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Activation of CO2 on the Surfaces of Bare, Ti-Adsorbed and
Ti-Doped C60
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Abstract: There is a growing interest in finding a suitable catalyst for the adsorption and activation
of CO2 molecules to minimize the effect of global warming. In this study, density functional theory-
based simulations are employed to examine the adsorption and activation of a CO2 molecule on
the pure, Ti-supported and Ti-doped surfaces of C60. The adsorption on the pure surface is very
week. Adsorption becomes significant on the Ti-supported C60 surface together with significant
activation. Such strong adsorption is evidenced by the significant charge transfer between Ti and C60.
The Ti-doped C60 surface adsorbs weakly, but the activation is not significant.
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1. Introduction

Capture and adsorption of CO2 is crucial towards global warming prevention and hy-
drogen production via purification of gas mixtures. A variety of materials including metal-
organic frameworks [1–5], zeolites [6–9], metal oxides [10–12], organic polymers [13–15]
and silica [16–18] have been used to investigate the efficacy of adsorbing CO2.

Buckminsterfullerene (C60) has gathered a lot of interest due to its wide range of
properties such as high thermal, chemical and mechanical stability [19]. Both inner and
outer surfaces of C60 have been thoroughly studied for encapsulation and adsorption of a
variety of atoms and molecules respectively [20–25]. Alkali or transition metal adsorbed or
doped C60 surfaces have been considered for the adsorption and the activation of small
molecules such H2, N2 and CO2 [20,22,23,25]. Transition metal-doped C60 structures have
some special features over alkali atoms-doped C60. They are size mismatch between
highly charged metal ions and C60 and small lattice energies of hypothetical Mn+−C60

n−

complexes. Titanium doped C60 has been studied experimentally and theoretically as a
candidate catalyst to adsorb H2 and activate N2 molecules [22,23]. It is anticipated that
Ti atom supported on a C60 molecule can introduce a charge transfer (Ti to C60) due to
the larger electronegativity of C60. The positively charged Ti is expected to enhance the
adsorption of CO2 molecule via strong Ti−O bond formation.

Here, computational modelling based on the density functional theory (DFT) is used
to examine the adsorption efficacy of a CO2 molecule on the surfaces of pure, Ti-adsorbed
and Ti-doped C60. The current methodology enabled us to determine the relaxed config-
urations together with electronic structures and charges on the adsorbed or doped Ti or
CO2 molecule.

2. Computational Methods

A DFT simulation code VASP (Vienna ab initio simulation program) [26] was used
to perform all calculations. Projected augmented wave (PAW) potentials [27] and plane
wave basis sets (cut-off of 500 eV) were used. The exchange correlation term was modelled
using the generalized gradient approximation (GGA) as parameterized by Perdew, Burke,
and Ernzerhof (PBE) [28]. All structures were optimized using the conjugate gradient
algorithm [29]. The forces on the atoms were less than 0.001 eV/Å. A supercell with a
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dimension of 25 × 25 Å × 25 Å was used to ensure that the adjacent molecules do not
interact with each other in all directions. A single Ti atom was considered at different
positions on the surface of C60 for adsorption. The most favorable relaxed structure was
allowed to interact a CO2 molecule. Doping of Ti was carried out by replacing a C atom
on the C60 molecule with Ti atom. A 2 × 2 × 2 Monk-horst k-point mesh [30] was used
to relax all structures. Semi-empirical dispersive interactions were included as described
by Grimme et al. [31] The charges on the atoms were calculated using the Bader charge
analysis [32]. Adsorption energy was calculated for a CO2 molecule interacting the C60
surface using the following equation.

Eads = ECO2 : C60–EC60 – ECO2 (1)

where ECO2 : C60 is the total energy of a CO2 molecule interacting the surface of C60, EC60 is
the total energy of a C60 molecule and ECO2 is the total energy of a CO2 molecule.

3. Results
3.1. Strucure of C60

C60 molecule is spherical and is formed by 12 pentagonal and 20 hexagonal molecules
(see Figure 1a). It consists of two different carbon-carbon bonds (C–C and C=C) and
their experimental values are reported to be 1.43 Å and 1.39 Å respectively [33]. First we
optimized the C60 molecule to determine the equilibrium bond lengths to validate the
pseudo potentials and basis sets used for C, Ti and O in this study. In the relaxed structure,
the C–C and C=C bond distances were calculated to be 1.44 Å and 1.40 Å respectively,
agreeing well with the corresponding experimental values. The calculated density of the
states plot is shown in Figure 1b. The calculated gap between the highest occupied level
and the lowest unoccupied level is 1.30 eV in a reasonable agreement with the values
(1.55 eV and 1.63 eV) calculated in previous DFT simulations [34,35]. The underestimation
of the band gap (Egap) can be attributed to the failure of GGA functionals describing the
exchange–correlation effect.
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A single CO2 molecule was encapsulated and its encapsulation energy was calcu-
lated. Encapsulation is endoergic with and without dispersion (see Table 1). Dispersion 
improved the encapsulation by ~0.70 eV. A very small amount of charge is transferred 
between the CO2 molecule and the C60 showing non-covalent interaction. The total DOS 
plot shows that the Fermi energy level and the value of the gap are almost unaffected (see 
Figure 2b). The charge density plot shows that there is no overlap between the CO2 mole-
cule and the inner wall of C60 (see Figure 2c). 

Figure 1. Relaxed structure of (a) C60 and (b) its DOS plot.

3.2. Encapsulation of CO2 Inside the Pure C60

A single CO2 molecule was encapsulated and its encapsulation energy was calculated.
Encapsulation is endoergic with and without dispersion (see Table 1). Dispersion improved
the encapsulation by ~0.70 eV. A very small amount of charge is transferred between the
CO2 molecule and the C60 showing non-covalent interaction. The total DOS plot shows
that the Fermi energy level and the value of the gap are almost unaffected (see Figure 2b).
The charge density plot shows that there is no overlap between the CO2 molecule and the
inner wall of C60 (see Figure 2c).
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Table 1. Encapsulation and Adsorption energy of a single CO2 molecule.

System
Encapsulation Energy (eV) Charge Transfer (e)

vdw-free vdw vdw-free vdw

CO2@C60 1.60 0.94 –0.04 –0.04

Adsorption energy (eV) Charge transfer (e)

CO2_C60 0.05 –0.05 –0.01 –0.02
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Figure 2. Relaxed structure of (a) a CO2 molecule encapsulated inside the C60, (b) its DOS plot and
(c) charge density plot showing no interaction between the molecule and the inner wall of the C60.
Corresponding information (d–f) is also provided for a CO2 molecule adsorbed on the surface of C60.

3.3. Adsorption of CO2 on the Surface of Pure C60

The adsorption of CO2 molecule was next considered. The relaxed structure is shown
in Figure 2d. The adsorption is exoergic with dispersion and endoergic without dispersion,
indicating the importance of dispersion (see Table 1). Charge transfer is negligible. The
electronic structure is almost unaffected by the adsorption (see Figure 2e) as evidenced by
the charge density plot in which there is no interaction of charge density (see Figure 2f).

3.4. Adsorption of CO2 on the Surface of C60 Supported with Ti

Next, I considered a CO2 molecule adsorbed on the Ti-supported C60 surface. Five
different starting configurations were considered (see Figure 3) for the Ti interacting with
C60. In the configurations H and P, the Ti atom is positioned on the hexagonal ring and the
pentagonal ring respectively. The configurations 66 and 65 accommodate the Ti atom above
the bonds bridging hexagonal–hexagonal and hexagonal–pentagonal rings respectively.
In the initial structure C, Ti atom is located above the C atom on the C60 surface. All
initial configurations were fully relaxed. Table 2 lists the relative energies of the final
configurations. The most stable configuration is found to be the configuration H. The
inclusion of dispersion does not affect the trend in the relative energies.
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Figure 3. Five different initial sites (H, P, 66, 65 and C) considered for the adsorption of a single Ti
atom on the surface of C60.

Table 2. Relative energies of five different configurations considered for the adsorption of Ti atom.

Structure
Relative Energy (eV)

vdw-free vdw

H 0.00 0.00

C 0.42 0.42

66 0.42 0.42

P 0.58 0.59

65 0.84 0.82

The relaxed structure of Ti adsobed on the hexagonal ring of C60 (H) is shown in
Figure 4a. The adsorbed Ti forms strond bonds with C in the hexagonal ring are described
by the shorter Ti–C bond lenghts (see Figure 4b). The Bader charge analysis shows that
there is a significant charge transfer from Ti to the C in the hexagonal ring (see Figure 4b).
This is further confirmed by the positive Bader charge on the Ti atom and the negative Bader
charges on the C. The adsorption energy was calculated using a Ti atom as a reference state.
Adsorption is negative and its value is −1.71 eV with dispersion. Exclusion of dispersion
reduces the adsorption by 0.04 eV as expected.
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Figure 4. Optimized structure of (a) Ti atom adsorbed on the hexagonal ring of C60, (b) bond lengths
(Ti-C and C-C) and Bader charges on the Ti atom and the adjacent C atoms directly bonded to it.

The total DOS plot exhibits that the Ti-supported C60 is metallic (see Figure 5a). This
is due to strong perturbation of C60 with Ti. The atomic DOS plots shows that the Fermi
energy level is mainly populated with d states of Ti (see Figure 5b).
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Figure 5. (a) Total DOS plot and (b) atomic DOS plot of Ti.

A single CO2 molecule was allowed to adsorb on the surface of Ti-supported C60. The
relaxed configuration is shown in Figure 6a. In this structure, the CO2 molecule exhibits
a nonlinear structure. There is a significant elongation in the bond lengths of C-O in
comparison with those found in molecular CO2 (1.18 Å) (see Figure 6b). This indicates that
depletion of CO2 can be enhanced by the support of Ti on the surface of C60. The Bader
charge analysis shows that the net charge on the CO2 molecule is −1.19.
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Figure 6. Relaxed structure of (a) a CO2 molecule adsorbed on the Ti-supported surface, (b) bond
distances and Bader charges on the atoms, (c) total DOS plot and (d) atomic DOS plot of Ti.

Adsorption energy of the CO2 molecule was calculated. Adsorption is exoergic
with an adsorption energy of −1.57 eV. Adsorption becomes less negative (by 0.06 eV)
without dispersion. Adsorption is exoergic as confirmed by the strong bonding between
Ti and oxygen in the CO2 molecule. The resultant configuration exhibits a narrow-gap
semiconductor (see Figure 6c). The states appearing around the Fermi level are contributed
to by the d states of Ti (see Figure 6d).
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3.5. Adsorption of CO2 on the Surface Ti-Doped C60

The efficacy of Ti-doped surface for the adsorption of CO2 was next considered. The
relaxed structure of Ti-doped C60 is shown in Figure 7a. In the relaxed structure, the Ti
atom is displaced forming longer Ti−C bond lengths compared to C−C bond lengths (see
Figure 7b). There is a significant distortion in the relaxed structure. The Bader charge
analysis exhibits a significant charge transfer between Ti and three C atoms directly bonded
to it. The Bader charge on the Ti is +2.21. The loss of 2.21 electrons is gained by three
nearest neighbor C atoms. The total DOS plot exhibits that the resultant structure is a
semi-conductor with a band gap of 0.6 eV. This value is lower than that found for the pure
C60. The atomic DOS plots shows that states near the Fermi level are mainly associated
with the d sates of Ti.
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Adsorption of CO2 was next considered on the surface of Ti-doped C60. The relaxed
structure is shown in Figure 8a. In the relaxed structure, one of the oxygen atoms in the
CO2 molecule forms a strong bond with Ti (see Figure 8b). In the relaxed structure, the
CO2 molecule is slightly bent. The net charge on the CO2 molecule is −0.23 according to
the Bader charge analysis. The activation of the C-O bond is not significant as its bond
lengths are not significantly elongated with respect to its isolated molecule. The energy
required to adsorb a CO2 molecule is −0.41 eV with dispersion, indicating that Ti-doped
C60 can accommodate a CO2 molecule. Adsorption is endothermic without dispersion and
its adsorption energy is +1.71 eV, again indicating the importance of dispersion. There is a
small band gap of 0.50 eV observed in the total DOS plot. The states associated with the d
orbitals of Ti are mainly localized near the Fermi energy level.
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4. Conclusions

Computer simulations based on the DFT together with dispersion were applied to
examine the efficacy of the pure, Ti-supported and Ti-doped C60 surface for the adsorption
of a CO2 molecule. The results show that there is no significant adsorption on the surface
of pure C60. Adsorption becomes significantly stronger once the Ti is supported on the
surface of C60. Such adsorption distorts and activates the CO2 molecule significantly. The
enhancement of adsorption is confirmed by the significant charge transfer between the Ti
and the C60 molecule. Thus, the Ti-supported C60 molecule is the most efficient for CO2
adsorption. The Ti-doped C60 surface has the ability to adsorb the CO2 molecule. However,
the activation is not significant.
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