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Abstract: The production of butanol, acetone and ethanol by Clostridium acetobutylicum is a biphasic
fermentation process. In the first phase the carbohydrate substrate is metabolized to acetic and
butyric acid, in the following second phase the product spectrum is shifted towards the economically
interesting solvents. Here we present a cascade of six continuous stirred tank reactors (CCSTR),
which allows performing the time dependent metabolic phases of an acetone-butanol-ethanol (ABE)
batch fermentation in a spatial domain. Experimental data of steady states under four operating
conditions—with variations of the pH in the first bioreactor between 4.3 and 5.6 as well as the total
dilution rate between 0.042 h−1 and 0.092 h−1—were used to optimize and validate a corresponding
mathematical model. Beyond a residence time distribution representation and substrate, biomass
and product kinetics this model also includes the differentiation of cells between the metabolic states.
Model simulations predict a final product concentration of 8.2 g butanol L−1 and a productivity of
0.75 g butanol L−1 h−1 in the CCSTR operated at pHbr1 of 4.3 and D = 0.092 h−1, while 31% of the
cells are differentiated to the solventogenic state. Aiming at an enrichment of solvent-producing
cells, a feedback loop was introduced into the cascade, sending cells from a later state of the process
(bioreactor 4) back to an early stage of the process (bioreactor 2). In agreement with the experimental
observations, the model accurately predicted an increase in butanol formation rate in bioreactor
stages 2 and 3, resulting in an overall butanol productivity of 0.76 g L−1 h−1 for the feedback loop
cascade. The here presented CCSTR and the validated model will serve to investigate further ABE
fermentation strategies for a controlled metabolic switch.

Keywords: biofuel; biobutanol; ABE-fermentation; clostridium; continuous reactor; process model;
multi stage process

1. Introduction

The acetone-butanol-ethanol (ABE) process is the production of the eponymous sol-
vents by fermentation with solvent-forming Clostridia. In 1862 Louis Pasteur discovered
motile, rod-shaped bacteria to produce butanol under anaerobic conditions [1,2]. In 1915,
Chaim Weizmann established an industrial process for the biotechnological production
of acetone (and butanol), which was used all around the world in the following decades
before being replaced by a synthesis of these solvents from mineral oil [3,4]. Nowadays,
we await a comeback of the industrial ABE process as not only the demand for sustainable
produced solvents and bulk chemicals is increasing, but butanol is further discussed as a
promising biofuel. Beside the exploration of new non-food and inexpensive waste materi-
als as substrates for the fermentation process [5,6], an important setscrew to improve the
economics of the process is the development of new fermentation technologies [7,8]. These
should allow effective raw material conversion with a high yield, accelerate the onset of
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solvent formation in a biphasic ABE process and stabilize the bacteria in this metabolic
phase. While in the first phase of the ABE fermentation, called acidogenesis, acetic and
butyric acid are the main fermentation products, the formation of butanol, acetone and
ethanol under partial re-assimilation of the organic acids occurs in the second phase, called
solventogenesis. The research of the past decades has shown that low pH and/or the
high concentration of the undissociated organic acids trigger the metabolic switch from
acidogenesis to solventogenesis [9,10]. Investigations with external electron donors, such
as methyl viologen or neutral red, have further shown that the redox state of the cells influ-
ences the bias for acidogenesis and solventogenesis, respectively [11–13]. Moreover, it has
been proposed that small concentrations of butanol might promote the metabolic shift [14].
Clostridium acetobutylicum was used as a model organism in the majority of the studies
investigating the metabolic switch. However, under certain conditions C. acetobutylicum
as well as other clostridial species fails to switch its metabolism to the solventogenic state,
resulting in a hyper-acidification of the fermentation broth (pH ≤ 3.8) and a complete
arrest of metabolic activity. The molecular mechanism behind this phenomenon often
described as “acid crash” is still open. In some cases the spontaneous loss of the mega-
plasmid pSOL1, encoding genes essential for solvent production, is a sound explanation.
However, how this event can occur repeatedly under certain conditions, i.e., low buffer
concentrations, while it rarely occurs under other conditions, i.e., high buffer concentra-
tions, remains to be clarified. Explaining and controlling the metabolic shift has been the
aim of numerous studies in the past [15]. In batch-experiments, controlling the pH at 4.5 to
5.0 has been described as a successful strategy for a stable solventogenic phase achieving
high butanol concentrations [10]. However, onset of solvent formation is observed not
earlier than 15 h after start of fermentation under such conditions. The maximal product
concentrations are only reached after about 36 h [10,16], which limits the productivity of
the batch fermentation processes. Additions of acetate and butyrate have been shown
to increase the productivity of batch processes [17]. However, determining the optimal
fermentation phase for acetate (or butyrate) co-feeding is challenging and laborious in a
batch process as precise reproducibility of the time profile is limited. We here developed
a model system that captures the metabolic phases of the ABE fermentation in different
stages of a continuously operated bioreactor cascade at steady state. On the one hand this
system allows analyzing the physiological characteristics of cells in the different metabolic
phases, including the otherwise only transient occurring phases. On the other hand we
aim at accelerating the solvent production and hence increasing the productivity of the
fermentation process by varying the operating conditions of the cascade. In order to reduce
the experimental work for this second task, we started developing a mathematical model
that describes the continuous, multi-stage ABE fermentation process taking into account
the presence of different subpopulation types in each bioreactor tank. Using experimental
data from four operating conditions of the linear cascade, the unknown kinetic parameters
of the model were estimated and the predictive capacity of the steady state simulations was
validated. To further validate the model and to test a potential strategy for faster solvent
formation, the simulator as well as the experimental set-up was modified by introducing a
feedback loop from bioreactor 4 to bioreactor 2 of the cascade. In that way the fermentation
broth with solventogenic cells and a higher butanol concentration is introduced into an
early phase of the ABE process.

2. Materials and Methods
2.1. Microorganism and Medium

The strain used in this study was Clostridium acetobutylicum DSM 792 obtained from the
DSMZ Germany. All fermentations were started from cryo-preserved spore aliquots, which
were exposed to a 10 min heat shock at 75 ◦C directly before germination. First pre-cultures
were cultivated in Clostridia Growth Medium (CGM) [18] at a scale of 50 mL in a 500 mL
bottle with a gas outlet. After 20 to 40 h incubation at 37 ◦C, 5 mL of this first pre-culture
were used to set-up a second pre-culture in the scale of 50 mL containing 25 g L−1 glucose,
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1 g L−1 KH2PO4, 5 g L−1 yeast extract, 0.2 g L−1 MgSO4·7H2O, 0.01 g L−1 FeSO4·7H2O
and 0.01 g L−1 MnSO4·H2O. The medium was adjusted to pH 6.9. After incubation for
13 h at 37 ◦C, the second pre-culture was used to start a batch fermentation with a total
volume of 0.45 L in the first bioreactor of the cascade (Figure 1). The medium for the
batch fermentation was the same as in the second pre-culture except for a lower level of
glucose of about 5 g L−1 and a pH of 5.6. The cultivation temperature in the cascade was
controlled at 32 ◦C during the entire process. The phosphate-limited feed medium of the
continuous process contained 60 g L−1 glucose, 0.1 g L−1 KH2PO4, 5 g L−1 yeast extract,
0.2 g L−1 MgSO4·7H2O, 0.01 g L−1 FeSO4·7H2O and 0.01 g L−1 MnSO4·H2O. To prevent
contamination, the medium in the feed bottle was adjusted to pH 2.5 with 32% HCl prior
to autoclaving. During the process the pH was adjusted with sterile 1.5 M KOH. The feed
medium was further supplemented with 0.1% (v/v) Polypropylene glycol P2000 (Merck
KGaA, Darmstadt, Germany) to prevent foam formation in the cascade. All media were
gassed with nitrogen for at least 1 h to ensure anaerobic conditions. In the cascade the
fermentation broth was pressurized with nitrogen during the entire process.

Figure 1. Set-up of the linear bioreactor cascade (A) and the cascade with feedback loop (B).

2.2. Continuous Fermentation in a Six-Stage Bioreactor Cascade

For observation of physiological characteristics in different metabolic phases along
the continuous bioreactor cascade, design and steady-state operation of the cascade must
satisfy several conditions:

- Residence time distribution approximates plug flow behavior, minimizing backmixing.
- Total residence time is in the order of the duration of a batch fermentation (up to 36 h [16]).
- Residence time in single reactors allows for resolution of temporal separation of

metabolic phases (minimum duration of a metabolic phase approximately 6 h [16]).

The simplest design of the continuous bioreactor cascade therefore consists of six
linearly coupled stirred tanks (Figure 1A), allowing for additional modifications of the
configuration such as feedback loops (Figure 1B).

For starting the process, a batch fermentation in the first bioreactor was performed
until the biomass had reached an OD600 of 2, then the system was switched to the contin-
uous mode with a feeding rate of 0.1 or 0.22 L h−1 (Table 1). Now being in continuous
mode, the liquid volume in the first bioreactor was controlled at 0.4 L and bioreactor stages
2 to 6 were subsequently filled with fermentation broth (0.4 L each) within 9 h or 20 h,
depending on the feeding rate. By daily sampling we monitored the establishment of a
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steady state throughout the cascade of continuously stirred tank reactors (CCSTR) (see
Supplementary Figure S1a). When detecting constant metabolite and cell concentrations
for at least three residence times, corresponding to 33 h and 72 h at the given feeding rates
(compare Table 1), one of the operating parameters—the setpoint pH value in the first
bioreactor pHbr1 or the feeding rate Fin—was modified. After an adaption period of three
residences times, sampling of the new steady state was started. For the configuration with
feedback loop (Figure 1B), fermentation broth of bioreactor 4 was pumped to bioreactor
2 with a rate Fback of 0.055 L h−1. In total we performed six fermentations lasting up to
43 days. Mean and standard deviations of the steady state concentrations along the cascade
were summarized in Table S2a.

Table 1. Feeding rate Fin, dilution rate Dbr1 for one bioreactor tank, dilution rate D for the cascade,
residence time td in the reactor cascade.

Fin (L h−1) Dbr1 (h−1) D (h−1) td (h)

0.1 0.25 0.042 24
0.22 0.55 0.092 10.9

2.3. Analytical Procedures

Acids (Acetic acid, butyric acid) and solvents (Ethanol, acetone, butanol) were ana-
lyzed with GC-FID (GC−14B, Shimadzu Inc., Kyoto, Japan) equipped with a ZB-FFAP
column (Phenomenex Inc., Torrance, CA, USA). Glucose was measured with the Reflecto-
quant Glucose Test (Merck KGaA, Darmstadt, Germany). Optical density was obtained
from a UV-VIS-spectrophotometer at a wave length of 600 nm. The cell dry mass was calcu-
lated from the OD600 using the experimentally determined factor of 0.4 g L−1 OD600

−1 [6].
For monitoring the morphology of cells and sterile control, a microscope (Axiostar plus,
Zeiss, Göttingen, Germany) with 100×magnification was used. Sporadically the phosphate
concentrations were measured along the cascade using the phosphate analysis method
DIN EN ISO6878 2004/09.

2.4. Mathematical Modeling Approach

Developing an approach for computer simulations of the continuous, multi-stage
ABE fermentation, we selected an unstructured segregated model [19]. Thus, while assum-
ing empiric kinetic laws for the production and consumption of extracellular metabolites
and cell growth without taking into consideration intracellular metabolites, we distin-
guished between three biomass subpopulations with individual metabolic properties,
namely acidogenic (A), intermediate (I) and solventogenic (S) cells. A first version of
the simulator, implemented by object-orientated programming in MATLAB R2011b, has
been described [20]. The development of the metabolite concentrations in each bioreactor
was simulated by iterative calculations of incremental changes of the metabolite concen-
trations in each bioreactor stage (Equation (1)), the development of the subpopulations
(Equation (2)) and the specific metabolite conversion rates of the subpopulations and the
total biomass depending on the present metabolite concentrations (Equations (6)–(12)) until
a steady state is reached (Figure 2). A steady state was assumed when the concentrations of
biomass (x), glucose (glu), ethanol (eth), acetone (act), butanol (but), acetic acid (aa), butyric
acid (ba) and potassium dihydrogen phosphate (PO4) changed less than 0.01 g L−1 in each
bioreactor stage for the residence time of one bioreactor stage Dbr1

−1. In comparison to the
earlier model [20], the following modifications were introduced: (I) Addition of a butanol-
and glucose-dependent lysis term, accounting for subpopulation-independent cell lysis
in the presence of high butanol concentrations and glucose limitation (see Equation (7));
(II) Allowing growth of intermediate and solventogenic cells in addition to growth in the
acidogenic phase described before; (III) Flexibilizing the carbon balance by introducing
the parameter sk, which accounts for possible additional carbon sources introduced by
the yeast extract or the flux of carbon into additional products (see Equation (12)). The
quality of the simulation result was evaluated by calculating the distance of the simulated
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steady state concentrations from experimentally observed metabolite concentrations as
a weighted residual square sum over all metabolites (except for PO4) and all bioreactor
stages, hereafter referred to as p (equation in Figure 2). The simulated steady state depends
on several inputs, which have to be assigned before starting the simulation (Figure 2). The
set-up parameters, i.e., the number of bioreactor, the culture volume in each bioreactor
stage and the dilution rate in one bioreactor stage Dbr1, were the operating conditions in the
experiment. The initial metabolite concentrations were taken from the experimental dataset
(Data in Table S2a). The choice of initial values affected whether the simulation resulted in
a suitable steady state or not, in the steady state itself, the corresponding metabolite con-
centrations were independent from the applied initial metabolite concentrations. During
the simulations, the pH values along the cascade were set to the experimentally observed
pH values. Modifications of the pH values in the bioreactor stages had an influence on the
simulated steady state concentrations. The feed concentration for glucose and potassium
dihydrogen phosphate were 60 g L−1 and 0.1 g L−1, respectively. The model equations
for reaction kinetics are given below (Equations (3)–(5) and (7)–(12)). A part of the kinetic
model parameters were set to fixed values derived from the literature, experimental inves-
tigations or estimations (Table S1c). The remaining kinetic model parameters (Table S1b)
were estimated in a parameter optimization process described in the results section. The
optimization was aimed at minimizing the p-value (equation in Figure 2). Table 2 gives an
overview over all (fixed and optimized) kinetic parameters applied to obtain the simulation
results presented in this work (Data in Table S2b).

Table 2. Kinetic parameters of the mathematical model used for simulations.

Kinetic Model
Parameter Unit Acidogenic Cells Intermediate

Cells
Solventogenic

Cells All

biomass evolution

mu_max_ (P) h−1 0.7273 0.4641 0.4204
KsPO4 gKH2PO4 L−1 0.005
KsGLU gGLU L−1 6.5
KiB gBUT L−1 5
niB - 3
Kd L gBUT−1 h−1 0.02
n_dGLU - 1.7332
KdGLU gGLU L−1 1.0353

acid production and uptake

r_aa_max_ (P) gAA gX−1 h−1 0.5097 0.0296 0
Y_aax_ (P) gAA gX−1 0.5224 0.5 0
k_AA_up_ (P) gAA gX−1 h−1 0 0.4224 0.9485
KsAA gAA L−1 0.6
r_ba_max_ (P) gBA gX−1 h−1 0.5248 0 0
Y_bax_ (P) gBA gX−1 0.5 0 0
k_BA_up_ (P) gBA gX−1 h−1 0 0.5 1.8594
KsBA gBA L−1 0.734

solvent production

r_eth_max_ (P) gETH gX−1 h−1 0 0 0.2458
r_act_max_ (P) gACT gX−1 h−1 0 0.0866 0.6213
r_but_max_ (P) gBUT gX−1 h−1 0 0.0203 2.4485

phosphate and glucose uptake

Y_xp gX gKH2PO4−1 29
sk molC molGLU−1 1.1020
r_CO2_ (P) molC molGLU−1 0.0019 0 2.4904
n_C_GLU molC molGLU−1 6
Y_xs gX gGLU−1 0.475
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Table 2. Cont.

Kinetic Model
Parameter Unit Acidogenic Cells Intermediate

Cells
Solventogenic

Cells All

phosphate and glucose uptake

Y_aas gAA gGLU−1 0.9091
Y_bas gBA gGLU−1 0.6667
Y_eths gETH gGLU−1 0.6970
Y_acts gACT gGLU−1 0.5859
Y_buts gBUT gGLU−1 0.5606

differentiation

mu_d_ (P) h−1 0.1681 0.1681 0
K_UDA_ (P) g L−1 3.0203 0 0
n_iUDA_ (P) - 4.3175 0 0

Figure 2. Schematic representation of the mathematical modeling approach. Metabolites M = {x; glu; aa; ba; eth; act; but;
PO4}; measured metabolites M’ = {x; glu; aa; ba; eth; act; but}; bioreactor stages k = {1; 2; 3; 4; 5; 6}; biomass subpopulations
P = {A; I; S}.
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The incremental changes of the metabolite concentrations over time in each bioreactor
stage were calculated considering the in- and out-flux of the respective metabolite and
its conversion by the present biomass (Equation (1), an overview of all variables and
parameters of the model is given in Supplementary Table S1a–c):

cM,k (t + dt) = cM,k (t) +
(

Fin
Vbr
·cM,k−1 (t)−

Fout

Vbr
·cM,k (t) + rM,k (t)·cx,k (t)

)
·dt (1)

The changes in the size of a biomass-subpopulation in a bioreactor stage k were
calculated on the basis of the in- and out-flux of respective cells, the growth of the respective
subpopulation and the differentiation processes d (Equation (2)):

nxP,k(t + dt) = nxP,k(t)

+
(

Fin
Vbr
·nxP,k−1(t)− Fout

Vbr
·nxP, k(t) + rx, k,P(t)·nxP,k(t)− d1 xP,k(t)·nxP(t)

+ d2 xP∗ ,k(t)·nxP∗ ,k(t))·dt
(2)

By Equations (3)–(5), the model describes differentiation from acidogenic to interme-
diate and from intermediate to solventogenic cells in dependence on the concentration
of undissociated acetic and butyric acid. Reversal of differentiation was not considered.
(Model parameters are distinguished by bold letters, values are given in Table 2).

cundiss,k (t) = caa,k (t)·
10−pHk

10−4.78 + 10−pHk
+ cba,k (t)·

10−pHk

10−4.86 + 10−pHk
(3)

d1 xP,k(t) = mu_d_ (P)· 1

1 + en_iUDA_ (P)· (K_UDA_ (P)−cundiss,k (t))
(4)

d2 xP∗ ,k(t) = mu_d_ (P∗)· 1

1 + en_iUDA_ (P∗)· (K_UDA_ (P∗)−cundiss,k (t))
(5)

The specific metabolite conversion rate of the total biomass in one bioreactor stage
was calculated by Equation (6) as sum of the specific metabolite conversion rates of the
individually sized subpopulations delivered by the kinetic model (contributing expressions
see Equations (7)–(12)):

rM,k (t) = ∑P={A;I;S}

(
rM,k, P(t)·

nxP,k(t)
nx,k(t)

)
(6)

The following kinetic model Equations (7)–(12) for biomass evolution, product forma-
tion and substrate uptake have been assumed:

biomass evolution (=growth − lysis)
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(7)

For the calculation of growth-dependent product formation and substrate consump-
tion, only the growth-related part, but not the cell lysis-related part of the biomass evolution
rate from Equation (7) was taken into consideration in Equation (8).

Biomass growth

r∗x,k, P(t) = mu_max_ (P)· cPO4,k(t)
cPO4,k(t)+ KsPO4 ·

cglu,k(t)
cglu,k(t)+ KsGLU ·

eniB·(KiB−cbut,k(t))

1+ eniB·(KiB−cbut,k(t))
(8)
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acid production and uptake (for MAcid = {aa; ba})

rMAcid ,k,P (t) = r∗x,k,P (t)·Y_Mx_(P) + r_M_max_ (P)· cglu,k (t)
cglu,k (t)+ KsGLU − k_M_up_ (P)

· cglu,k (t)
cglu,k (t) + KsGLU ·

cM′′ ,k (t)
cM′′ ,k (t) + KsM

(9)

solvent production (for MSolv = {act; eth; but})

rMSolv ,k,P (t) = r_M_max_ (P)·
cglu,k (t)

cglu,k (t) + KsGLU
(10)

phosphate and glucose uptake

rPO4,k,P(t) = −
r∗x,k,P (t)

Y_xp
(11)

rglu,k, P (t) = −
(

sk + r_CO2_(P)
n_C_GLU

)
·

 r∗x,k,P (t)
Y_xs + ∑MAcid , MSolv

 r∗x,k,P (t)·Y_Mx_ (P)+r_M_max_ (P)·
cglu,k (t)

cglu,k (t) + KsGLU

Y_Ms

  (12)

Model parameters in Table 2, presented in italics, were fixed to the given values
according to literature information [20,21], experimental data or estimations (see also
supplementary material Table S1c). All other parameters were retrieved from the parameter
estimation process (see also Table S1b).

3. Results
3.1. Continuous Fermentations in a Linear CCSTR under Four Different Operating Conditions

ABE fermentations have been investigated for many decades now. However no ideal
operating conditions enabling high space-time yields and long-term stability of the process
have been found yet. In order to analyze in which way the switch from acid-forming to
solvent-forming cells can be accelerated, we established a Cascade of Continuous Stirred
Tank Reactors (CCSTR). This bioreactor conformation with six reactors operated in series
allows separating the different metabolic stages in a spatial manner. In the initial set-up,
two operating parameters were investigated: the feeding rate Fin and the setpoint pH
value in the first bioreactor of the cascade pHbr1 (see Figure 1A). Long-term continuous
fermentations in the bioreactor cascade were performed in order to characterize steady
states with constant metabolite concentrations in all bioreactor tanks under four different
operating conditions. To this end, the feeding rate was set to 0.1 L h−1 (D = 0.042 h−1) and
to 0.22 L h−1 (D = 0.092 h−1) and the pHbr1 was set to pH 5.6 and pH 4.3. The resulting
four operating settings were repeatedly applied and the corresponding steady states were
observed for periods corresponding to 3 to 18 residences times of the cascade (means of the
reproduced steady states under the four operating conditions are shown in Figure 3; for an
overview of the individually observed steady states see Table S2a).
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Figure 3. Steady states observed in the six-stage bioreactor cascade under 4 different operating conditions. Data represent means
and experimental errors (maximum of standard deviations of individual or averaged data sets) of at least two independently
observed steady states under the same operating conditions. For an overview of the individually observed steady states see
Table S2a. Operating condition D = 0.042 h−1/ pHbr1 = 5.6; (A) Substrate and metabolites; (B) pH and biomass concentration.
Operating condition D = 0.042 h−1/ pHbr1 = 4.3; (C) Substrate and metabolites; (D) pH and biomass concentration. Operating
condition D = 0.092 h−1/ pHbr1 = 5.6; (E) Substrate and metabolites; (F) pH and biomass concentration. Operating condition
D = 0.092 h−1/ pHbr1 = 4.3; (G) Substrate and metabolites; (H) pH and biomass concentration.
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Under all operating conditions we observed an accumulation of acetic and butyric
acid in the first bioreactor stage (Figure 3A,C,E,G). In the following bioreactors the organic
acids were then metabolized together with glucose, shifting the product spectrum towards
the organic solvents—butanol, acetone and ethanol. These dominate the metabolite spec-
trum at the end of the cascade, though their yields depend on the operating conditions
(Figure 3A,C,E,G). At a dilution rate of 0.042 h−1, corresponding to a residence time of
4 h per bioreactor, and a pHbr1 of 5.6, the acetic and butyric acid concentration in the first
bioreactor reached 10.3 ± 4.2 g L−1 and 8.8 ± 3.6 g L−1, respectively (Figure 3A). Despite
these high acid concentrations the biomass grew to a concentration of 2.0 ± 0.8 g L−1 and
stayed on this level along the cascade (Figure 3B). The solvent concentrations are negligible
in the first bioreactor, but increase from bioreactor 2 to 4. When the glucose concentration
dropped below 5 g L−1 in bioreactor 5 and 6, the solvent formation stopped, yielding
final concentrations of 6.7 ± 3.3 g L−1 butanol, 1.8 ± 0.9 g L−1 acetone and 0.4 ± 0.3 g L−1

ethanol (Figure 3A). Changing the pHbr1 to 4.3 while keeping the total dilution rate at
0.042 h−1 reduced the accumulation of acetic and butyric acid in the first bioreactor to
7.5 ± 1.8 g L−1 and 3.1 ± 1.2 g L−1, respectively (Figure 3C). At the same time, the forma-
tion of the solvents as well as consumption of the glucose over the cascade was increased.
Thus maximal concentrations of butanol (9.7 ± 0.5 g L−1), acetone (2.9 ± 0.4 g L−1) and
ethanol (1.0 ± 0.2 g L−1) were already reached in bioreactor 3, while glucose was nearly
depleted at this point (Figure 3C). The glucose depletion was accompanied by a severe
decrease of the biomass concentration from 3.0± 0.4 g L−1 in bioreactor 2 to 0.5 ± 0.2 g L−1

in bioreactor 6 (Figure 3D).
To get a better resolution of the metabolic processes in bioreactor 1 to 3 we increased

the dilution date to 0.092 h−1 which corresponds to a residence time of 1 h 49 min per
bioreactor. Again the pHbr1 was set to 5.6 (Figure 3E,F) and 4.3 (Figure 3G,H). Under both
conditions the acetic acid and butyric acid concentrations rose in bioreactor 2 (and 3) and a
net uptake of the organic acids only appeared in the later bioreactors of the cascade. Thus
maximal organic acids concentrations were observed in bioreactor 3 and 4 at pHbr1 = 5.6
(Figure 3E, Table S2a) and in bioreactor 2 at pHbr1 = 4.3 (Figure 3G, Table S2a), respectively.
The minima of the pH profiles coincide with the maxima of the acid concentrations (see
Figure 3F,H). Despite of this discontinuous development of organic acids along the cascade
there was a formation of solvents from bioreactor 1 to bioreactor 6 as well as a nearly
linear uptake of glucose under both pHbr1 conditions (Figure 3E,G). At pHbr1 = 5.6 solvent
formation and glucose uptake were slower than at a pHbr1 of 4.3 and resulted in concen-
trations of 4.8 ± 1.9 g L−1 butanol, 1.6 ± 0.6 g L−1 acetone, 0.3 ± 0.1 g L−1 ethanol and
25.9 ± 9.9 g L−1 glucose in bioreactor 6 (Figure 3E). This roughly corresponds to the com-
position of bioreactor 3 in the cascade operated at a dilution rate of 0.042 h−1 and a pHbr1
of 5.6 (Figure 3A, Table S2a). In the cascade operated at pHbr1 = 4.3 (and D = 0.092 h−1)
butanol, acetone, ethanol and glucose reached final concentrations of 8.2 ± 2.6 g L−1,
2.8 ± 0.9 g L−1, 0.8 ± 0.4 g L−1 and 13.9 ± 8.3 g L−1, respectively (Figure 3G). These sol-
vent concentrations were significantly lower than those observed in bioreactor 3 of the
cascade operated at D = 0.042 h−1 and pHbr1 = 4.3 amounting to 9.7 ± 0.5 g L−1 butanol,
2.9 ± 0.4 g L−1 acetone and 1.0 ± 0.2 g L−1 ethanol (Figure 3C, Table S2a). However, the
remaining glucose concentration of 13.9 ± 8.3 g L−1 in the final bioreactor of the process at
D = 0.092 h−1 which is observed after a total mean residence time of 10.9 h is also much
higher than the glucose concentration of 2.5 ± 3.4 g L−1 in bioreactor 3 of the process at
D = 0.042 h−1 that is observed after a mean residence time of 12 h (3 × 4 h). These results
indicate that process operating conditions were in a range, in which the fermentation time
(residence time) is crucial for a complete transformation of the substrate to solvents.

3.2. Estimation and Validation of the Mathematical Model Parameters Based on the Experimental
Data from the Linear Cascade

Experimental data from three of the four operating conditions (D = 0.042 h−1/pHbr1 = 5.6;
D = 0.042 h−1/pHbr1 = 4.3; D = 0.092 h−1/pHbr1 = 4.3) were used for parameter estima-
tion of the mathematical model described above (see Section 2.4. The fourth data set
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(D = 0.092 h−1/pHbr1 = 5.6) was reserved for model validation. In total 30 parameters
were estimated within rationally predefined boundaries (Table 2, Table S1b). At the same
time, the model included 25 fixed parameters, which had been derived from the literature,
experimental studies or calculations (Table 2, Table S1c). As a starting point of the opti-
mization process we used the parameter set that had been found by educated guessing
to deliver reasonable simulation results for a first version of the mathematical model [20].
The parameter for the maximal butyric acid uptake rate of intermediate cells k_BA_up_ (I)
was initially set to 0.25 corresponding to the center of the solution space (Table S1b). The
parameter optimization was realized using the MATLAB function “fmincon” (with “active
set algorithm”), which allows defining dependencies between the parameters. Here we
used the restriction “mu_d_ (A) (differentiation rate of acidogenic to intermediate cells)” <
“mu_d_ (I) (differentiation rate of intermediate to solventogenic cells)” to prevent accumu-
lation of intermediate cells observed in first attempts of the parameter optimization without
constraints. The estimation algorithm minimized the distance between the simulated and
the experimentally observed metabolite (glucose, ethanol, acetone, butanol, acetic acid and
butyric acid) and biomass concentrations in all six bioreactor stages of all three operating
conditions. The differences between simulated and experimental values were weighted by
the experimentally observed variances, which we defined as maximum of the standard
deviations in the individual data sets, the standard deviation of the averaged data set and
0.1 (compare Table S2a—note §). Thus, the predictions of the model for the experimentally
accurately determined solvent concentrations counted more for the quality of the respec-
tive parameter set than a good agreement of the model with data from the fluctuating
measurements of organic acid concentrations. Furthermore, the discrepancy of a mismatch
of 1 g L−1 in, e.g., the modeled and experimentally measured glucose concentrations (very
small difference) and of 1 g L−1 in, e.g., the ethanol concentrations (very big difference)
is balanced by the weighting with the experimental variance of the respective metabolite
concentration.

The improvements in the p-value became negligible after 29 cycles of the fmincon
function, and the optimization algorithm was stopped. The resulting parameter set OPT10e
(see Table 2 and also Table S1b) was used to simulate the metabolite concentrations, shown
on the y-axes of Figure 4 (see also Table S2b). These were compared with the experimentally
observed metabolite concentrations, shown at the x-axes of Figure 4 (compare Figure 3,
Table S2a). The closer a data point is to the diagonal (y = x) in this representation the
better the simulation of this metabolite concentration. The error bars correspond to the
experimental variance, i.e., the larger the error bars the less important is the respective
metabolite concentration for the quality of the parameter set (p-value). Or simply stated, as
long as the error bars cross the y = x diagonal, it is still a good simulation result.

The simulations of the solvent concentrations are in very good agreement with the
experimental data for all operating conditions, including those reserved for validation
(Figure 4A,D,G,J). Moreover, the moderate variations of the organic acids concentra-
tions, observed in the cascade at D = 0.092 h−1, are reproduced by the simulations
(Figure 4H,K). However, the important changes in the acids concentrations along the
cascade at D = 0.042 h−1 are not covered by the simulations (Figure 4B,E). Furthermore,
the glucose concentrations are not simulated accurately with respect to the experimental
variance in glucose measurements (Figure 4C,F,I,L). Still, the overall tendencies of the glu-
cose concentrations along the cascade are qualitatively represented in the simulations. As
shown in Figure 5, there is a high level of agreement between simulated and experimentally
observed biomass concentrations for all operating conditions.
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Figure 4. Comparison of experimental and simulated data with respect to the experimental variations. Data sets
D = 0.042 h−1/pHbr1 = 5.6 (A–C), D = 0.042 h−1/pHbr1 = 4.3 (D–F) and D = 0.092 h−1/pHbr1 = 4.3 (J–L) were used for
parameter optimization. Data set of D = 0.092 h−1/pHbr1 = 5.6 (G–I) was used for validation of the optimized parameter set.
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Figure 5. Simulations of biomass concentration and subpopulation distribution. Experimentally observed biomass concentra-
tions are compared to simulated biomass concentrations. The simulation additionally classifies biomass into acidogenic, inter-
mediate and solventogenic subpopulations. Biomass data from D = 0.042 h−1/pHbr1 = 5.6 (A), D = 0.042 h−1/pHbr1 = 4.3 (B)
and D = 0.092 h−1/pHbr1 = 4.3 (D) were used for parameter optimization. Data of D = 0.092 h−1/pHbr1 = 5.6 (C) serve as
validation of the optimized parameter set.

The discrepancies in the glucose concentrations are the main contributors to the weighted
residual square sums, depicted in Table 3. Globally seen, the simulations had an equal quality
for all bioreactor stages and all operating conditions (Table 3). Particularly good results were
retrieved for the simulation of the cascade at D = 0.092 h−1 and pHbr1 = 4.3. It should be
mentioned that also the experimental data set for D = 0.092 h−1/pHbr1 = 5.6), which has not
been used in a parameter estimation, was simulated with comparable quality, validating
the model with its parameter values.

Table 3. Quality of simulation p for individual bioreactor stages and data sets given by the weighted
residual square sum over all metabolites (see Figure 2). Data set of D = 0.092 h−1/pHbr1 = 5.6 was
not used for parameter optimization and serves for validation of the estimated parameter set.

p Bioreactor Stage

1 2 3 4 5 6 Σ

D = 0.042 h−1/
pHbr1= 5.6

4.11 10.36 11.89 8.07 10.70 12.33 57.46

D = 0.042 h−1/
pHbr1= 4.3

15.07 9.80 1.83 19.96 5.56 3.19 55.40

D = 0.092 h−1/
pHbr1= 5.6

3.45 5.62 3.33 2.32 9.97 15.97 40.66

D = 0.092 h−1/
pHbr1= 4.3

5.60 2.36 2.33 2.21 1.88 1.89 16.29

Σ 28.23 28.14 19.38 32.56 28.10 33.38 169.80

3.3. Model-Based Predictions of Biomass Subpopulations Regarding Acidogenic, Intermediate and
Solventogenic States

During the experiments, the total biomass concentration in each bioreactor stage
was monitored. However, contrary to the long spread hypothesis that metabolically dis-
tinct states strictly correlate with different morphologies of Clostridium cells, more recent
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studies have clarified that solvent-forming cells can also appear with rod-shaped mor-
phologies [16,22]. Thus, a straightforward microscopical characterization of the metabolic
states of cells along the bioreactor cascade is not possible. Therefore, our model, postulat-
ing biomass subpopulations of acidogenic, intermediate and solventogenic states in each
bioreactor (Figure 5), may provide insights into what are so far experimentally inaccessible
process characteristics.

For fermentations with a pHbr1 of 5.6, the model predicts almost exclusively acidogenic
cells in the first bioreactor of the cascade (Figure 5A,C). While at a dilution rate of 0.042 h−1,
the proportion of solventogenic cells rises to 42% in bioreactor 6, the maximal proportion of
solventogenic cells at a dilution rate of 0.092 h−1 (after a total mean residence time of 10.9 h)
is only 26%. However, this exceeds the ratio of 21% solventogenic cells after 12 h mean
residence time, predicted for the 3rd bioreactor of the cascade at 0.042 h−1 (Figure 5A,C,
Table S2b).

In fermentations with a pHbr1 of 4.3, the model predicts significant cellular differen-
tiation occurring already in the 1st bioreactor of the cascade (Figure 5B,D). At a dilution
rate of 0.042 h−1 the predicted proportion of solventogenic cells is 19% in bioreactor 1
and increases to 36% along the cascade (Figure 5B, Table S2b). It is striking that under
the respective operating conditions, the part of the intermediate cells is very low in all
bioreactor stages. Its maximum of 18% is predicted for bioreactor 1 (Figure 5B, Table S2b).
At the higher dilution rate, the proportion of solventogenic cells is significantly lower, with
4% and 31% in the 1st and 6th bioreactor, respectively (Figure 5D, Table S2b). The ratio of
31% solventogenic cells in the 6th bioreactor (after a total mean residence time of 10.9 h)
corresponds roughly to the 29% of solventogenic cells, calculated for the 3rd bioreactor
of the cascade at the low dilution rate. However, under this condition (mean residence
time of 12 h at D = 0.042 h−1), the ratio of acidogenic (57%) to intermediate (14%) cells was
still higher than in the last bioreactor stage at D = 0.092 h−1. For the latter, ratios of 39%
acidogenic and 30% intermediate cells were predicted (Figure 5B,D, Table S2b).

It should be noticed that under all conditions the fraction of acidogenic cells was
predicted as equal or larger than the fraction of solventogenic cells (Figure 5B, Table S2b).

3.4. Introducing a Feedback Loop for Recirculation of Fermentation Broth from Bioreactor 4 to
Bioreactor 2

Our experimental investigations have shown that there is a high solvent productivity
for the cascade at D = 0.092 h−1 and pHbr1 = 4.3. However, complete substrate conversion
and maximal solvent concentrations were not reached within the 10.9 h of total mean
residence time under these operating conditions. Thus, we introduced a feedback loop
from bioreactor 4 to bioreactor 2 into the cascade (Figure 1B), aiming at an increase of the
butanol productivity within the cascade. Butanol pulse experiments of Junne had raised
the hypothesis that butanol can induce the solventogenic state of the cells [14], thus by
recirculation of butanol-enriched fermentation broth, the differentiation process should
be triggered according to this hypothesis. On the other hand, our here established model
proposes that fermentation broth from bioreactor 4 is enriched with solventogenic cells,
which can directly increase the butanol productivity in bioreactor 2.

The recirculation flow Fback from bioreactor 4 to 2 was set to 0.055 L h−1, corresponding
to a quarter of the feeding flow Fin. The outflow from the modified cascade, being equal to
Fin, remained unchanged in comparison to the linear cascade (Figure 1B). The steady states
observed in the cascade with feedback loop showed a 50% increase of butanol concentration
in bioreactor 2 compared to the linear cascade (Figure 6A, Table S2a). Even though 94%
of this increase in the butanol concentration has to be attributed to transport of butanol
from stage 4 to 2, 6% of the increase resulted from an augmented metabolic activity in
bioreactor 2. However, the beneficial effect of the feedback decreases in the following
bioreactor stages. In bioreactor 4, the earliest termination point of the modified cascade, the
butanol concentration was only 6% higher than in the linear cascade. In bioreactor 6 there
were no more than 1.6% of butanol increase in the feedback loop system. Further, there was
an important experimental variance, questioning the significance of the butanol increase
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(Figure 6A, Table S2a). However, simulations with the model, adapted to the feedback
loop cascade also showed an increase in butanol concentration for bioreactor 2, 4 and 6 of
87.8%, 10.1% and 2.9%, respectively (Figure 6B, Table S2b). Thus, model simulation and
experimental investigation indicates that a small increase of the butanol concentration can
be achieved by introducing a recirculation into the cascade.

Figure 6. Butanol concentrations with and without feedback loop. Experiments and simulations
were performed at Dbr1 = 0.55 h−1/pHbr1 = 4.3 and Fback = 0.055 L h−1 (corresponding to 0.25 Fin)
(A) experimental data; (B) simulation.

Results from computer simulations quantifying the influence of a recirculation flow
show that if Fback is raised to 0.5 or 1 times Fin, the butanol concentration in the 6th
bioreactor increases by 3.9% or 4.8% (in comparison to the linear cascade), respectively
(Figure 7A). At the same time the model predicts a reduction of the organic acid uptake. As
shown in Figure 7B, the acetic acid concentrations in bioreactor 2 and 3 decrease at higher
recirculation rates. However, as a result of reduced organic acid uptake in bioreactor 5 and
6, the acetic acid concentrations at the outflow of cascades run at recirculation ratios of 0.25,
0.5 and 1, increase by 0.7%, 2.7% and 5.6% in comparison to the linear cascade, respectively
(Figure 7B, Table S2b). Similar increases were modeled for the butyric acid concentrations
(Table S2b). The proportion of solventogenic cells on the total biomass is predicted to
notably increase in bioreactor 2, when the fermentation broth is recirculated (Figure 7C).
However, up to bioreactor 4 of the feedback-loop cascade, the subpopulation proportions
adapted to the levels of the linear cascade. At bioreactor 6 the part of solventogenic cells is
predicted to be even slightly lower in the cascade with a recirculation ratio above a factor
of 0.25 compared to the linear cascade (Figure 7C, data in Table S2b).

Figure 7. Simulation of butanol (A)/acetic acid (B) concentrations and proportions of solventogenic cells (C) along the
cascade in dependency of the feedback flow Fback. Fin was kept constant at 0.22 L h−1.
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The experimentally observed butanol concentrations are in good agreement with the
predictions of our model, based on a recirculation of already differentiated cells. However,
the declining beneficial effect of the feedback loop along the cascade does not substantiate a
significant effect of a possible butanol-triggered differentiation of cells to the solventogenic
state proposed by Junne [14].

3.5. Product Concentrations, Productivities and Yields of ABE Processes Run in the Continuously
Operated, Multi-Stage Bioreactor Cascades

High solvent concentrations as discussed above are essential for an efficient down-
stream process. However, productivity and yield, i.e., the time needed to produce the
solvents and the efficiency in using the carbon and the energy stored in the substrate, are
equally important criteria for an economic process. Looking at the productivities and
yields at the outflow of the cascade (Table 4), one can note that although butanol and
total solvent concentrations are lower at high dilution rates (D = 0.092 h−1), the produc-
tivities for butanol and solvents as well as the substrate yields are higher compared to
D = 0.042 h−1 (Table 4). However, maximal product concentrations at D = 0.042 h−1/pHbr1
of 4.3 and 5.6 were already reached in bioreactor 3 and 5, respectively (Table 4, Figure 3,
Table S2a). Thus, the cascade should be truncated to operate efficiently at this dilution
rate. Regarding the maximal productivities instead of the maximal product concentra-
tions, the optima are already reached in bioreactor 2 and 3 at D = 0.042 h−1/pHbr1 of 4.3
and 5.6, respectively (Table 4). Moreover, the yields were maximal in this range of the
cascade with D = 0.042 h−1, i.e., at bioreactor 2 for pHbr1 of 4.3 and at bioreactor 4 for
pHbr1 of 5.6 (Table 4). The maximal butanol and solvent productivities observed under
the operating conditions applied in this study were 0.93 ± 0.14 g butanol L−1 h−1 and
1.29 ± 0.21 g total solvents L−1 h−1 at the outflow of bioreactor 2 in the cascade run at
D = 0.042 h−1 and pHbr1 of 4.3 (Table 4). Yet the butanol and solvent concentrations at this
state (7.4 ± 1.1 g butanol L−1 and 10.3 ± 1.7 g total solvents L−1) were rather low (Figure 3,
Table S2a).

Table 4. Overview of butanol and solvent productivities and yields under the investigated operating conditions.

Operating Condition Product Concentration Volumetric Productivity Yield

(g L−1) (g L−1 h−1) (g gGLU−1)

cbutanol cABE rbutanol rABE YBUT/GLU YABE/GLU

D = 0.042 h−1/
pHbr1 5.6

f 6.7 ± 3.3 8.9 ± 4.5 0.28 ± 0.14 0.37 ± 0.19 0.11 ± 0.06 0.15 ± 0.09
m 7.2 ± 1.1 br5 9.7 ± 1.5 br5 0.42 ± 0.10 br3 0.56 ± 0.13 br3 0.13 ± 0.04 br4 0.17 ± 0.06 br4

D = 0.042 h−1/
pHbr1 4.3

f 9.6 ± 0.3 13.3 ± 0.7 0.40 ± 0.01 0.55 ± 0.03 0.16 ± 0.01 0.22 ± 0.01
m 9.7 ± 0.5 br3 13.6 ± 1.1 br3 0.93 ± 0.14 br2 1.29 ± 0.21 br2 0.18 ± 0.05 br2 0.25 ± 0.07 br2

D = 0.092 h−1/
pHbr1 5.6

f 4.8 ± 1.9 6.7 ± 2.7 0.44 ± 0.18 0.62 ± 0.25 0.14 ± 0.10 0.20 ± 0.14
m ~ ~ ~ ~ ~ ~

D = 0.092 h−1/
pHbr1 4.3

f 8.2 ± 2.6 11.8 ± 3.9 0.75 ± 0.23 1.08 ± 0.36 0.18 ± 0.09 0.26 ± 0.13
m ~ ~ 0.76 ± 0.23 br5 1.08 ± 0.36 br5 ~ ~

D = 0.092 h−1/
pHbr1 4.3

f 8.3 ± 0.9 11.9 ± 1.5 0.76 ± 0.08 1.09 ± 0.14 0.18 ± 0.06 0.26 ± 0.09

feedback loop m ~ ~ 0.78 ± 0.20 br4* 1.10 ± 0.28 br4* ~*,§ ~*,§

f values based on final concentrations in br6 (outflow of the cascade); m maximal values for individual bioreactors (corresponding bioreactors
are indicated as br2, br3, br4 and br5 respectively); * values from br2 and br3 were not considered as the feedback loop cascade cannot be
truncated at these bioreactor stages; § irrationally high values from br1 with equally high standard deviations were not considered.

At a dilution rate of 0.092 h−1 and a pHbr1 of 4.3, the productivity was also found to
be maximal in a cascade shortened to 5 stages. However, at these operating conditions, the
productivities at the outflow of bioreactor 6 (0.75± 0.23 g butanol L−1 h−1 and 1.08 ± 0.36 g
total solvents L−1 h−1) were only slightly lower than the maximal values at the outflow
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of bioreactor 5 (0.76 ± 0.23 g butanol L−1 h−1 and 1.08 ± 0.36 g total solvents L−1 h−1)
(Table 4).

It is interesting to see that the maximum for the solvent production rate could be shifted
to bioreactor 4 by introducing a feedback loop into the cascade (Table 4). However, the
product concentrations in bioreactor 4 of the feedback loop cascade (5.7 ± 1.7 g butanol L−1

and 8.0 ± 2.0 g total solvents L−1) were significantly lower than those in bioreactor 6 of
the same cascade (8.3 ± 0.9 g butanol L−1 and 11.9 ± 1.5 g total solvents L−1; Figure 3,
Table S2a). Furthermore, the productivities in bioreactor 6 of the feedback loop cascade
(0.76 ± 0.08 g butanol L−1 h−1 and 1.09± 0.14 g total solvents L−1 h−1) were slightly above
those observed in the linear cascade (Table 4). The conversion yields of 0.18 g butanol g−1

glucose and 0.26 g total solvents g−1 glucose did not change between the feedback loop
and the linear cascade operated at D = 0.092 h−1, pHbr1 of 4.3 (Table 4).

When operating the linear cascade at D = 0.092 h−1 and pHbr1 of 5.6, product concen-
trations, productivities and yields increased until the outflow of the cascade (Table 4). The
low butanol and solvent concentrations of 4.8 ± 1.9 g butanol L−1 and 6.7 ± 2.7 g total
solvents L−1 together with the comparatively low productivities and yields indicated that
for this combination of dilution rate and pHbr1 the number of bioreactors in the cascade
was not sufficient for effective conversion.

4. Discussion

Here we analyzed continuous ABE fermentations with suspended cells in a six-stage
bioreactor cascade. Under the investigated operating conditions, a good compromise of
high product concentrations and high volumetric productivity was found for the 3-stage
(truncated) cascade, operated at pHbr1 of 4.3 and Fin of 0.1 L h−1 as well as for the 6-staged
cascade, operated at pHbr1 of 4.3 and Fin of 0.22 L h−1, i.e., for total mean residence times in
the cascade of 12 h and 10.9 h, respectively. Under these conditions, volumetric productivities
and final butanol concentrations of 0.81 ± 0.04 g butanol L−1 h−1/9.7 ± 0.5 g butanol L−1

and 0.75 ± 0.23 g butanol L−1 h−1/8.2 ± 2.6 g butanol L−1 were reached, respectively.
These productivities are more than twice times higher than those observed in a two-

stage ABE process [23], being the prototype of a multi-stage, continuous ABE fermentation.
In that former work, residence times of 8 h in the first bioreactor (pH 4.3) and 33–42 h in the
second bioreactor (pH 4.3) yielded final butanol concentrations of 10.5–12.6 g butanol L−1,
but productivities of only 0.30–0.32 g butanol L−1 h−1 [23]. Since then a high number of
continuous ABE fermentation strategies has been explored and published, being summa-
rized in a matrix of final butanol concentrations and volumetric butanol productivities
by Setlhaku et al. [24,25] This matrix shows that product concentrations above 13 g L−1

can only be reached in systems with integrated downstream processing, i.e., with multiple
stages separating biological solvent production and technical product concentration (e.g.,
by gas stripping or pervaporation) [25–29]. Furthermore, this matrix illustrates that butanol
productivities of 1 g L−1 h−1 and above are exclusively reached in systems with immo-
bilized cells or cell retention [30–33]. A four-stage bioreactor cascade with Clostridium
cells immobilized in a biofilm has been reported to yield up to 10.8 g butanol L−1 with a
productivity of 9.2 g butanol L−1 h−1 [24].

However, the focus of our work was the establishment of a system that captures the
temporal development of a batch process in a spatial dimension. Such an approximation
of a plug flow bioreactor has been realized in the here-presented six-stage CCSTR. In
contrast to biofilm or other fixed-bed bioreactors, cells from a certain metabolic phase can
be retrieved from the CCSTR for further characterization or for a transfer into another
environment. The characterization of metabolic phases in the ABE fermentation based on
batch processes is linked to sophisticated prearrangements and poor reproducibility [16].
In the future, experimental characterization of individual cell populations in the different
metabolic phases using flow cytometry [34–37], electrooptical measurements [38] or single
cell RNA sequencing [39,40] can be applied to steady state samples of the CCSTR. Already,
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the here-presented model, showing good agreement with the experimental data, delivers
prospects of the composition and the characteristics of the individual cell populations.

For instance, it is worth mentioning that the option for growth of intermediate and sol-
ventogenic cells, which had been newly introduced as an extension to an earlier model [20],
resulted in maximal growth rate parameters of 0.46 h−1 and 0.41 h−1 for intermediate
and solventogenic cells, respectively, after parameter estimation. These are lower than
the maximal growth rate parameters of acidogenic cells, being 0.73 h−1. This result is in
good agreement with the experimental analyses from other groups [22,41], showing that
also under solventogenic conditions a stable steady state can be reached in single-stage
continuous fermentation. However, this is characterized by a lower optical density than
under acidogenic conditions [9,15,41], which might result from a lower maximal specific
growth rate of the solventogenic cells.

In the model of Millat [9], simulating the pH-induced metabolic shift in a one-stage
chemostat, two subpopulations—acidogenic and solventogenic cells—had been considered.
However, in that model the dimensions of the subpopulations develop independently
from each other, i.e., the model functions of two subpopulations are not linked to each
other. In the here-presented model the development of the subpopulations is a differenti-
ation process from acidogenic to intermediate and further to solventogenic cells, which
depends on the concentration of undissociated acids. Implementing the mechanism of
cell differentiation in the model, we followed an example of modeling the segregation
of dihydroxyacetone-producing Gluconobacter axydans subpopulations [42]. One result
of our simulation was that only a comparatively small proportion of cells, i.e., 26–40%,
differentiated to solventogenic cells in the last bioreactor stage, while 29–54% remained
in the acidogenic state. This contrasts with the model of Millat [9] where 100% of the
acidogenic cells were transformed to 100% of solventogenic cells during the metabolic
switch. However, shifting of subpopulation proportions rather than homogeneous dif-
ferentiation agrees well with the recent insights into metabolic heterogeneity of bacterial
communities, gained by now available single-cell analysis methods, e.g., single-cell RNA se-
quencing [40,43,44]. For instance, in antibiotic stress situations many bacterial populations
tend to segregate into subpopulations of metabolic-active, antibiotic-sensitive cells and of
persistent, metabolic-inactive, but antibiotic-resident cells. The latter group ensures the
survival of the species and may profit from nutrients released by cell lysis of the first group
once the antibiotic pressure is withdrawn [45]. Heterocyst formation of Nostoc punctiforme
is another example for beneficial differentiation processes in bacterial populations [46].

Our model does not consider back differentiation from solventogenic cells to acido-
genic cells, though shifting experiments in the single-stage continuous ABE fermentation
propose that those are possible [47]. However, under the experimental conditions ap-
plied here we did not expect a back differentiation to occur. Furthermore, the remaining
part of acidogenic cells even under externally solventogenic conditions, proposed by our
model, offers the perspective that not a back differentiation, but rather overgrowing of
the solventogenic by the acidogenic subpopulation leads to a backward shift from overall
solventogenic to overall acidogenic conditions.

Validation and improvement of the here presented model predictions of the subpop-
ulation composition will be enabled by future experimental investigations, e.g., by flow
cytometry. So far, the model kept its predictive capacity even when switching operating
conditions from the linear cascade to a cascade with feedback loop, which is another
validation of the presented model.

The hypothesis from pulse experiments by Junne [14] proposes that butanol has an
auto-inducing effect on the solvent production by promoting the differentiation process.
Using the potential of our model, we simulated a feedback loop introducing solventogenic
fermentation broth from bioreactor 4 (including ~21% of solventogenic cells and 5.3 g of
butanol) into an earlier phase of the process in bioreactor 2. On one hand, one would
expect a beneficial effect of the recirculated butanol on differentiation to solventogenic cells,
which should even amplify itself after bioreactor 2. On the other hand there should be a
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beneficial effect, resulting from the recirculation of already differentiated solventogenic
cells, which is expected to be rather constant in all bioreactors after entry from the feedback
loop. However, here we observed significant higher solvent production in bioreactors 2
and 3 in the feedback loop cascade, but the beneficial effect declined in the later bioreactors,
resulting in final butanol concentrations only 0.2 g L−1 higher than in the linear cascade. So
there is no evidence for an amplification of solventogenesis triggered by butanol. However,
the model prediction for the feedback loop cascade, matching the experimental results,
indicates that a positive effect of a higher percentage of solventogenic cells in bioreactors
2 and 3 is compensated mainly due to reduced differentiation of new solventogenic cells
caused by a decrease in the acetic and butyric acid concentrations.

As a new hypothesis, adding a feed of acetic and/or butyric acid to bioreactor 2 or
3 of the feedback loop cascade is one promising configuration that will be tested in the
future with the here-introduced modeling tool and experimental setup for studies of the
ABE fermentation.

Using the mathematical model not only cascade set-ups with additional feeding points,
but also variations of the cascade with variable number of bioreactor stages, differently
sized stages or cell recycling loops, can be evaluated and selected for experimental investi-
gations. Thus, this work opens the door to a model-supported optimization of a continuous,
multi-stage ABE process.

5. Conclusions

During the ABE process Clostridia go through different metabolic phases. With
the here-presented cascade of continuous stirred tank reactors (CCSTR), it is possible to
separate these phases in a spatial manner. Investigation and application of this reactor
system is supported by a mathematical model, which combines two interacting levels of
the process:

• Reactor system model, depending on the configuration of the reactors, describing
residence time distributions and their influence on microbial population fractions and
metabolite concentrations;

• kinetic model for microbial metabolism, allowing for populations with different
metabolic activities, depending on the bioreactor environment.

The mathematical model, which fits the experimental steady state data of all operating
conditions under investigation, indicates that even in the later bioreactor tanks of the
cascade only a relatively small portion of the cells (about one third) is in the econom-
ically interesting solvent-forming state. Our attempt to increase the proportion of the
solventogenic cells by introducing a feedback loop into the cascade from bioreactor 4 to
bioreactor 2 resulted in a final butanol concentration of 8.3 g L−1 and a productivity of
0.76 g butanol L−1 h−1, which were only slightly higher than in the corresponding linear
cascade. Achieving only this small improvement may be caused by the limited availability
of substrate for conversion to solvents. The proposed addition of acetic and/or butyric
acid to bioreactor 2 could overcome this limitation.

In the future the here-established multi-stage, ABE laboratory process with its corre-
sponding mathematical description will serve as a tool for predicting and testing further
fermentation strategies such as co-feeding of organic acids to different phases of the process.
A collection of possible configuration modifications is shown in Figure 8.
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Figure 8. Possible modifications of the linear cascade of bioreactors to develop new fermentation strategies.

The modifications in Figure 8 serve different purposes:

• Adapting individual mean residence time in bioreactors by using different working
volumes.

• Moving cells and metabolites between bioreactor environments by feed-back and
feed-forward loops.

• Feeding additional substrates along the cascade, e.g., organic acids.
• Biomass retention by separation and recycle.

Modeling metabolism in the cascade led to a more profound understanding of the
shift from acidogenic to solventogenic state of the cells and the metabolic activity of
physiologically different subpopulations. Together with the reactor model, allowing for
simulation of any combination of configuration modifications, the performance of a cascade
set-up with its operating conditions can be predicted.
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