as a conditioning system for the exhaust gas sample. Moreover, particles
below 23 nm are excluded by prescribing counting efficiencies for the particle number
counter (PNC). Specifically, the efficiencies are 50% of particles counted at 23 nm and over
90% of particles counted at 41 nm [17]. These thresholds are also referred to as d50 and d90,
respectively. All particles that are counted with this protocol are considered solid, thus
providing the solid particle number (SPN) as a standardised metric to which the PN limit
of the regulations is applied. Due to the effective size cut-off at 23 nm, the resulting total
number of particles is also referred to as SPN23.

Research activities in recent years have increasingly focused on sub-23 nm particulate
emissions. An early literature review by Giechaskiel et al. [19] from 2014 identified solid
core particles in the nucleation mode of diesel engines and gasoline engines (both PFI and
GDI). The review paper included initial experiments by the JRC that found the excluded
fraction by the PMP to be 30–40%. However, these findings were deemed insufficient
to support a change of the legislation due to other sources of error and variability, and
generally low emission level below the regulated 6 × 1011 #/km, even with sub-23 nm
particulates included. However, a more recent review paper from 2019 by some of the same
authors identified a general tendency of high sub-23 nm particulate emissions for otherwise
low PN emission level conditions [20]. It was further stressed that research findings suggest
that the sub-23 nm fraction is often above 50% even without correction for particulate losses,
which would increase this proportion further. During the 52nd PMP session in January 2020,
new counting efficiencies of d65 = 10 nm and d90 = 15 nm were discussed [21]. Emission
levels with this lowered detection threshold are referred to as SPN10. The final report on the
development of a regulatory amendment [22] included both the counting efficiencies of the
52nd PMP session and a sampling setup comprising a catalytic stripper. These proposals
are backed up by ongoing research efforts into the measurement of sub-23 nm emissions,
notably the three EU-funded projects DownToTen, PEMs4Nano, and SUREAL-23 [23]. A
comprehensive summary and outline of recent regulatory progress can be found in [24]. A
new approach to exhaust particulate measurements was recently discussed by Giechaskiel
et al. [25]. A change the SPN approach to a total particle emissions metric could capture
both the solid and volatile fraction in the exhaust gas; however, the authors state that the
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details and understanding of underlying processes are not yet sufficient for a regulatory
realisation of such an approach.

The PMP, as described above, includes a PNC for the detection of particulates. Com-
mercially, CPCs are commonly used for this part. These are calibrated to defined counting
efficiencies and count all particles accordingly. Consequently, the instrument provides
a total particle number (TPN) over a given period, e.g., one drive cycle. Further insight
beyond the TPN is often of interest for research purposes. Laboratory instruments based on
the principle of electrical mobility are commonly used to obtain particle size distributions
(PSDs) [26]. The full PSD can provide additional information on the nature of emitted
particulates, often summarised in the geometric mean diameter (GMD) as an additional
metric. However, further post-processing is required to obtain metrics comparable to
the legislated SPN23 number. One option for this is the fitting of lognormal functions
to the modes in the PSD. Braisher et al. [27] found data from a DMS500 to be similar to
PMP-compliant measurements if only the accumulation mode fit was considered, despite
the lack of a VPR in their setup. However, this approach is unsuitable for future sub-23 nm
measurements due to the distinct separation of nucleation and accumulation modes [28].

An alternative method was proposed by Leach [29]: counting efficiencies could be
applied to the PSD during post-processing with digital filtering functions. For the original
function based on PMP counting efficiencies for SPN23, i.e., d50 = 23 nm and d90 = 41 nm,
this approach was found to provide more representative results than using the extracted
accumulation mode. In contrast to the lognormal fitting, the filtering functions provide a
tool to implement a software VPR continuously across specified size ranges. The function
was based on the structure of a Wiebe function, a zero-dimensional or energy balance
model for the mass fraction burned of engines. The digital filtering function was proposed
as shown in Equation (1), where dp is particle diameter.

f
(
dp
)
=

 1 − exp
[
−3.54

(
dp − 14

40

)1.09
]

, dp ≥ 14

0, dp < 14
(1)

The function was successfully used in subsequent studies by Leach et al. [30–32].
Moreover, two modified filters have been proposed by Leach et al. [33] in 2019 with
counting efficiency pairs of d50 = 10 nm/d90 = 23 nm and d50 = 10 nm/d90 = 15 nm,
based JRC research activities leading up to 2018 [34] and a PEMs4Nano report in 2017 [35],
respectively. The function based on d50 = 10 nm/d90 = 15 nm was described as shown in
Equation (2).

f
(
dp
)
=

 1 − exp
[
−4
(

dp − 4
14.7

)1.96
]

, dp ≥ 4

0, dp < 4
(2)

In light of continued work towards updated regulations, a filter was recently modified
by Pfau et al. [28] for the proposed SPN10 efficiencies d65 = 10 nm/d90 = 15 nm, with a filter
shape similar to the original SPN23-inspired filter. The equation for this filtering function
is shown in Equation (3).

f
(
dp
)
=

 1 − exp
[
−5
(

dp − 5
20

)1.12
]

, dp ≥ 5

0, dp < 5
(3)

Implementing this equation covers one half of the proposed PMP update; i.e., the low-
ered counting efficiencies. However, to date, the other half of the proposed measurement
setup, i.e., a catalytic stripper for sample gas conditioning, has not been tested with this
approach. While the implications of an absent VPR with a DMS500 might not have been
significant for the PN level with SPN23-inspired efficiencies, this situation could likely be
different for the PN level with SPN10-inspired efficiencies.
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The scope of this paper is to establish the effect that a catalytic stripper has on the
particulate measurements of a GDI engine. For this purpose, DMS500 measurements will
be compared that were acquired with and without a catalytic stripper. Moreover, emphasis
is further placed on sub-23 nm particulates as these are strongly affected by volatile com-
pounds in the exhaust gas. Inspired by the setup of regulatory PMP systems—comprising
a PNC with defined counting efficiencies in addition to using a VPR—digital filtering
functions are used to impose specified counting efficiencies on the DMS500 measurements.

2. Experimental Section
2.1. Engine Setup

A 1.0 L three-cylinder GDI engine was used for the experimental work of this study.
The specifications of the engine are presented in Table 1. The experimental test setup is
visualised in Figure 1. The engine was operated on a testbed with a Froude Consine EC38
TA Eddy-Current dynamometer (rated capacity of 154 kW) connected to the engine’s power
take-off shaft. Operating parameters such as injection and spark timing were controlled
by a Bosch MED17 engine control unit (ECU) with mapping as per manufacturer calibra-
tion. Further details on the engine test setup can be found in a previous publication [28].
Specifications of the test fuel are included in Table 2.

Table 1. Specifications of the three-cylinder GDI engine.

Parameter Value

Max. Power 92 kW @ 6000 rpm
Max. Torque 170 Nm @ 1400–4500 rpm
Bore 71.9 mm
Stroke 82.0 mm
Total Capacity 999 cm3

Compression Ratio 10.5:1
Injector 5-hole solenoid
Max. Injection Pressure 200 bar (common rail)
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Table 2. Specification of the test fuel.

Parameter Value

RON 98.4
MON 87.1
DVPE 62.7 kPa
FBP 198.3 ◦C
Ethanol 0%
Sulfur 3.4 mg/kg

A test matrix with a total of 15 steady-state operating conditions was investigated:
five speeds from 1250 to 2250 rpm in steps of 250 rpm, each with three loads from 0 to
40 Nm in steps of 20 Nm. These conditions were derived from a worldwide harmonized
light vehicles test cycle (WLTC) simulation; and further information on this as well as the
engine mapping can be found in [36]. The test matrix was assessed three times on different
days of engine testing to ensure repeatability of the measurements. Prior to assessing any
operating conditions, the engine was conditioned upon starting by running with 20 Nm at
1750 rpm until engine oil reached 85 ◦C.

2.2. Gas Analyser

The concentration of unburned hydrocarbons (HC) in the exhaust gas was measured
by a Signal 3000 HM gas analyser. The exhaust gas was sampled with a heated line (190 ◦C).
The sample gas was initially passed through a Signal Pre Filter module 352 to remove
particulates and protect subsequent instrumentation from damage and contamination. The
sample gas stream was further preconditioned in a Signal 340 distribution oven.

2.3. Particulate Measurement

Particulate measurements were acquired with a Cambustion DMS500. The temper-
atures of the sampling block and the 5 m heated sampling line were both set to 191 ◦C.
The instrument was operated in 1000 nm mode; i.e., providing a measurement range of
5–1000 nm. The primary dilution was fixed at 5:1. The secondary dilution stage was by-
passed for most conditions; i.e., set to 1:1. Only for the fast-idling conditions at 1250 rpm
and 1500 rpm was a secondary dilution of 12–250 used to achieve acceptable signal strength.
A catalytic stripper from Cambustion was included as VPR for some measurements, placed
in-line between the heated sampling line and the DMS. The catalytic stripper provides
a nominal removal efficiency of above 99% for 30 nm tetracontane. The temperatures of
the heater and cooler of the catalytic stripper were set to 410 ◦C and 80 ◦C, respectively.
Measurements were acquired over a window of 180 s with a sampling frequency of 0.5 Hz.
The 95% confidence intervals were calculated for each of these measurement windows. A
penetration efficiency model was applied to account for particle losses in the heated sam-
pling line and the catalytic stripper (see Figure 2). This model was provided by Cambustion
and is based on the work of Kumar et al. [37].

Moreover, processing of the obtained PSDs included the application of digital filtering
functions to model counting efficiencies, as described above. For measurements without the
catalytic stripper (w/o CS), PMP SPN23 efficiencies of d50 = 23 nm and d90 = 41 nm were
applied with Equation (1), i.e., SPN23-inspired function by Leach [29]. For measurements
with the catalytic stripper (w CS), the proposed PMP SPN10 efficiencies of d65 = 10 nm
and d90 > 15 nm were applied with Equation (2), i.e., the SPN10-inspired function by
Pfau et al. [28].
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Figure 2. Correction model for penetration efficiencies of particles to the DMS after transfer through
the heated sampling line (HSL) and after combined HSL plus catalytic stripper (CS). Model provided
by Cambustion.

3. Results and Discussion
3.1. Digital Filtering Functions for Sub-23 nm Measurements

Different mathematical functions have been proposed to date for the sub-23 nm
processing of DMS particulate emission measurements [28,33]. However, none of the
studies on this matter to date have used a sample gas conditioning setup that prevents
volatile artefacts; i.e., catalytic strippers have not been used. To determine the extent to
which digital filtering functions can affect the particulate number, two operating conditions
are investigated in detail in the following: fast-idle at 1250 rpm and 40 Nm load at 2250 rpm.
These conditions are the low and high endpoints of the test matrix, and were chosen because
notable differences in their TPN and GMD could be observed (cf. Section 3.3), indicating
underlying differences in their PSDs. Two of the filters mentioned above have been applied,
described above as Equations (2) and (3), proposed by Leach et al. [33] and Pfau et al. [28],
respectively. These are in the following, labelled as Filter 2 and Filter 3, respectively. As
both functions incorporate d90 counting efficiencies at 15 nm, their counting efficiencies
approach 100% at 20 nm.

For the fast-idle 1250 rpm condition, the 95% confidence intervals overlap marginally
down to 13 nm (see Figure 3a,b). Below this point, apparent differences between the two
filters can be observed beyond the certainty level of the confidence intervals. Consequently,
the PN > 10 (i.e., particulate number above 10 nm with the respective counting efficiencies)
changes from 1.73 × 108 #/cm3 with Filter 2 to 1.93 × 108 #/cm3 as Filter 3 is applied,
i.e., an increase of 11.2%. This change stems from a 15.6% increase in sub-23 nm emissions.
The PN > 10 difference is less pronounced for the 2250 rpm condition with 40 Nm, increasing
only 1.5% (see Figure 3c,d). The change in the sub-23 nm emissions is +22.1%, however,
with partially overlapping 95% confidence intervals. Due to the second mode at 133 nm
and a consequently higher fraction of larger particles, the overall particulate number is less
affected. These observations highlight that the identified sub-23 nm emissions can vary
considerably between different filtering functions. The higher the fraction of sub-23 nm
particulates of the overall emissions, i.e., the lower the GMD, the greater the effect of
changing from Filter 2 to Filter 3. This confirms the findings of a previous study by
Pfau et al. [28] conducted without a catalytic stripper.
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3.2. Impact of Catalytic Stripper

Another area of interest is the effect of a catalytic stripper on the observed PSD, as this
is included in the proposals for an updated PMP SPN10 measurements [22]. The initial
PMP encompasses evaporation tube and counting efficiencies of d50 at 23 nm and d90 at
41 nm. The latter are modelled for DMS measurements without the catalytic stripper by
applying the digital filtering function Equation (1) (Filter 1 or F1). The resulting particle
distributions are also referred to as “F1-PN > 23” in the following. Likewise, Equation (3)
(Filter 3 or F3) is applied to DMS measurements acquired while using the catalytic stripper
to assess sub-23 nm emissions by using SPN10-proposed counting efficiencies d65 at 10 nm
and d90 at 15 nm. These measurements are then also referred to as “F3-PN > 10”.

Firstly, the impact of using a catalytic stripper is assessed. The same two conditions
as in the previous Section 3.1 are also used here, with the unfiltered but loss-corrected
PSDs with and without catalytic stripper, shown in the left column of Figure 4. For
the fast-idle 1250 rpm condition, an overall reduction in particle concentrations can be
observed. The mode remains roughly at the same size position; however, its peak is
reduced from 7.37 × 108 #/cm3 to 5.03 × 108 #/cm3. In contrast, the PSD for the 40 Nm
condition at 2250 rpm without catalytic stripper exhibits a nucleation-type mode that is not
only reduced in its concentration level from 4.46 × 105 #/cm3 to 2.65 × 105 #/cm3, but also
shifted its peak position from 6.5 nm to 10 nm by implementing sampling with a catalytic
stripper. While particle number concentrations for the 1250 rpm condition are reduced
in the 30 nm to 100 nm range as well, there does not appear to be a similar reduction for
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the 2250 rpm condition. This is somewhat in line with the findings by Duca et al. [38] that
it was mostly the smallest particles in the range of 10–32 nm that were most affected by
the CS, due to a larger volatile fraction these are carrying. Beyond the size of the volatile
fraction, it could also be hypothesised that different volatile species are emitted at the two
operating conditions here, thus explaining the observed differences. The types emitted
at the 1250 rpm condition would be considered to have more of an effect at particulate
sizes of 30 nm to 100 nm compared with the types at the 2250 rpm condition, impacting
predominantly the size classes below 10 nm. An alternative hypothesis could be that the
behaviour and mechanisms differ based on the total particle concentration levels, with
the smallest particulates below 10 nm quickly adsorbed by larger particulates at higher
concentrations. This would also explain the difference in the range of 30 nm to 100 nm
when the catalytic stripper is employed. Future work should aim to characterise the
volatile species emitted, thereby providing further insight into which of the two proposed
explanations is more accurate.
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Figure 4. Particle size distributions (PSDs) for DMS measurements with and without catalytic stripper
(CS), for fast-idle operation at 1250 rpm (a,b) and 40 Nm at 2250 rpm (c,d). The PSDs in subfigures
(a,c) have been particle loss corrected. The PSDs in subfigures (b,d) have been digitally filtered
in addition to the particle loss correction. For the digital filtering, Equation (1) was applied for
Filter 1 (i.e., F1-PN > 23) and Equation (3) for Filter 3 (i.e., F3-PN > 10). Error bars indicate 95%
confidence intervals.

The 95% confidence intervals as included in the plots are generally reduced with the
inclusion of the catalytic stripper in the measurement setup. This is most noticeable for the
2250 rpm condition for which the 95% confidence intervals are noticeably larger, especially
in the measurements without the catalytic stripper and for sub-23 nm sizes. The higher
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variability could be explained by the lower particle concentration level. Despite the reduced
sampling frequency of 0.5 Hz and prolonged sampling duration of 180 s, more noise for
measurements was experienced, leading to the larger confidence intervals. The confidence
intervals are reduced more considerably for the 2250 rpm conditions compared with the
1250 rpm condition when the catalytic stripper is then employed. This could indicate that
a larger fraction of volatiles is present in the exhaust gas at the higher-speed condition.
By removing these volatiles, the catalytic stripper appeared to be effective in reducing the
variability. Assessing the repeatability of the DMS500 in this arrangement was beyond the
scope of this study; however, a study by Bokor et al. [39] found the repeatability to be 5.3%
for the PN measurements, and 3.1% for the respective GMD. More in-depth investigations
can be carried out as follow-up to this study, to capture the impact that the catalytic stripper
could have on the robustness of acquired data.

The right column of Figure 4 shows the PSDs with the respective digital filtering
functions applied. For the PSDs acquired with the catalytic stripper, implementing the
SPN10-inspired digital filtering function (Equation (3)) leads to a reduction in the concen-
tration level of the mode around 10 nm, with a slight shift towards larger particle sizes
as described in the previous Section 3.1. The implications of filtering the PSD acquired
without catalytic stripper for F1-PN > 23 is more profound, as it effectively removes most
of the observed particles below 23 nm. As is apparent from Equation (1), no particles below
14 nm are counted. For the fast-idle condition at 1250 rpm (w/o CS), this processing step
reduces the height of the mode by 80%—from 7.37 × 108 #/cm3 to 1.47 × 108 #/cm3—and
shifts the peak position from 10 nm to around 25 nm. Moreover, the shape of the mode is
broader compared to the sharper peak in the unfiltered PSD. For the 2250 rpm condition
(w/o CS), applying Filter 1 removes the lower mode entirely. The peak at 133 nm becomes
the predominant mode, with an extended shoulder towards smaller particle sizes. Only
a minimal peak remaining at just at around 20 nm with a particle concentration of 55%
of the larger particle size mode: 3.10 × 104 #/cm3 compared to 5.64 × 104 #/cm3. This
analysis of the PSD for two test conditions highlights the considerable implications that
a change to smaller counting efficiencies. Sub-23 nm particles were more prominently
represented in the particulate number with the lowered counting efficiency positions. A
more extensive test matrix is discussed in the following section to better understand the
influence of operating conditions.

3.3. Particulate Emissions across the Test Matrix

The particulate emissions measurements, for some conditions, showed overall high
levels of noise, despite a reduced sampling frequency of 0.5 Hz and a prolonged sampling
duration of 180 s. Specifically, this variability limitation was observed for the conditions
at 2000 rpm and 2250 rpm with 20 Nm (w + w/o CS) and with 40 Nm (w CS), as well as
1750 rpm with 20 Nm (w CS). The following discussion of results uses the TPN as a metric
for unfiltered data and denotes the particle count for the data sets with digital filtering
functions as F3-PN > 10 and F1-PN > 23. However, it should be pointed out that these
differ from the metrics described in the PMP with similar terminology, denoted as #/km
emitted from vehicles over a test cycle, rather than #/cm3 measured here.

The contour plots of the various particulate number metrics exhibit an overall trend
of high particulate number levels towards the fast-idle 1250 rpm condition (see Figure 5).
The highest cumulative number can be observed for TPN (w/o CS) with 4.21 × 108 #/cm3

and the lowest for F1-PN > 23 with 8.25 × 107 #/cm3. The F3-PN > 10 at this point is
1.93 × 108 #/cm3. The PN generally decreases for higher speeds and loads; however, some
exceptions can be observed for the measurements without the catalytic stripper. At the
fast-idle condition at 2000 rpm, the PN is elevated when measurements are taken without
the catalytic stripper. This can be seen in the (only) particle-loss corrected contour plot as
a shoulder of the respective contour lines (see Figure 5a), and is even more noticeable in
the F1-PN > 23 plot as a distinct peak (see Figure 5b). Moreover, both TPN (w/o CS) and
F1-PN > 23 increase for the highest two speeds, with the highest load of 40 Nm. While
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not as noticeable for the two metrics derived from the measurements with the catalytic
stripper, the lowest PN across the test matrix can be found at the 20 Nm load conditions at
2000 rpm and 2250 rpm for all four plots. The number of particulates generally increases
when comparing F3-PN > 10 with F1-PN > 23, from as low as +27% at 1250 rpm with
40 Nm up to an almost four-fold +390% at 1750 rpm with 20 Nm. A decrease could only
be observed for the fast-idling condition at 2000 rpm, with −73%. The change is generally
more pronounced for the fast-idling conditions with +182% on average compared to +162%
and +60% for the 20 Nm and 40 Nm load conditions, respectively.
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Figure 5. Total particle number (TPN) by engine speed and load for DMS measurements with and
without catalytic stripper (CS) in subfigures (c,d) and (a,b), respectively. The data displayed in
subfigures (a,c) has been particle loss corrected. The data displayed in subfigures (b,d) has been
digitally filtered in addition to the particle loss correction. For the digital filtering, Equation (1) was
applied for F1-PN > 23 and Equation (3) for F3-PN > 10.

In a study by Di Iorio et al. [40] using a Dekati DEED PMP-compliant conditioning
system in combination with a TSI EEPS measurement device, the PN could generally be
observed to decrease with increasing engine load. The particulate emissions level increased
by around an order of magnitude when the engine speed was increased from 2000 rpm to
4000 rpm. Moreover, the sub-23 nm fraction was higher for 2000 rpm. These findings were
confirmed in another study by Catapano et al. [41] using the same setup configuration.
While a decrease in PN level with increasing load could be observed here as well, it should
be noted that the load level here is overall lower compared to the engine load assessed in
the aforementioned studies. Likewise, the engine speeds assessed here are lower, but also
cover an area that was not assessed in either study.
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Additional information on the emitted particulates can be obtained from the GMD.
This metric provides a more feasible way to summarise the size profile for larger data sets
than comparing individual PSDs. In the following, the term GMD is used similar to TPN,
while F3-GMD > 10 and F1-GMD > 23 are the corresponding metrics to F3-PN > 10 and
F1-PN > 23, respectively, with the same processing approach.

Similarities can be observed between the contour plots for GMD (w CS), F3-GMD > 10,
and F1-GMD > 23 (see Figure 6). The highest values for these three plots are located at the
upper end of the test matrix in terms of speed and load. From there, the GMD decreases
predominantly with engine load, while the effect of the engine speed on this metric is less
clear. Overall, the level of the F1-GMD > 23 is noticeably above the other GMD-metrics, as
is apparent by the colour bar of the contour plot ranging from 0–80 nm, rather than 0–40 nm
as for the other plots. The largest size of 89.9 nm for F1-GMD > 23 occurs at 2250 rpm with
40 Nm load, with the smallest size of 25.3 nm at fast-idling 2250 rpm. Similarly, the largest
size for F3-GMD > 10 occurs at 2000 rpm with 40 Nm load, with 32 nm and the smallest
size at fast-idling 2000 rpm with 13.7 nm.
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Figure 6. Geometric mean diameter (GMD) by engine speed and load for DMS measurements with
and without catalytic stripper (CS) in subfigures (c,d) and (a,b), respectively. The data displayed
in subfigures (a,c) has been particle loss corrected. The data displayed in subfigures (b,d) has been
digitally filtered in addition to the particle loss correction. For the digital filtering, Equation (1) was
applied for F1-GMD > 23 and Equation (3) for F3-GMD > 10.

The change in GMD derived from unfiltered to filtered PSDs is relatively homogeneous
for measurements acquired with the catalytic stripper. No drastic changes in the shape
of the contour plot can be observed, but rather an average increase of 20% from GMD
(w CS) to F3-GMD > 10. An entirely different observation can be made for the metrics
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derived from data acquired without the catalytic stripper. The contour plot for GMD (w/o
CS) exhibits high points at 1250 rpm with 40 Nm and fast-idling 2000 rpm with GMDs
of 20.3 nm and 21 nm, respectively. The lowest points are at fast-idling 1500 rpm and
2000 rpm with 40 Nm, with GMDs of 9.2 nm and 11.5 nm, respectively. This observation
could be interpreted as some volatile artefacts affecting the PSD shape. The noticeable
shift in the contour plots would, in such a case, be the exclusion of said artefacts by
the digital filtering, working as intended. Additional support for this hypothesis is the
similarity between the F1-GMD > 23 plot with the GMD (w CS) and F3-GMD > 10 plots,
i.e., those with assumed removal of volatiles. For the present test matrix, the shift from
F1-GMD > 23 to F3-GMD > 10 effectively lowers the size thresholds, including particles of
smaller diameters, without altering the underlying trends of speed and load.

In light of the regulatory size threshold, information on the size distribution could
also be presented as sub-23 nm fractions of the PN (see Figure 7). This alternative to
the GMD metric reveals that most emitted particles for the assessed operating conditions
fall in the size range below 23 nm. The overall range of sub-23 nm fractions is similar
between measurements without and with the catalytic stripper, with 52–93% and 58–92%,
respectively. The F3-PN > 10 retains the majority of these particles and exhibits a range
of 49–88% for this fraction. It should be noted that while the F1-PN > 23 removes most
particles below 23 nm, still up to 35% of particles included in this metric are smaller than
23 nm. The trends and changes with engine speed and load are similar to the observations
made for the GMD metrics above. However, the representation as sub-23 nm fraction
highlights the proportion of particles below 23 nm in the exhaust gas more comprehensibly.

There is little coverage of engine testbed experiments in the literature that focus
on sub-23 nm emissions. For example, some recent studies by Di Iorio et al. [40] and
Catapano et al. [41] found higher fractions of particulates below 23 nm for a 2000 rpm
operating condition compared to a 4000 rpm condition; more data can be found for exhaust
measurements for vehicle testing drive cycles. Giechaskiel et al. [19] reported that 30% to
40% of particulates were excluded with the PMP that focuses on emissions above 23 nm.
A larger scale study by Giechaskiel et al. [42] from 2020 found sub-23 nm fractions to be
between 25% and 50%. Catapano et al. [43] found the sub-23 nm fraction to be between
20% and just over 40% for WLTC testing, with higher fractions for the medium and high
phases. The fractions observed here are considerably higher than previously reported. This
could be due to the nature of the experiments; i.e., steady-state operating conditions with
an engine on a testbed rather than dynamic drive cycles with vehicles. However, it should
further be investigated whether the measurement equipment could play a role in this.

As any volatile species are derived from either the hydrocarbon fuel or some species
of the lubricating oil formulation, information on the total unburned hydrocarbons (THC)
emissions can beneficial. The measured concentrations are displayed in Figure 8 as a
methane-equivalent parts-per-million fraction. The highest THC concentration was ob-
served for fast-idle at 1250 rpm with 4174 ppm, while the lowest value was recorded for
40 Nm load at 2250 rpm with 997 ppm. The contour plot for the investigated test matrix
exhibits similarities in the underlying distribution shape to the plots for the particulate
number emissions (see Figure 5). As the observation remains the same with and without
the catalytic stripper, it can be assumed that the increase in PN stems from an elevated
number of solid particulates rather than volatile artefacts. Consequently, a shift toward a
smaller GMD would be expected. However, the GMD plots do not exhibit any apparent
correlation with the THC emissions. A possible explanation for this could be that in ad-
dition to additional small particulates being formed, existing particles grow in size so as
to balance the overall GMD. As for the PN, comparing the GMD of measurements with
and without the catalytic stripper points to a solid nature of this particle growth, rather
than stemming from volatile condensates. Notably, the PN spike at fast-idle 2000 rpm
without catalytic stripper is not corresponding to a spike in THC. This would suggest that
the species causing this spike are volatiles that are removable by the catalytic stripper, but
are not hydrocarbons detectable by the THC analyser.
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Figure 7. Fraction of sub-23 nm particles by engine speed and load for DMS measurements with
and without catalytic stripper (CS) in subfigures (c,d) and (a,b), respectively. The data displayed
in subfigures (a,c) has been particle loss corrected. The data displayed in subfigures (b,d) has been
digitally filtered in addition to the particle loss correction. For the digital filtering, Equation (1) was
applied for F1-PN > 23 and Equation (3) for F3-PN > 10.
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4. Conclusions

Particulate emissions of a 1.0 L GDI engine were measured for a test matrix of
15 operating conditions. Measurements were conducted with a DMS that was operated
with and without a catalytic stripper. Moreover, different digital filtering functions were
applied to implement specified counting efficiencie;, e.g., d50 = 23 nm/d90 = 41 nm as
inspired by SPN23 of the established PMP, and d65 = 10 nm/d90 = 15 nm as included in the
latest regulatory proposals for SPN10. The findings can be summarised in five groups:

- An updated filtering function for SPN10-inspired counting efficiencies was applied to
measurements acquired while using a catalytic stripper. The results show an increase
of up to 11.2% for PN > 10 compared with the closest previous sub-23 nm digital
filtering function. However, this increase is highly dependent on the underlying
PSD, with conditions of a smaller GMD exhibiting a greater shift. These observations
confirm the findings of a previous study in which the function was proposed based
on DMS measurements without a catalytic stripper.

- Directly comparing measurements with and without a catalytic stripper reveals that
the catalytic stripper noticeably reduced variability in sub-23 nm particle concentration
measurements. A significant portion of particles in this size regime remained that, thus,
are assumed to be non-volatile solid particles. The shift from d50 = 23 nm/d90 = 41 nm
digital filtering without the catalytic stripper (F1-PN > 23) to d65 = 10 nm/d90 = 15 nm
digital filtering with the catalytic stripper (F3-PN > 10) leads to a considerable differ-
ence in the resulting PSD.

- The measurements of the test matrix showed the highest PN emissions for fast-idle at
1250 rpm, regardless of using a catalytic stripper or the used digital filtering function.
Specifically, the value doubled from F1-PN > 23 with 8.25 × 107 #/cm3 to F3-PN > 10
of 1.93 × 108 #/cm3. The number of particulates generally increases when comparing
the F3-PN > 10 with the F1-PN > 23, from as low as +27% at 1250 rpm with 40 Nm up
to an almost four-fold +390% at 1750 rpm with 20 Nm.

- Investigation of engine metrics revealed a similar trend between PN and THC emis-
sions. The remaining included metrics; exhaust gas temperature, spark timing, 50%
MFB position, injection timing, and pressure, could not conclusively explain the
observed patterns in the PN and GMD measurements.

Future work can comprise the investigation of transient operating conditions, as well
as detailed tests into the role of engine parameters to determine their individual con-
tribution towards sub-23 nm emissions. Moreover, investigations can further focus on
measurements post three-way catalyst, and potentially also particulate filters. Validating
measurement results from the DMS500 with a catalytic stripper and SPN10-inspired digital
filtering function against a PMP SPN10 compliant measurement system is needed to show
the comparability of these measurement approaches and allow for the direct comparisons
of data sets. With a view on challenges in the market, the influence of various fuel formula-
tions and lubricating oil chemistry would be of interest as well. Additional information
can further be obtained by chemical analysis of the sub-23 nm particulates, or exhaust
condensates that would also capture all volatiles species, if present.
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