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Abstract: The effect of poroelastic properties of the shale matrix on gas storage and transport
mechanisms has gained significant attention, especially during history-matching and hydrocarbon
production forecasting in unconventional reservoirs. The common oil and gas industry practice in
unconventional reservoir simulation is the extension of conventional reservoir simulation that ignores
the dynamic behavior of matrix porosity and permeability as a function of reservoir effective net stress.
This approach ignores the significant impact of the poroelastic characteristics of the shale matrix
on hydrocarbon production. The poroelastic characteristics of the shale matrix highly relate to the
shale matrix geomechanical properties, such as the Young’s Modulus, Poisson’s ratio, bulk modulus,
sorption behavior, total organic content (TOC), mineralogy and presence of natural fractures in the
multi-scale shale structure. In this study, in order to quantify the effect of the poroelasticity of the
shale matrix on gas production, a multi-continuum approach was employed in which the shale
matrix was divided into organic materials, inorganic materials and natural fractures. The governing
equations for gas transport and storage in shale were developed from the basic fundamentals of
mass and momentum conservation equations. In this case, gas transport in organics was assumed
to be diffusive, while gas transport in inorganics was governed by convection. Finally, a fracture
system was added to the multi-scale shale gas matrix, and the poroelastic effect of the shale matrix
on transport and storage was investigated. A modified Palmer and Mansoori model (1998) was used
to include the pore compression, matrix swelling/shrinkage and desorption-induced deformation
of shale organic matter on the overall pore compressibility of the shale matrix. For the inorganic
part of the matrix, relations between rock mechanical properties and the pore compressibility were
obtained. A dual Langmuir–Henry isotherm was also used to describe the sorption behavior of shale
organic materials. The coupled governing equations of gas storage and transport in the shale matrix
were then solved using the implicit finite difference approach using MATLAB. For this purpose,
rock and fluid properties were obtained using actual well logging and core analysis of the Marcellus
gas well. The results showed the importance of the poroelastic effect on the pressure response and
rate of gas recovery from the shale matrix. The effect was found to be mainly due to desorption-
induced matrix deformation at an early stage. Coupling the shale matrix gas production including
the poroelastic effect in history-matching the gas production from unconventional reservoirs will
significantly improve engineering completion design optimization of the unconventional reservoirs
by providing more accurate and robust production forecasts for each hydraulic fracture stage.

Keywords: shale reservoirs; gas storage and transport; completion design optimization; geomechani-
cal properties; poroelasticity

1. Introduction

Over the last two decades, shale gas has become one of the most important sources of
natural gas supply. Figure 1, shows the history and projections of energy production in the
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U.S. in which dry natural gas is projected to contribute to our economy more than nuclear,
hydro and other renewable energies combined [1]. As a result, more attention has been
paid to this source of energy and ways to optimize the gas production in a much cheaper,
safer and cleaner manner. Among the main areas of the investigation to achieve this goal is
the completion design and drawdown optimization of the long horizontal wells drilled
in shale gas reservoirs [2–4]. Recent studies have shown the significant economic impact
of completion design efficiency on both short-and long-term hydrocarbon production
from these unconventional reservoirs [5]. Typically, 6 to 12 months of production data are
required to evaluate the efficiency of the completion design tested in unconventional shale
reservoirs. There are various tools that can be used to evaluate the productivity of a well in
unconventional shale reservoirs. Calculating the estimated ultimate recovery (EUR) using
various types of decline curve analysis (DCA) or using rate transient analysis (RTA) is a
widely used method to determine the flow capacity and strength of a well in conjunction
with another to correspond to completion design [6,7]. Recently, our team used different
types of curves, diagnostic plots and unconventional models in IHS harmony commercial
software to quantify the well performance of six lateral wells drilled and completed in
Marcellus shale in which three of them were completed using geomechanical/engineering
design and three wells were completed using geometrical design. Among the infill wells,
the wells with engineering completion design showed the highest flow capacity per foot
of lateral well. This observation clearly confirmed the importance of considering the
geomechanical properties and fracture distributions of the rock in completion design
optimization [4].
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As previously discussed, comprehensive engineering completion design depends
on drilling mechanics, fracture interpretations, geomechanical properties and completion
monitoring. However, this approach still ignores the poroelastic effect of the shale matrix
on hydrocarbon production, which is stress-dependent rock properties, such as pore
compressibility and permeability, matrix shrinkage and the adsorption effect [8,9]. In
this study, we developed a multi-continuum model to account for such properties and
investigated their impact on gas transport and storage in the shale matrix to be employed
in engineering completion design optimization.

Previous studies, such as those by [10–14], have reported the relation between stress
and the formation permeability in organic rich reservoirs. The majority of these approaches
are introduced based on the experiments on coalbed methane cores and field data. Shale
core samples have also shown similar sensitivity to the change in the mechanical properties
of the formation and the effective stress. The sensitivity of the shale matrix properties to the
change in stress comes as a result of the intricate nature of the shale matrix which consists
of organic and inorganic components [15,16]. Each of these components have different pore
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structures and thus different storage and transport characteristics as a function of changes
in the net effective stress of the reservoir. In this study, in order to quantify the effect
of the poroelasticity of the shale, a multi-continuum approach was chosen to represent
the shale matrix. The governing equations for the model were developed from the basic
fundamentals of mass and momentum conservation equations of flow and transport in
naturally fractured porous media. A multi-continuum approach was used to develop the
governing equations where the shale matrix is assumed to consist of organic and inorganic
materials. In this case, gas transport in organics is assumed to be diffusive, while gas
transport in inorganics is governed by convection. Finally, a fracture system was added to
the multi-scale shale gas matrix, and the poroelastic effect of the shale matrix on transport
and storage was investigated. A modified model [10] was used to include the effects of
pore compression, matrix shrinkage and desorption-induced deformation of shale organic
matter on the overall pore compressibility of the shale matrix. Relations between rock
mechanical properties and the pore compressibility of the inorganic part of the matrix were
obtained following [17–19].

The purpose of this study was to develop governing equations describing gas trans-
port and storage in shale gas reservoirs, including the multi-scale nature of the shale matrix,
gas sorption behavior and poroelastic effects due to changes in effective net stress. Gov-
erning equations were derived based on mass and momentum balance under isothermal
conditions using analytical techniques and solved using the implicit finite difference ap-
proach. The sensitivity analysis of the different poroelastic parameters of the shale matrix
under specified initial and boundary conditions was performed.

2. Theoretical Models

The transport process in the shale matrix consists of a combination of different
transport mechanisms, including viscous flow, pore and solid diffusion and adsorp-
tion/desorption. The storage mechanisms include free gas storage in the matrix and
fracture and also adsorbed gas storage on the organic surface area. Adsorption in inorganic
matrix and fracture and gas dissolution is ignored due to a negligible amount in compari-
son to the aforementioned storage mechanisms. During the development of this poroelastic
model, the compressible nature of the gas is considered, and the real gas law is used to
represent the thermodynamic behavior of the gas. Porosity is treated as a function of reser-
voir pressure, adsorption parameters and stress. The governing equations describing mass
balance in the matrix organic material, matrix inorganic material and fracture are coupled
following the Warren and Root coupling approach [20]. Here, the shale matrix is assumed
to be a quad-porosity dual-permeability system, i.e., adsorption sites, organic and inorganic
porosity in the matrix and fracture porosity and also inorganic and fracture permeability.
The conceptual multi-continuum model is assumed to have hydraulic communication in
series where gas will be released from adsorption sites following the dual Langmuir–Henry
isotherm model and will be transported by pore and solid diffusion in organic materials
of the shale (the permeability in organic materials is so low, in the order of nano-Darcy,
that convective gas transport can be ignored). Gas then will be released to the inorganic
shale matrix following the Warren and Root coupling approach Wkm and transported by
convection (Darcy type flow). Gas will then be released from the shale inorganic matrix
to the fractures and transported in the fractures by convention and dispersion transport
mechanism. Note here that the rate of change in kerogen porosity with pressure is defined
using [10] modified model used for coalbed methane reservoirs, while inorganic porosity
variation as a function of pressure obtained using [18,19] definitions for bulk and pore
volume compressibility. In this study, we used a multi-continuum approach in which there
explicit representation of the natural fractures is not required. However, the application
of multi-continua requires that each porous medium be distributed continuously in space
and hold porous medium conditions specified by [21]. In addition to that, we assumed the
fracture porosity to be constant; the natural fracture gas adsorption and dissolution were
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ignored; and natural fractures were in series hydraulic communication with the matrix and
hydraulic fracture.

Equations (1) and (2) describe the one-dimensional material balance in terms of gas
concentration in organic materials of the shale matrix. In Equation (1), the left-hand side
describes the free gas (Ck) storage in the organic pore structure and adsorbed gas (Cµ)
storage on the organic matrix, while the right-hand side describes the free and adsorbed
gas transport following pore and solid diffusions (Dk, and Ds). Equation (2) describes the
dual Langmuir–Henry isotherm model described by Green and Selby (1994) [22].

∂∅kCk
∂t

+
∂(1−∅k)Cµ

∂t
=

∂

∂x

(
∅kDk

∂CK
∂x

)
+

∂

∂x

(
(1−∅k) Ds

∂Cµ

∂x

)
(1)

Cµ =
Cµs b C
1 + b′ C

+ kdC (2)

Equations (3) and (4) describe the gas mass balance in inorganic materials. The gas
transport in inorganic material is governed by convection, assuming real gas behavior
and mass exchange between matrix organic and inorganic materials to be in series and
following [20].
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Equations (5) and (6) describe the gas mass balance in fractures. The gas transport in
fractures governed by convection and dispersion and mass exchange between the matrix
inorganic materials and fractures are assumed to be in series and following Warren and
Roots flow coupling.
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Equation (7) is a modified Palmer and Mansoori (1998) poroelastic model follow-
ing [13] to include the macropore volume strain increments under the influence of sorption
and constant overburden stress.
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]
: desorption-induced matrix deformation effect.

Equation (8) defines the inorganic porosity as a function of geomechanical properties
of the rock (i.e., Young’s modulus and Poisson’s ratio) and Biot’s coefficient.

∅I = ∅I0 + zCRT ∝b
(1 +∅I0)

E
(1 + v)(1− 2v)

(1− v)
(8)

Here, x-t are the space and time coordinate. C and Cµ are the free and adsorbed gas
concentrations, k is matrix permeability, µ is gas viscosity, Z is a gas compressibility, R is a
universal gas constant and T is temperature. ∅ is the total porosity changing with time due
to the poroelastic effects of the shale matrix. (1−∅) represents the solid volume over bulk
volume of the shale matrix. Ds is the adsorbed gas surface diffusion coefficient, and Dk
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is the pore diffusion of free gas in the matrix. v is Poisson’s ratio, E is Young’s modulus,
∝b is Biot’s coefficient, M is the bulk modulus in 1/Pascal and ε l is the swelling strain of
the matrix. KL is the fracture dispersion coefficient, and τf is the fracture shape factor. The
subscripts k, I, f and 0 stand for matrix organic, inorganic, fracture and initial conditions,
respectively. Temperature is assumed to be constant; therefore, fluid thermal expansivity
is ignored. Furthermore, for low porosity systems and by assuming there is no change in
overburden stress, porosity then can be related to the permeability using Mckee’s cubic
relationship:

k
k◦

=

(
∅
∅◦

)3
(9)

Thus, from the equation above, the permeability is expressed as a function of Poisson’s
ratio, Young’s modulus, initial porosity, adsorption and pressure change. However, we
should mention that the theory works relatively well when the change in porosity is less
than a factor of 2; therefore, permeability change should be less than factor of 10. The
Palmer and Mansoori model heavily relies on the effective stress calculation that controls
the porosity change as a function of pressure. This is essential since the pressure dependent
permeability is controlled predominantly by effective net stress; hence, effective stress is a
function of vertical or overburden stress, Biot’s coefficient and pore pressure.

σe = σn− ∝b Pp (10)

σn =
ρavg TVD

144
(11)

In Equation (11), ρavg is the average density of the formation that can be obtained
using density log for each zone, and TVD is the true vertical depth of the formation. The
pore pressure gradient of the 0.65 psi/ft was used for our Marcellus shale case study.

3. Numerical Simulation

An analytical model was developed using a set of equations defined in Equation (1)
through (11) and solved numerically using the implicit finite difference approach in MAT-
LAB. Figure 2, shows the schematic of the problem that was solved. It is a one-dimensional
model with a quad porosity matrix, including organic micropores, inorganic macropores,
natural fractures and adsorption. Numerical simulation was performed on half of the stage
length assuming symmetric production with no flow boundary in the middle of stage
(i.e., left boundary condition) and Neuman boundary condition at the right boundary (i.e.,
hydraulic fracture). At the initial condition, single-component, single-phase methane was
assumed to be in equilibrium between the matrix and fracture. Parameters used to develop
the base case model to investigate the poroelastic effect on the storage and transport in the
organic rich shale gas matrix were obtained using well log and core sample measurements
of the Marcellus shale well. The properties of the sample used for adsorption measurements
are as follows:

• Depth: 7971 ft;
• TOC: 12.4;
• Temp: 148 F;
• As received moisture: 0.75%.

In addition to the adsorption measurements shown in Figure 3, and Table 1, the rock
geomechanical properties were also measured, and static and dynamic elastic properties
were obtained using triaxial core test measurements as presented in Table 2. Parameters
used to develop the base case model to investigate the poroelastic effect on the storage and
transport in the organic rich shale gas matrix are shown in Table 3. Well logging information
(i.e., Gamma ray, resistivity, density, neutron, sonic, and geomechanical log) and core
property measurements (adsorption, permeability/porosity and triaxial geomechanical
test) using a core plug under the reservoir effective stress condition was used to obtain
the shale matrix properties. Transport coefficients and mass exchange shape factors for
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organic material were obtained by history-matching the pressure pulse decay using a
simulation-based non-linear optimization technique, i.e., randomized maximum likelihood
method (RML).
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Table 2. Geomechanical properties courtesy of Schlumberger Reservoir Laboratory 2 September 2020.

Core Depth As-Received Bulk
Density

Effective Confining
Pressure

Young’s Modulus
Normal to Bedding

Young’s Modulus
Parallel to Bedding

Poisson’s Ratio
Normal to Bedding

Poisson’s Ratio
Parallel to Bedding

FT g/cc psi psi psi unitless unitless
7940.38 2.409 2150 2.451 × 106 5.108 × 106 0.15 0.19

Table 3. Model base case parameters.

Reservoir Parameters Values Unit Reservoir Parameters Values Unit

Matrix initial pressure 5136 psi Pore diffusion organic 5 × 10−6 cm2/s
Matrix half length 100 ft Solid diffusion organic 5 × 10−8 cm2/s

Reservoir Temperature 148 ◦F Pore diffusion inorganic 1 × 10−7 cm2/s
Inorganic initial porosity 7% fraction Fracture permeability 0.001 mD

Matrix initial permeability 400 nD Biot’s coefficient 0.7 dimensionless
Organic initial porosity 1% fraction Shape factor τm 0.3 dimensionless

Henry’s constant 0.28 dimensionless Shape factor τf 0.5 dimensionless

4. Results and Discussion

Gas transport and sorption in organic rich shale was investigated using a multi-scale,
multi-continuum approach under the poroelastic effect of the shale matrix. Pore and rock
compressibility effects were investigated using pressure decay and ultimate gas recovery
predictions. The poroelastic effect can be seen in both organic and inorganic materials. In
organic materials, it includes three components of matrix pore compression, matrix swelling
and shrinkage and the desorption-induced matrix deformation effect. All these effects
were coupled through Equation (7), in which the change in organic porosity is a function
of three terms, namely, a1 (macropore compression), a2 (shrinkage and swelling) and a3
(desorption-induced matrix deformation). Organic porosity defined using Equation (7)
was then coupled with the reset of the governing equations through Equations (1) and (4).
The main parameters affecting the poroelastic effect in organic materials were the Young’s
modulus, Poisson’s ratio and desorption constant.

In inorganic materials, the poroelastic effect was introduced in both the change in
porosity and permeability through Equations (8) and (9), which were coupled with trans-
port in the matrix using the mass exchange term as presented in Equations (3) and (6).
The Biot’s coefficient affected the poroelastic effect in inorganic material through both
porosity and permeability. In low-pressure gradient reservoirs, such as Marcellus Shale,
we found this effect to be minimal numerically (here) and in the real field, as presented in
our earlier study [7].

Figure 4, shows that the poroelastic effect introduced in the governing equations of
gas transport and storage in shale reservoirs had a significant positive impact on pressure
response as well as the rate of gas recovery at an early stage when the pressure gradient
was relatively large. Figure 4 includes all the poroelastic effects (both organic and inorganic
materials). Next, we tried to decouple the terms by eliminating the poroelastic effect in
inorganic materials first and then in organic materials by eliminating a1, a2 and a3 terms, as
defined in Equation (7). Due to the low TOC content, the matrix swelling and shrinkage
effect were negligible in the case of shale gas reservoirs. The pore compressibility effect
also showed a minimal impact on the ultimate recovery and pressure response; however,
gas desorption-induced matrix deformation showed the greatest impact on both pressure
and ultimate recovery, as shown in Figure 5. The effect was pronounced at an early stage,
when the pressure gradient was larger. A greater pore pressure drop accelerated the des-
orption process, which led to an increase in desorption-induced matrix deformation. This
effect was also reported by [23], using a finite element method and the dual permeability
model. In Figure 5, without a poroelastic effect, the curve is associated with the case where
constant porosity and permeability in both organic and inorganic matrices were assumed.
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The poroelastic effect curve includes both porosity and permeability pressure dependent
on both organic and inorganic materials. The desorption-induced matrix deformation
only curve corresponds to the case where inorganic porosity and permeability were as-
sumed constant and there was no macropore compression or shrinkage and swelling effect
(a1 = a2 = 0, a3 6= 0).
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Figure 6, compares the effect of a1 (organic macropore compression), a2 (shrinkage
and swelling) and a3 (desorption-induced matrix deformation) on pressure response and
ultimate recovery. As discussed earlier, the organic macropore compression and shrinkage
and swelling showed a minimal impact, while the desorption-induced matrix deformation
showed a major impact on both pressure and ultimate recovery.
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recovery (top).

Figure 7, shows the impact of Poisson’s ratio on the poroelastic effects of the shale
matrix, affecting pressure response and gas recovery rate. Increasing the Poisson’s ratio
led to a higher ductility of the rock and a tendency towards viscous deformation. This
effect showed a negative impact on pressure response and rate of recovery, which led
to a decrease in the recovery rate at an early stage. In this figure, only the desorption
deformation effect is considered. Finally, Figure 8, depicts the impact of Biot’s coefficient
on pressure decay and ultimate gas recovery, where the inorganic poroelastic effect was
considered through changes in both the porosity and permeability of inorganic materials
with fixed Young’s modulus, as defined in the base case. Increasing the Biot’s coefficient
increased the matrix bulk compressibility and showed low sensitivity in both pressure and
ultimate recovery curves.
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5. Conclusions

The poroelastic effect on the rate of recovery of gas production from naturally frac-
tured shale gas reservoirs was simulated using quad-porosity dual-permeability systems.
The poroelastic effect of the organic and inorganic material of the shale matrix was coupled
with gas transport and storage mechanisms. The dual Langmuir–Henry isotherm was also
used to describe the sorption dynamic equilibrium. Furthermore, the matrix deformation
captured through porosity variation was coupled with permeability using Mckee’s cubic
relationship. The numerical simulation of the coupled governing equations using the
implicit finite difference approach showed the importance of the poroelastic effect on the
pressure response and rate of gas recovery of the shale matrix. The effect was found to
be mainly due to desorption-induced matrix deformation at an early stage. The Biot’s
coefficient affected the poroelastic effect on inorganic material through both porosity and
permeability. In low-pressure gradient reservoirs, such as Marcellus, we found this effect
to be minimal numerically (here) and in the real field, as presented in our earlier study [3].
Coupling the gas transport in the shale matrix with hydraulic fractures (including poroe-
lastic and geomechanical properties of the rock) when history-matching the gas production
from unconventional reservoirs will significantly help in engineering completion design
optimization. Shale reservoirs are extremely heterogeneous, and rock properties could
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be significantly different even in a single well; however, the findings of this study were
valid in reservoirs with pressure gradients in the order of 0.68 psi/ft, such as Marcellus
shale reservoirs. We suspect the results would be different in overpressured reservoirs
with pressure gradients in the order of 0.85–0.95 psi/ft, such as those in the Utica shale.
We have shown in different studies [3] that the poroelastic effect is more pronounced in
higher pressure gradient reservoirs. For a more complete understanding of the impact of
the poroelastic effect on completion design optimization of the unconventional reservoirs,
a future study will be performed where the multi-continuum model developed here will
be integrated with gas transport in hydraulic fractures.
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