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Abstract: Infectious disease epidemics are challenging for medical and public health practitioners.
They require prompt treatment, but it is challenging to recognize and define epidemics in real time.
Knowing the prediction of an infectious disease epidemic can evaluate and prevent the disease’s
impact. Mathematical models of epidemics that work in real time are important tools for preventing
disease, and data-driven deep learning enables practical algorithms for identifying parameters in
mathematical models. In this paper, the SIR model was reduced to a logistic differential equation
involving a constant parameter and a time-dependent function. The time-dependent function leads
to constant, rational, and birational models. These models use several constant parameters from the
available data to predict the time and number of people reported to be infected with the COVID-19
Omicron variant. Two out of these three models, rational and birational, provide accurate predictions
for countries that practice strict mitigation measures, but fail to provide accurate predictions for
countries that practice partial mitigation measures. Therefore, we introduce a time-series model
based on neural networks to predict the time and number of people reported to be infected with
the COVID-19 Omicron variant in a given country that practices both partial and strict mitigation
measures. A logistics-informed neural network algorithm was also introduced. This algorithm
takes as input the daily and cumulative number of people who are reported to be infected with
the COVID-19 Omicron variant in the given country. The algorithm helps determine the analytical
solution involving several constant parameters for each model from the available data. The accuracy
of these models is demonstrated using error metrics on Omicron variant data for Portugal, Italy,
and China. Our findings demonstrate that the constant model could not accurately predict the daily
or cumulative infections of the COVID-19 Omicron variant in the observed country because of the
long series of existing data of the epidemics. However, the rational and birational models accurately
predicted cumulative infections in countries adopting strict mitigation measures, but they fell short
in predicting the daily infections. Furthermore, both models performed poorly in countries with
partial mitigation measures. Notably, the time-series model stood out for its versatility, effectively
predicting both daily and cumulative infections in countries irrespective of the stringency of their
mitigation measures.

Keywords: deep learning; data-driven; logistic differential equation; time-dependent function;
logistic informed neural network; COVID-19 Omicron variant; mathematical modelling of epidemics

1. Introduction

The Chinese city of Wuhan was the site of the first incidence of COVID-19 [1]. However,
on a global scale, the disease broke out and spread fast, creating one of human history’s
most deadly pandemics [2]. COVID-19 is always a threat to human health because it
spreads quickly, has terrible effects on health, and changes its genetic makeup. In addition,
human-to-human transmission through the air may be facilitated by the virus [3]. As a
result, on the 31st of January 2020, the WHO proclaimed a global health emergency. Despite
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careful supervision, the disease has spread to over a hundred nations worldwide since its
discovery and has become a global pandemic [4]. As of 2021, numerous dominant mutant
variants of COVID-19 have emerged. These numerous cases of infection with mutating
variants have been recorded in most countries. Many of these cases originated in the United
Kingdom and South Africa [5]. In addition, a new COVID-19 variant called Omicron
surfaced towards the end of 2021, and it was first detected in South Africa in November
2021 and later spread to Europe in the same month. Numerous countries worldwide,
including China, Brazil, and India, have experienced outbreaks of the epidemic caused by
the Omicron variant. According to reports, the Omicron variant infection can be transferred
by anyone who has come into contact with it, regardless of whether or not they have been
vaccinated [6]. In addition, the Omicron variant spreads more quickly than other COVID-19
variants. The success of the measures put in place can only be ascertained by looking into
COVID-19’s dynamic behavior.

Due to stochastic variations and unpredictability, certain epidemic curves have many
turning points (like peaks and valleys). Surveillance, case definitions, and turning points
can indicate a slowing epidemic. It can help with disease management plans, peak-phase
waves, and the natural growth delay of susceptible individuals caused by infection. A pre-
diction model is required to prevent the disease’s spread. Unfortunately, due to limited
public information on emerging epidemics and diseases, creating realistic models during
public health emergencies will be difficult [7]. Some epidemics can be predicted, while
others cannot but are still likely. Predicting turning points and epidemic waves helps
create and evaluate response plans [8]. Many researchers from the most severely impacted
countries and around the world have created COVID-19 trend-predicting methodologies.
In order to better understand and control this pandemic, an infectious disease model,
estimation methods, and forecasting tools have been created. Mathematical models, ma-
chine learning, and deep learning have been used to predict how an epidemic will change
over time [9,10]. Kermack and McKendrick introduced a mathematical model called the
Susceptible–Infectious–Recovery (SIR) model [11]. This variational model calculates the
estimated number of people infected and later recovered from the disease. The Susceptible–
Exposed–Infectious–Removed (SEIR) model is proposed to investigate the impact of preven-
tative measures on epidemic dynamics [12]. The Susceptible–Exposed–Infected–Recovered
(SEIR) and the Susceptible–Infected–Recovered (SIR) mathematical models are two of the
most persuasive and widely used models in epidemiology. A method-based generalized
SEIR model incorporating quarantined and recovery states was recently developed [11] to
predict and analyze the COVID-19 epidemic. The SEIR and SIR models are used to model
predictions and represent data from confirmed cases [13].

Under specific circumstances, the logistic model can be derived from the SIR model.
The logistic model is frequently used in fitting regression models to time-series data because
its underlying theory is straightforward and efficient calculation. Fitting and analyzing
epidemic prediction has been made using logistic, Bertalanffy, and Gompertz models [14].
The logistic model outperformed the other two models in terms of prediction accuracy.
However, the key drawbacks of these three models are that they are only applicable
during certain stages of an outbreak and only if enough data are available. The logistic
growth model, generalized Richards model, and generalized logistic growth model were
all computed to report the number of infected cases in the COVID-19 epidemics [15].
The logistic model provides upper and lower bound predictions for the number of infected
cases among the three models. It offers a defined range that can assist policymakers and
healthcare providers in preparing and allocating resources effectively. By having a realistic
and wide range of how the infection could spread, it is possible to make stronger plans
to stop the spread of the infection, make the best use of medical materials, and lessen
the effects on healthcare systems. Meanwhile, the generalized Richards model and the
generalized logistic growth model elaborate on this by allowing for more complexity and
variation in the data. This allows for a deeper comprehension of the epidemic’s path, which
is important because the COVID-19 pandemic is always changing. Triambak et al. present



Epidemiologia 2023, 4 422

a refined logistic growth model that elucidates the trends and patterns in COVID-19 fatality
data [16]. The benefits of such a model typically include more accurate predictions and
analyses of fatality rates, enabling better-informed public health decisions and interventions.
Their work provides insights into the dynamics of COVID-19 fatalities, perhaps allowing for
more precise resource allocation and potentially leading to a reduction in fatalities through
informed, targeted interventions and policy implementations. Pelinovsky et al. explore the
application of the logistic equation to understand COVID-19’s spread. The benefits of such
a study include more insight into the dynamics of the pandemic and the virus’s progression,
enabling enhanced forecasting and management strategies [17]. As a fundamental concept
in population dynamics, the logistic equation provides a straightforward yet powerful
tool to model growth processes like epidemics. The related work in this paper could offer
new perspectives and more accurate and simplified models for predicting the spread of
COVID-19, which is crucial for planning and implementing timely interventions, thereby
aiding in controlling the pandemic more effectively.

Data-driven learning algorithms such as deep learning have been employed to learn
more about the patterns of COVID-19 distribution. They are being used to identify, ana-
lyze, and predict COVID-19. A neural network (NN) is a type of deep learning, universal
approximator [18] in a continuous function. An example of an NN is artificial neural
networks (ANNs), which have been employed to learn approximate solutions to differ-
ential equations. It was used to restrict the residual to create differential equation solvers
and parameter estimators [19]. One of the major types of ANN is the Physics-Informed
Neural Network (PINN), specifically designed to incorporate physical laws and princi-
ples (often represented by differential equations) into the learning process, enabling the
model to make more accurate and generalizable predictions. It is also designed to subject
the created neural network to datasets and control constraints during training [20]. It is
used to learn and identify parameters in an ordinary differential equation. For example,
Dandekar et al. in [21] applied PINN to the Susceptible, Exposed, Infected, Removed
(SEIR model) to scrutinize the spread of COVID-19 after quarantine. The advantage of
using PINN, as illustrated in their paper, is its inherent ability to incorporate the govern-
ing principles and dynamics of disease spread, represented by the SEIR model, directly
into the learning process. The PINN algorithm was utilized to identify time-dependent
parameters of integer and fractional-order epidemiological models [22]. The key advantage
of employing PINN in their study is its unique ability to discern intricate relationships
and dynamic patterns inherent in epidemiological models with heightened accuracy and
efficiency. Torku et al. use the PINN algorithm to learn the epidemiological parameters
of a model for COVID-19 vaccine efficacy [23]. The deployment of the PINN algorithm in
this study lies in its inherent ability to absorb the foundational epidemiological parameters
directly, enabling the model to generate predictions that are more coherent with the known
epidemiological behaviors and constraints of COVID-19. This approach yields enhanced
insight and more reliable predictions regarding vaccine efficacy, which is paramount in
developing and deploying effective vaccines, ultimately contributing to more informed
and strategic vaccination campaigns and public health initiatives against COVID-19.

Long et al. applied Physics-Informed Neural Network (PINN) to the SIRD model,
focusing on identifying and predicting time-varying parameters of COVID-19 [24]. The
deployment of PINN in this scenario presented notable advantages, allowing for enhanced
accuracy in predicting the dynamics of the spread of the virus and its impact. Olumoyin et al.
used the epidemiological-informed neural network (EINN), developed through PINN,
to learn the time-varying transmission rate for the COVID-19 pandemic in various mit-
igation scenarios [25]. The primary advantage of utilizing EINN in their study was its
proficient ability to adapt and learn from varying transmission scenarios, offering enhanced
and precise insights into the pandemic’s transmission dynamics under different mitigation
measures. This methodology allows the understanding of asymptomatic COVID-19 models
that enable the development of more informed, targeted, and effective strategies to combat
the spread of the virus amidst varying levels of interventions and mitigation approaches.
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The fractional SEIR model and data-driven methods were used to predict the COVID-19
dynamics of the Omicron variant [26]. The innovative aspect of using a fractional SEIR
model is its capability to capture more complex dynamics and nuances of disease trans-
mission compared to the classical SEIR model, offering enhanced realism and flexibility in
modeling. By integrating this model with data-driven methods, the research could yield
more accurate and insightful predictions on the Omicron variant’s behavior and trajectory.
Fokas et al. predict the time that a plateau will be reached, as well as the cumulative number
of individuals reported to be infected with COVID-19 using mathematical models such as
the classical logistic model, rational model, birational model, and a deep learning model
called BILSTM using an error-minimizing algorithm [9]. Unfortunately, the classical logistic
model did not provide an accurate prediction and underestimated the cumulative number
of individuals reported to be infected at time t. The major limitation of the classical logistic
model is that it could not capture various time-dependent factors in the data. After exper-
imenting with more than 50 different time-dependent forms that could capture various
time-dependent factors in the data, they introduced two novel mathematical models called
rational and birational models. These two models provide an accurate prediction. However,
these models fail when predicting the cumulative number of individuals infected with
COVID-19 in some countries with partial mitigation measures. Thus, this paper seeks to
make the following significant contributions:

1. Our research objective is to develop algorithms and a model that will capture various
time-dependent factors to enhance the accuracy of predictions regarding individuals
infected with the COVID-19 Omicron variant.

2. We introduce a deep learning neural network algorithm called Logistic-Informed
Neural Network (LINN), which is motivated by using a physics-informed neutral
network (PINN) [20] on logistic differential equations. The LINN algorithms are a
viable choice to learn the time-varying transmission rate and identify the government’s
effects on mitigation measures in the data. Some well-known logistical data regarding
infectious diseases are added to the LINN loss function.

3. The LINN algorithm was employed to learn the parameters of the three mathematical
models to check if these models can improve in predicting the daily and cumulative
number of individuals infected with the COVID-19 Omicron variant in a country with
partial mitigation measures.

4. We employ cubic spline interpolation to create enough training data to detect hidden
characteristics in the training data.

5. Given the limitations of the rational and birational models in accurately predicting
the number of COVID-19 infections in countries with partial mitigation measures, we
introduce the time-series model. This model leverages neural network techniques to
capture the dynamic, time-dependent patterns present in the data. This model aims to
enhance predictions’ accuracy for partial and strict mitigation measures, specifically
for the COVID-19 Omicron variant infections.

6. The learned time-varying parameters and the analytical solutions of the mathematical
models are used to predict the day and time that a plateau will be reached, as well
as the cumulative number of people who have been reported to be infected with the
COVID-19 Omicron variant in a given country.

This paper is structured as follows. Section 2 introduces the materials and models
used in the study. Section 3 delves into the Logistic-Informed Neural Network (LINN),
a model specifically designed for analyzing time-varying and time-series transmission
rates. The findings of this study, along with relevant discussions, are presented in Section 4.
Finally, Section 5 concludes the paper by summarizing the main points and outcomes of
the research.
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2. Materials and Methods
2.1. Mathematical Models

In the discipline of epidemiology, modeling practice may be traced back to the early
part of the twentieth century. The theoretical foundations of contemporary epidemiology
are based on modeling disease propagation and demonstrating that the disease will become
extinct if particular circumstances are met. The infectious diseases caused by the COVID-19
Omicron variant, where the disease is transmitted from one host to another, are examined in
this section. Kermack and McKendrick are credited with developing some of the first known
mathematical models [11]. They evaluated several models, called SIR models, without vital
dynamics. These models are based on healthy, infected, and immune individuals living in
a stable population (no births or deaths).

Let us assume that we have a constant number of people, N, and that they are sep-
arated into the three states: susceptible (S), infected (I), and recovered (R). This sim-
ple compartmentalization captures individuals’ fundamental stages during an outbreak.
The transition from susceptible to infected and then from infected to recovered is based on
real-world observations. When a susceptible person comes into contact with an infected
person, they may become infected. After some time, an infected person will either recover
or, in more detailed models, may pass away. The SIR model uses ordinary differential
equations, which can be solved both analytically (in simpler cases) and numerically (for
more detailed or extended models). This allows for both general insight into the behavior
of outbreaks and detailed predictions for specific cases. The model takes into account the
basic dynamics of disease transmission. The rate at which susceptible individuals become
infected depends on the contact rate with infected individuals, which is captured by the
αSI term. Infected individuals do not stay infected indefinitely. They either recover or pass
away after some time. The SIR model accounts for this with the recovery rate, Θ. Therefore,
the SIR model has the following system of ordinary differential equations.

dS(t)
dt

= −α(t)S(t)I(t)
N

− Γ(t)R(t)

dI(t)
dt

=
α(t)S(t)I(t)

N
−Θ(t)I(t)

dR(t)
dt

= Θ(t)I(t) + Γ(t)R(t)

(1)

The constant α(t) represents the transmission rate at time t, Γ(t) represents the rate of
loss of immunity at time t, and Θ(t) represents the recovery rate at time t. Let us consider
the simplest of these models, in which an infected individual remains infectious, which
captures the transmission rate between susceptible and infected individuals. The model
has the following system of ordinary differential equations.

dS(t)
dt

= −α(t)S(t)I(t)
N

dI(t)
dt

=
α(t)S(t)I(t)

N

(2)

Since N = S(t) + I(t), the above model is reduced to a simple logistic differential
equation model.

dI(t)
dt

= α(t)I(t)
(

1− I(t)
Np

)
(3)

Therefore, the ordinary differential Equation (3) satisfies the daily and cumulative
number of individuals reported to be infected by Omicron at time t, where I(t) represents
the daily and the cumulative number of individuals reported to be infected by Omicron at
time t, Np is the constant parameter, and α(t) is the time-dependent function. The constant
and the function α(t) depend on the fundamental properties of the particular virus and the
daily effect of the various steps taken by the country to limit the spread of the virus [9].
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2.1.1. Learning Time-Varying Transmission Rate

The fact that α(t) is time-dependent indicates various time-dependent elements, in-
cluding integrating the effect of public health efforts and the public’s response to the
actions [27], and the effect of various government policies to prevent the virus from spread-
ing further also depends on t [9]. Early in COVID-19 transmission, the key public health
activity was lockdown, followed by early detection of infectives, social distancing, contact
tracing, masking, etc. Suppose α(t) is replaced by a constant k. Then the analytical solution
to (3) becomes

I(t) =
Np

1 + γe−kt (4)

I represents the daily and the cumulative number of Omicron-infected cases at time
t, k indicates the growth rate of Omicron cases, and Np represents the total number of
Omicron-infected cases in the final phase of the epidemic.

Let ud differentiate Equation (3) with respect to t where α(t) equals k. We obtain

d2 I(t)
dt2 = k

dI(t)
dt

(
1− 2I(t)

Np

)
(5)

Therefore, when d2 I(t)
dt2 = 0, then dI(t)

dt = 0 or I(t) = Np
2 , where I(t) = Np

2 is called the
infection point, meaning the point where the growth curve changes its concavity.

• When I < Np
2 , it is concave upward, which means that dC

dt increases with time.

• When I > Np
2 , it is concave downward, meaning that dC

dt decreases with time.

Now, putting I(t) = Np
2 into Equation (3), where α(t) is k, we have

dI(t)
dt

=
kNp

4
(6)

where dI(t)
dt =

kNp
4 is the growth rate at its maximum point.

Now putting I = Np
2 into I = Np

1+γe−
∫ T

0 k dt
, we have

1 + γe−
∫ T

0 k dt = 2

then

T =
ln(γ)

k

where T = ln(γ)
k is the estimation of the time at which the epidemic reaches its maximum

growth rate. Therefore, the slope of Equation (6) is symmetrical at the inflection point (peak
time) for the value of I = Np

2 defined as T = ln(γ)
k , where the curve assumes its sigmoid

shape. When the values of I(t) are less than Np, then

dI(t)
dt

= kI(t),

meaning that the daily and the cumulative number of individuals reported to be infected
by a viral epidemic will grow exponentially. The epidemic’s peak marks a turning point
regarding the total number of infected cases. After this point, a basic exponential growth
curve can no longer represent the epidemic’s time evolution since the number of infected
people is not growing at this point. Instead, during this phase, the number of daily cases of
infection will decrease. The constant formula is enough to describe how I(t), most viral
epidemics, change over time. For example, in [28], the constant model provides a good fit
for COVID-19 pandemic data and makes accurate predictions. The parameters k, γ, and
Np generally remain unchanged if we use a short series of existing data of the Omicron
variant, that is, using the subset of the existing data, but when considering a long series of
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existing data, where the remaining available data are added, the constant model does not
make accurate predictions, but rather, the constant model underestimates I(t) [9].

These results raise a question [9]. Since the constant model gives a lower bound of
I(t), can there be a mathematical model that can give an upper bound of I(t) and capture
the remain data that will provide a good fit and more accurate prediction of a long series of
existing data? After testing more than 50 distinct forms of α(t), Fokas et al [9] found two
innovative formulae, called rational and birational, that address the question. The analytical
solution for Equation (3) gives

I(t) =
Np

1 + γe−η (7)

where
η =

∫
α(t)dt (8)

Given that α(t) = ab
1+bt , which is an algebraic function, Equation (8) becomes

η =
∫ ab

1 + bt
dt = ln|1 + bt|a (9)

Therefore,

I(t) =
Np

1 + γ(1 + bt)−a , (10)

where (10) is called the rational model with Np, γ, b, and a as the parameters.
Given that

α(t) =

{ ab
1+bt , t ≤ M
a1b1

1+b1t
1

1+(1−(d1/Np))(1+b1t)−a1
, t > M

(11)

which is a piece-wise function, then Equation (11) becomes

I(t) =


d

1+γ(1+bt)−a , t ≤ M
d

1+γ(1+bM)−a − d1
1+γ1(1+b1 M)−a1

+ d1
1+γ1(1+b1t)−a1

, t > M
(12)

where (12) is called the birational model and a, a1, b, b1, d, d1, γ, and γ1 are the parameters.
M is a constant parameter in the vicinity of T.

2.1.2. Learning Time-Series Transmission Rate

Equation (3) can also be referred to as a Riccati equation, as mentioned in [9], since
it is defined by the time-dependent function α(t) and the constant parameter Np. A
Riccati equation is an equation that has a single parameter. When it comes to simulating
infectious diseases mathematically, the Riccati equation with constant coefficients appears
in numerous places. For example, the mathematical model’s Riccati equation with constant
coefficients describes the dynamic relationship between parasites and their hosts [29].
Taking α(t) as a subject of the formula in Equation (3), we have

α(t) =
dI(t)

dt

I(t)
(

1− I(t)
Np

) (13)

The fact that α(t) depends on time reflects several time-dependent factors, such as the
effects of the government’s different actions depending on t, and also includes the effects of
public health actions and how people reacted to them. For example, lockdown was the first
public health precaution used early in the COVID-19 outbreak. Other actions include things
like social isolation, contact tracing, masking, and early infection identification. These show
that there may be multiple forms of α(t). Therefore, α(t) was learned as a time series; this
was accomplished by guiding the deep learning neural network toward learning the form
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of alpha from the data. As a result, the time series model is neural network-based, where
the neural network learns every piece of vital information of α(t) going on in the data.

2.2. Deep Learning Algorithms

Suppose we want to use a deep neural network to solve any problem. In that case,
the first step is to decide which of the many different neural network architectures will
perform best for the particular problem domain. Since deep learning and deep neural
networks [30] are known to be universal approximators of continuous functions, these
techniques have found applications in function approximation tasks. Hyperparameter
tuning, which includes figuring out the number of layers, neurons per layer, learning
rate, activation function, and a loss function optimizer to use, is essential in training a
neural network. Approximate solutions to differential equations have been learned using
a feedforward neural network (FNN). By restricting the residual, FNN was utilized [20]
to build differential equation solvers and parameter estimation. The clinical outcome of
COVID-19 patients was predicted using FNN combined with the conventional Cox model
for survival analysis [31]. The feedforward neural network (FNN) is an artificial neural
network with a simplistic architecture and uncomplicated node connections that are not
cyclic. FNN is used to estimate the target function by recursively applying a number of
activation functions to the input and then producing a value or vector that strongly matches
the target values. Input, hidden, and output layers make up the network. The input layer
receives data, applies some neurons, and then propagates the results to the hidden layers.
Input neurons make up the input layer, introducing training data into the network for later
processing by hidden layers. Between the input layer and output layer are hidden layers
where some linear or non-linear activation functions are applied to transform the data.

The weighted sum of the input data through the activation function is generated in
the first hidden layer and propagated through the other hidden layers. Each output from
each hidden layer is given a bias term. In order to obtain the desired result, the output
layer processes the net output from the final hidden layer. If the task is a classification
task, the output layer will provide discrete outcomes; however, if the goal is a regression
task, the output layer will produce a continuous-valued outcome to produce the desired
output [24]. The mathematical formula that changes the data from one layer to the next is
defined as [32]

yk+1
n =

zk

∑
m

Wk
m,n σk−1(yk

m) + bk

where yk
m, m = 1, 2, . . . , zk denotes the output of the mth node in the (k − 1)th layer, σ

represents the activation function, zk represents the number of neurons in the kth layers, bk

are the bias in the kth layers, and Wk
m,n are the weights between the nodes mth and nth. This

study used the hyperbolic tangent function as the activation function.

σ(y) =
ey − e−y

ey + e−y = tanh(y)

The output layer’s values are used to generate a loss function, which is used to estimate
the model’s error. Optimizers like Adam or gradient descent are used to minimize the loss
function so that the result is near what we observed. Optimizer and loss function choices
vary depending on the problem at hand.

Physics-Informed Neural Network (PINN)

Physics-Informed Neural Networks are universal function approximators that can
incorporate any physical principles that govern a given dataset into the learning process
and can be characterized by partial differential equations. The Physics-Informed Neural
Network (PINN), which was first proposed in [20], is one of the most effective data-driven
deep neural networks in recent years. It was developed to learn the differential system’s
parameters from data (inverse problem) or use it as a differential system solver (forward
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problem). The Physics-Informed Neural Network (PINN) is a data-driven algorithm for
approximating differential equation solutions and identifying parameters. It could use
any neural network architecture, such as the FNN, as the main framework. The activa-
tion functions and optimization methods used in PINN are the same as those used in
conventional deep learning techniques. However, the loss function, composed of initial
values, boundary conditions, and physical constraints, is the most intriguing aspect of
this algorithm. The neural network’s outputs are constrained to satisfy the system of
differential equations by penalizing differential equation residuals into the loss function.
Let us consider a nonlinear partial differential equation of the general form

∂v(t)
∂t

+ Φ(v(t, η)) = 0, t ∈ [0, T] (14)

where v(t) denotes the solution, Φ[.; η] is a non-linear differential operator, φ is a subset on
the domain of R, and the model parameter η is fixed. Therefore, the loss is minimized to
obtain weight and biases for the neural network. This is called forward PINN.

3. Logistic-Informed Neural Network (LINN) for Time-Varying Transmission Rate

The Physics-Informed Neural Network (PINN), which has a Feedforward Neural
Network architecture, is the best way to learn the parameters of infectious disease models.
Given existing models’ limitations, the Logistic-Informed Neural Network (LINN) is intro-
duced. This model is inspired by applying PINN to logistic models, intending to surmount
the constraints inherent to conventional statistical techniques. The LINN algorithm is
specifically designed to learn the time-varying transmission rate and identify from data
the effects of the wide range of different measures that the given country has developed to
prevent the viral infection of Omicron from spreading. We delve into the intricate technical
details of LINN’s implementation, elaborating on its unique computational processes and
algorithms and illustrating how it stands out in learning the time-dependent function de-
pending on the essential characteristics of the particular virus and the daily and cumulative
effect of the variety of different mitigation measures taken by the given country for the
prevention of the spread of the viral infection from the available data. The comparative
analysis elucidates LINN’s superiority in handling specific data types and scenarios, un-
derscoring its practical applicability and impact in real-world situations. However, despite
its advancements, LINN may have limitations, including potential challenges with data
dependency, interpretability, and adaptability to ever-evolving viral strains and diverse
preventive measures. It might also face difficulties in generalizing findings across varied
populations and healthcare systems and may require continuous refinement and validation
to maintain its reliability and accuracy.

We employed four hidden layers with 64 neurons each in all of the simulations
discussed in this study, and the training loss was minimized in 50,000 iterations. The hy-
perbolic tangent function is the activation function for the hidden and output layers. In our
study, the loss function of LINN and the fundamental framework, which is FNN, are shown
in Figure 1. This figure divides the LINN’s loss function into two components called REloss
and MEloss. Subtracting the right side from the left side of the logistic model Equation (4)
and the analytical solution produces the residuals represented by the REloss. The mean
squared error between the outputs of the neural network and the data is denoted as MEloss.
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Figure 1. Logistic-Informed Neural Network schematic diagram with non-linear time-varying
transmission rate.

MSE =
1
X

X

∑
n=1
||I(tn)− Ipred(tn)||22 +

1
X

2

∑
i=1

X

∑
n=1
||Li(tn)||22

where the residual Li, i = 1, 2 is as follows:

L1 =
dI(t)

dt
− AI(t)

(
1− I(t)

Np

)

L2 = I(t)−
Np

1 + γe−
∫

Adt

where A represents the time-varying transmission rate.

3.1. Parameter Identification Algorithms

This section will discuss the Logistic-Informed Neural Network (LINN) algorithms
for learning the parameters of the constant, rational, and birational models and the time-
varying transmission rate.

3.1.1. Constant Model

We provide the LINN Algorithm 1 to learn the parameters of the constant model. We
set α(t) = k in (8), which results in a constant model. The analytical solution containing three
parameters is learned and obtained. The learned daily and cumulative infection solution
is matched against the daily and cumulative infection data. We implement Algorithm 1
using publicly available Omicron data. The output of LINN is the learned solution of the
constant model denoted by I(tn; δ; θ), n = 1, . . . , X, where δ represents the neural network
weights and biases and θ represents the constant model solution parameters. X is the
number of the training set. A cubic spline is used to create the training data, represented by
Î(tn), n = 1, . . . X.
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Algorithm 1 LINN algorithm for constant model.

1: Construct LINN for Constant Model
2: Specify the input: tn, n = 1, . . . , X

Initialize LINN parameter: δ
Initialize Constant model parameter: θ = (k, η, Np)
Output layer: I(tn; δ; θ), n = 1, . . . , X

3: Specify the training set
Training data: using cubic spline to generate Î(tn), n = 1, . . . , X given from the

dataset.
Split data into x% training data and (100− x)% testing data
l = length(data)
Train = data[0 : l ∗ x%]; Test = data[l ∗ x% : l]

4: Train the neural network
Specify an MSE loss function

MSE =
1
X

X

∑
n=1
||I(tn; δ; θ)− Î(tn)||22 +

1
X

2

∑
i=1

X

∑
n=1
||Li(tn; δ; θ)||22

Minimize the MSE loss function: compute argmin{δ;θ}(MSE) using Adam Optimizer.
5: Return LINN solution

I(tn; δ; θ), n = 1, . . . , X
Parameters: Np, k, η

We notice that training data for all compartments in the constant model are unavailable;
however, the constant model residual is included in the MSE loss function, which allows
LINN to capture the interactions between the compartments. The LINN Algorithm 1 for
learning the optimal parameters of the constant model is shown above. The MSE loss
function for LINN with a time-varying transmission rate is as follows:

MSE =
1
X

X

∑
n=1
||I(tn; δ; θ)− Î(tn)||22 +

1
X

2

∑
i=1

X

∑
n=1
||Li(tn; δ; θ)||22

where the residual Li, i = 1, 2 is as follows:

L1 =
dI(tn; δ; θ)

dt
− kI(tn; δ; θ)

(
1− I(tn; δ; θ)

Np

)

L2 = I(tn; δ; θ)−
Np

1 + γe−ktn

3.1.2. Rational Model

We implement the LINN Algorithm 2 to learn the parameters of the rational model. We
set α(t) = ab

1+bt in (8), which we call the rational model. The analytical solution containing
four parameters is learned and obtained. The learned daily and cumulative infective
solution is matched against the daily and cumulative infective data. The output of LINN
is the learned solution of the rational model denoted by I(tn; δ; θ), n = 1, . . . , X, where
δ represents the neural network weights and biases and θ represents the rational model
solution parameters. X is the number of the training set. The same network also produces
the time-varying transmission rate denoted by α(tn; δ; θ) = ab

1+btn
, n = 1, . . . , X.
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Algorithm 2 LINN algorithm for rational model with time-varying transmission rate.

1: Construct LINN for Rational Model
Specify the input: tn, n = 1, . . . , X
Initialize LINN parameter: δ
Initialize Rational model parameter: θ = (a, b, η, Np)

Output layer: I(tn; δ; θ) and α(tn; δ; θ) = ab
1+btn

, n = 1, . . . , X
2: Specify the training set

Training data: using cubic spline to generate Î(tn), n = 1, . . . , X given from the
dataset.

Split data into x% training data and (100− x)% testing data
l = length(data)
Train = data[0 : l ∗ x%]; Test = data[l ∗ x% : l]

3: Train the neural network
Specify an MSE loss function

MSE =
1
X

X

∑
n=1
||I(tn; δ; θ)− Î(tn)||22 +

1
X

2

∑
i=1

X

∑
n=1
||Li(tn; δ; θ)||22

Minimize the MSE loss function: compute argmin{δ;θ}(MSE) using Adam Optimizer.
4: Return LINN solution

I(tn; δ; θ), n = 1, . . . , X
α(tn; δ; θ), n = 1, . . . , X
Parameters: a, b, Np, η

The cubic spline is used to create the training data, represented by Î(tn), n = 1, . . . X.
The LINN Algorithm 2 for learning the optimal parameters of the rational model is shown
above. The MSE loss function for LINN with a time-varying transmission rate is as follows:

MSE =
1
X

X

∑
n=1
||I(tn; δ; θ)− Î(tn)||22 +

1
X

2

∑
i=1

X

∑
n=1
||Li(tn; δ; θ)||22

where the residual Li, i = 1, 2 is as follows:

L1 =
dI(tn; δ; θ)

dt
− α(tn; δ; θ)I(tn; δ; θ)

(
1− I(tn; δ; θ)

Np

)

L2 = I(tn; δ; θ)−
Np

1 + γ(1 + btn)−a

3.1.3. Birational Model

We introduced the LINN Algorithm 3 to learn the parameters of the birational model.
We set

α(t) =

{ ab
1+bt , t ≤ M
a1b1

1+b1t
1

1+(1−(d1/Np))(1+b1t)−a1
, t > M

in (8), which we call the birational model. The analytical solution containing eight pa-
rameters is learned and obtained. The learned daily and cumulative infective solution is
matched against the daily and cumulative infective data. The output of LINN is the learned
solutions of the birational model denoted by I(tn; δ; θ), n = 1, . . . , X. The same network
also produces the time-varying transmission rate denoted by

α(tn; δ; θ) =


ab

1+btn
, tn ≤ M

a1b1
1+b1tn

1
1+(1−(d1/Np))(1+b1tn)

−a1
, tn > M

, n = 1, . . . , X.

The cubic spline is used to create the training data, represented by Î(tn), n = 1, . . . X.
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Algorithm 3 LINN algorithm for birational model with time-varying transmission rate.

1: Construct LINN for Birational Model
Specify the input: tn, n = 1, . . . , X
Initialize LINN parameter: δ
Initialize Birational model parameter: θ = (a, b, η, d, a1, b1, η1, d1)
Output layer: I(tn; δ; θ) and

α(tn; δ; θ) =

{ ab
1+bt , t ≤ X

a1b1
1+b1tn

1
1+(1−(d1/Np))(1+b1tn)

−a1
, t > X

2: Specify the training set
Training data: using cubic spline to generate Î(tn), n = 1, . . . , X given from the

dataset.
Split data into x% training data and (100− x)% testing data
l = length(data)
Train = data[0 : l ∗ x%]; Test = data[l ∗ x% : l]

3: Train the neural network
Specify an MSE loss function

MSE =
1
X

X

∑
n=1
||I(tn; δ; θ)− Î(tn)||22 +

1
X

3

∑
i=1

X

∑
n=1
||Li(tn; δ; θ)||22

Minimize the MSE loss function: compute argmin{δ;θ}(MSE) using Adam Optimizer.
4: Return LINN solution

I(tn; δ; θ), n = 1, . . . , X
α(tn; δ; θ), n = 1, . . . , X
Parameters: a, b, d, η, a1, b1, d1, η1

The MSE loss function of LINN for the birational model with a time-varying transmis-
sion rate is as follows:

MSE =
1
X

X

∑
n=1
||I(tn; δ; θ)− Î(tn)||22 +

1
X

3

∑
i=1

X

∑
n=1
||Li(tn; δ; θ)||22

where the residual Li, i = 1, 2, 3 is as follows:

L1 =
dI(tn; δ; θ)

dt
− α(tn; δ; θ)I(tn; δ; θ)

(
1− I(tn; δ; θ)

Np

)
L2 = I(tn; δ; θ)− d

1 + γ(1 + btn)−a tn ≤ X

L3 = I(tn; δ; θ)−
(

d
1 + γ(1 + bX)−a −

d1

1 + γ1(1 + b1X)−a1
+

d1

1 + γ1(1 + b1tn)−a1

)
tn > X

3.2. Logistic-Informed Neural Network (LINN) for Time-Series Transmission Rate

We offer a Logistic-Informed Neural Network (LINN) with two networks, shown in
Figure 2. The first network learned the constant parameter for the daily and cumulative
initial value of the Omicron infection. The second network learned the form of the time-
dependent function that helps capture the various time-dependent factors or elements,
including the impact of public health actions and the public response to the actions in
preventing the spread of Omicron. The LINN Algorithm 4 is an excellent choice for
learning the time-series transmission rate (the form of the time-dependent function in the
transmission of Omicron), which is robust enough to adjust to whatever information is
present in the data. We employed four hidden layers with 64 neurons each to achieve
good accuracy in the neural network. As a result, the training loss was minimized using
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50,000 epochs. The hyperbolic tangent function is the activation function for the hidden
and output layers. The learned daily and cumulative infective solution is matched against
the daily and cumulative infective data.

Algorithm 4 LINN algorithm for time-series model with time-series transmission rate.

1: Construct LINN
Specify the input: tn, n = 1, . . . , X
Initialize LINN parameter: δ
Initialize Time-series model parameter: θ = Np
Output layer: I(tn; δ; θ), n = 1, . . . , X

2: Construct neural network: α
Specify the input: tn, n = 1, . . . , X
Initialize LINN parameter: Φ
Output layer: α(tn; Φ), n = 1, . . . , X

3: Specify the training set
Training data: using cubic spline to generate Î(tn), n = 1, . . . , X given from the

dataset.
Split data into x% training data and (100− x)% testing data
l = length(data)
Train = data[0 : l ∗ x%]; Test = data[l ∗ x% : l]

4: Train the neural network
Specify an MSE loss function

MSE =
1
X

X

∑
n=1
||I(tn; δ; θ)− Î(tn)||22 +

1
X

1

∑
i=1

X

∑
n=1
||Li(tn; δ; θ, Φ)||22

Minimize the MSE loss function: compute argmin{δ;θ}(MSE) using Adam Optimizer.
5: Return LINN solution

I(tn; δ; θ), n = 1, . . . , X
Parameters: Np

6: Return Time-series alpha:
α(tn; Φ), n = 1, . . . , X

Logistic-Informed Neural Network (LINN) is adapted for the logistic differential
Equation (3), where the Mean Square Error (MSE) of this neural network’s loss function
includes the known logistic dynamics. At the same time, the time-series transmission rate
detects various time-dependent factors in the Omicron-infected data. LINN’s output is the
model’s learned solution denoted by I(tn; δ; θ), n = 1, . . . , X, where δ represents the neural
network weights and biases and θ represents the time-series model solution parameter.
X is the number of the training set. The second network representing the time-series
transmission rate is denoted by α(tn; Φ), n = 1, . . . , X. The parameter Φ represents the
weights and biases of the network. Cubic spline is used to create the training data, which are
represented by Î(tn), n = 1, . . . X. We notice that training data for all compartments in the
constant model are unavailable; however, the logistic model residual is included in the MSE
loss function, which allows LINN to capture the interactions between the compartments.

The MSE loss function for LINN with the time-series transmission rate is as follows:

MSE =
1
X

X

∑
n=1
||I(tn; δ; θ)− Î(tn)||22 +

1
X

1

∑
i=1

X

∑
n=1
||Li(tn; δ; θ)||22

where the residual Li, i = 1 is as follows:

L1 =
dI(tn; δ; θ)

dt
− α(tn; Φ)I(tn; δ; θ)

(
1− I(tn; δ; θ)

Np

)
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Figure 2. Schematic diagram of the Logistic-Informed Neural Network with non-linear time-series
transmission rate.

3.3. Error Metrics

Error metrics for data-driven simulations are discussed in this section. It is examined
why and when to employ certain error measures. Root Mean Squared Error (RMSE), Mean
Absolute Percentage Error (MAPE), and Explained Variance (EV) are the metrics used
to assess the effectiveness of regression-based models. The values of RMSE are used to
compare many models and choose the best one based on the lowest values. Suppose I
denotes the real data and Î is the predicted data from the model. Then the following error
metrics are used in our data-driven simulation:

1. Root Mean Squared Error (RMSE): The formula for Root Mean Squared Error is given
by

RMSE =

√√√√ 1
N

N

∑
j=1

(Ij − Î)2

2. Mean Absolute Percentage Error (MAPE): The formula for Mean Absolute Percentage
Error is given by

MAPE =
100
N

N

∑
j=1

∣∣∣∣ Ij − Îj

I

∣∣∣∣%
3. Explained Variance (EV): For nonlinear regression, the EV is the ideal. The formula

of Explained Variance is given by

EV = 1− Var(I − Î)
Var(I)

.
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3.4. Data and Data Preprocessing

The data for the Omicron variant for China, Italy, and Portugal were obtained from
the World Health Organization (WHO) [33]. The data include daily new infected cases,
and we consider 160 days from 25 March to 31 August 2022. Furthermore, the cumulative
Omicron data were also considered and obtained via calculation. According to WHO [34],
the Omicron(B.1.1.529) variant includes BA.1, BA.2, BA.3, BA.4, and BA.5. As a result, it is
observed that the daily new infected cases and cumulative number of individuals infected
with COVID-19 in these countries are different. In March 2022, the Omicron variants BA.4
and BA.5 were detected in Europe, where the proportion increased rapidly. According
to [35], the SARS-CoV-2 Omicron variants BA.4 and BA.5 dominated and increased in
Portugal, with a proportion of around 87%, followed by a high proportion in Italy, Germany,
and some other countries in Europe [36]. The Omicron variants were discovered in China
in December 2021 and later dominated and spread rapidly since February 2022, according
to the National Health Commission of the People’s Republic of China [37].

The daily Omicron data are preprocessed by implementing several data transformation
and normalization steps to ensure its suitability for modeling. After figuring out the rolling
mean to smooth out short-term changes, the data are reshaped into a two-dimensional array,
leaving out the first six elements so it can be used in the next stages of processing. The first
six elements of the original data are also reshaped similarly. Subsequently, these reshaped
segments are vertically stacked to form a modified data array, ensuring that the initial
segments of the original data are included. This modified data structure is advantageous
as it maintains the integrity of the original data while integrating the smoothed elements,
providing a balanced and coherent dataset for analysis. In the final preprocessing step,
the data are normalized to scale between 0 and 1, using a min–max normalization technique.
Normalizing the data is crucial as it brings all the variables to a comparable scale, preventing
any one variable from disproportionately influencing the model due to its scale. This
transformation maintains the relative dispersion of the data points, ensuring more stable
and meaningful analysis results. The resulting new data array is now well-suited for model
development, offering a refined and well-scaled representation of the initial Omicron data.
The cumulative Omicron data are preprocessed by implementing several procedures to
refine the data and prepare it for subsequent modeling tasks. Initially, the data for time
(t) and total cases (I) are reshaped into one-dimensional arrays, which is instrumental
in streamlining the data structure and facilitating easier manipulation and analysis in
the subsequent stages. Post-reshaping, the data undergo normalization, a pivotal step in
scaling the data within a specific range, between 0 and 1. This normalization is executed
through a min–max scaling technique, where each data point is transformed based on the
minimum and maximum values within the dataset. This process is crucial as it mitigates
the risk of any variable disproportionately influencing the model due to its original scale,
ensuring more reliable and accurate model outcomes.

After normalization, cubic spline interpolation is leveraged to enrich the data points
available for training. This method is renowned for generating additional data points
within the dataset’s range, enhancing the model’s access to information during the training
phase. In this specific case, it creates a smoother curve by fitting a cubic polynomial between
each pair of data points in the new data array and subsequently generates 1000 new data
points for 0 to 160. This interpolation makes the dataset more full and smooth. This lets
the model pick up more subtle and nuanced patterns in the daily and cumulative Omicron
data, which improves the accuracy and reliability of the analysis and modeling tasks that
come next. The processed cumulative infected data were split into 70% and 30% training
and validation using random splitting and passed into LINN to learn the parameters of the
mathematical models.
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4. Results and Discussion

The data simulation results of the mathematical models, the prediction of the time
that a plateau will be reached, and the cumulative number of individuals reported to be
infected by the Omicron variant for China, Italy, and Portugal are presented in this section.

4.1. Parameter Identification and Data-Driven Simulations

The parameters of the mathematical models are learned using the validation data.
For reliability and accuracy of the learned parameters, the LINN is run five indepen-
dent times to quantify the uncertainty in the learned parameters. The situation with
epidemics in different countries is affected by many external factors, such as the number of
reports, the measures taken to deal with the epidemic, population movement measures, etc.
Therefore, our model considers these factors, making our models suitable for prediction.
The learned parameters from the testing data and the analytical solution to the mathemati-
cal models are used in predicting the time that a plateau will be reached and the cumulative
number of individuals reported to be infected by the Omicron variant in a given country.
The time-series model was used to make a short prediction of the day and the time that a
plateau will be reached, as well as the cumulative number of individuals reported to be
infected by the Omicron variant in a given country. In addition, the relative error in the
numerical solution is used to verify the accuracy of the LINN-learned parameters with re-
spect to the analytical solutions of each model. Therefore, the relative error metric showing
the fitting accuracy of each mathematical model using the LINN algorithm was provided.

Tables 1–3 present the parameters and error metrics showing the four different math-
ematical models applied to the fitting accuracy of the daily Omicron infection data in
China, Italy, and Portugal. The table shows that the birational model has eight parameters,
the rational model has four parameters, the constant model has three, and the time-series
model has one parameter. The error metrics demonstrate that the time-series model is the
best because of its smallest root mean squared error and mean absolute percentage error
values. Furthermore, the time series model has the greatest explained variance, which
shows that the time-series model fits the data better than the rest of the models, making
the model preferable to the other three mathematical models when considering the daily
data of an epidemic. Figures 3a–d, 4a–d, and 5a–d also show the data fitting using the
four mathematical models with the original daily Omicron infective data of China, Italy,
and Portugal. The time-series model better fits the daily Omicron infective data than the
other three mathematical models. The parameter α(t), which indicates the transmission
rate, is critical because it determines the epidemic’s trend. The learned transmission rate
of the rational and birational models in Figures 6a,b, 7a,b, and 8a,b shows an exponential
decay. In addition, it was observed from Figures 5c, 6c, and 7c that the learned time-series
model in this paper was able to capture the form of α(t) and the information going on in
daily Omicron infection. This means that the time-series model will be able to capture any
sudden change in the tendency of newly infected daily cases.

Table 1. Comparative analysis of model parameters and error metrics of daily Omicron infections
in China. This table shows how the four distinct mathematical models are evaluated to determine
the fitting accuracy of the observed data. It also provides insights into the effectiveness of different
models in capturing the infection dynamics. The table illustrates the superiority of the time-series
model in terms of reduced error metrics and higher variance explained, demonstrating its optimal fit
and reliability in modeling the epidemic’s daily data in China.

Parameters Constant Parameters Rational Parameters Birational Parameters Time-Series

N 44,743 N 44,444 d 364,597 N 82,837
k 0.1783 a 26.9413 a 6.3973 RMSE 386
γ 1020.4299 γ 7521.3825 γ 2006.2519 MAPE 0.0202

RMSE 9349 b 0.0101 b 0.02868 EV 0.9997
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Table 1. Cont.

Parameters Constant Parameters Rational Parameters Birational Parameters Time-Series

MAPE 0.2517 RMSE 9142 d1 85,368
EV 0.8558 MAPE 0.2357 a1 6.9310

EV 0.8621 γ1 1501.4508
b1 0.02449

RMSE 2864
MAPE 0.1667

EV 0.9869

Table 2. Comparative analysis of model parameters and error metrics of daily Omicron infections
in Italy. This table shows how the four distinct mathematical models are evaluated to determine
the fitting accuracy of the observed data. It also provides insights into the effectiveness of different
models in capturing the infection dynamics. The table illustrates the superiority of the time-series
model in terms of reduced error metrics and higher variance explained, demonstrating its optimal fit
and reliability in modeling the epidemic’s daily data in Italy.

Parameters Constant Parameters Rational Parameters Birational Parameters Time-Series

N 86,344 N 84,524 d 175,403 N 175,649
k 0.2601 a 24.1175 a 13.5611 RMSE 1035
γ 980.6510 γ 7519.4065 γ 5227.3434 MAPE 0.01607

RMSE 21897 b 0.0177 b 0.02696 EV 0.9995
MAPE 0.2451 RMSE 20385 d1 1,859,879

EV 0.7866 MAPE 0.2302 a1 7.1762
EV 0.8151 γ1 9519.0627

b1 0.07002
RMSE 7833
MAPE 0.1377

EV 0.9728

Table 3. Comparative analysis of model parameters and error metrics of daily Omicron infections in
Portugal. This table shows how the four distinct mathematical models are evaluated to determine
the fitting accuracy of the observed data. It also provides insights into the effectiveness of different
models in capturing the infection dynamics. The table illustrates the superiority of the time-series
model in terms of reduced error metrics and higher variance explained, demonstrating its optimal fit
and reliability in modeling the epidemic’s daily data in Portugal.

Parameters Constant Parameters Rational Parameters Birational Parameters Time-Series

N 11,393 N 1,165,436 d 67,997 N 27,541
k 0.2795 a 0.4740 a 1.3654 RMSE 377
γ 278.8262 γ 8871.1400 γ 5497.3608 MAPE 0.02786

RMSE 4350 b 45.5159 b 6.5310 EV 0.9973
MAPE 0.6676 RMSE 4633 d1 169,104

EV 0.6889 MAPE 0.6111 a1 3.5296
EV 0.6712 γ1 2570.4033

b1 0.2312
RMSE 1633
MAPE 0.1067

EV 0.9575
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(a) (b)

(c) (d)

Figure 3. Simulation results of China daily Omicron data from 25th of March to 31 August 2022.
The graph of daily Omicron infective data and the learned infectives of (a) constant model using
LINN Algorithm 1; (b) rational model using LINN Algorithm 2; (c) birational model using LINN
Algorithm 3; (d) time-series model using LINN Algorithm 4. The figure shows how closely each
model accurately fits the data. Notably, the time-series model fits the observed data better than the
other models, which shows how well it can learn and describe how the Omicron variant infection
spreads in China. This excellent fit shows that the model captures the complex patterns and trends of
daily Omicron infections in China.

(a) (b)

Figure 4. Cont.
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(c) (d)

Figure 4. Simulation results of Italy daily Omicron data from 30th of November 2021 to 8th of
May 2022. (a) The graph of daily Omicron infective data and the learned infectives using the
constant model by the LINN Algorithm 1; (b) the graph of daily Omicron infective data and the
learned infectives using the rational model by the LINN Algorithm 2; (c) the graph of daily Omicron
infective data and the learned infectives using the birational model by the LINN Algorithm 3;
(d) the graph of daily Omicron infective data and the learned infectives using the time-series model
by the LINN Algorithm 4. The figure shows how closely each model accurately fits the data. Notably,
the time-series model fits the observed data better than the other models, which shows how well it
can learn and describe how the Omicron variant infection spreads in Italy. This excellent fit shows
that the model captures the complex patterns and trends of daily Omicron infections in Italy.

(a) (b)

(c) (d)

Figure 5. Simulation results of Portugal daily Omicron data from 5th of April to 11th of September
2022. (a) The graph of daily Omicron infective data and the learned infectives using the constant
model by the LINN Algorithm 1; (b) the graph of daily Omicron infective data and the learned
infectives using the rational model by the LINN Algorithm 2; (c) the graph of daily Omicron
infective data and the learned infectives using the birational model by the LINN Algorithm 3;
(d) the graph of daily Omicron infective data and the learned infectives using the time series model
by the LINN Algorithm 4. The figure shows how closely each model accurately fits the data. Notably,
the time-series model fits the observed data better than the other models, which shows how well
it can learn and describe how the Omicron variant infection spreads in Portugal. This excellent
fit shows that the model captures the complex patterns and trends of daily Omicron infections
in Portugal.
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(a) (b)

(c)

Figure 6. Simulation results of the rate of transmission (α(t)) for the daily Omicron infection in China
using (a) rational model; (b) birational model; (c) time-series model.

(a) (b)

(c)

Figure 7. Simulation results of the rate of transmission (α(t)) for the daily Omicron infection in Italy
using (a) rational model; (b) birational model; (c) time-series model.
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Figure 8. Simulation results of the rate of transmission (α(t)) for the daily Omicron infection in
Portugal using (a) rational model; (b) birational model; (c) rime-series model. This figure illustrates
the learning and representation of the daily Omicron variant’s transmission rate from observed data.
It is evident that the rational and birational models exhibit a trend in α(t) that suggests exponential
decay, whereas the time-series model reveals a different, more varied trend in α(t). This distinction
implies that the time-series model has successfully captured extensive information on the ongoing
mitigation measures evident in the data. Basically, this difference shows that the time-series model
is better at capturing the details and nuances of the data, pointing to its enhanced reliability in
representing the real-world dynamics of the Omicron variant’s spread.

Tables 4–6 present the parameters, plateau days, plateau cases, and error metrics show-
ing the four different models applied to the fitting accuracy of China’s, Italy’s, and Portu-
gal’s cumulative Omicron infection data. In addition, the inflection point T on the tables was
calculated by fitting all the cumulative infection data, namely data up to 31 August 2022.
The table shows that the birational model has eight parameters, the rational model has
four parameters, the constant has three parameters, and the time-series model has one
constant parameter. The error metrics demonstrate that the time-series model is the best
because of its smallest root mean squared error and mean absolute percentage error values.
Furthermore, the time-series model has the greatest explained variance and coefficient of
determination values, which show that the time-series model fits the data better than the
rest of the models, making the model preferable to the other three mathematical models
when considering the cumulative data of an epidemic. Figures 9a–d, 10a–d, and 11a–d also
show the data fitting using the four mathematical models with the original cumulative
Omicron infective data of China, Italy, and Portugal. Again, the time-series model better
fits the cumulative Omicron infective data than the other three mathematical models.
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Table 4. Comparative analysis of model parameters, plateau days, plateau cases, and error metric for
constant, rational, birational, and time-series models for the cumulative Omicron infections in China.
This table shows how the four distinct mathematical models are evaluated to determine the fitting
accuracy of the observed data and predict the plateau days and cases. It also provides insights into
the effectiveness of different models in capturing the infection dynamics. The table illustrates the
superiority of the time-series model in terms of reduced error metrics and higher variance explained,
demonstrating its optimal fit and reliability in modeling the epidemic’s cumulative data in China.

Parameters Constant Parameters Rational Parameters Birational Parameters Time-Series

N 5,544,704 N 6,243,040 d 4,303,425 N 7,320,999
k 0.09262 a 5.0366 a 2.00762 RMSE 1657179
γ 954.2391 γ 1505.8875 γ 2499.9048 MAPE 0.3406

RMSE 1737625 b 0.04187 b 0.3706 EV 0.7808
MAPE 0.3609 RMSE 1664443 d1 6,919,512 plateau(days) 390

EV 0.7565 MAPE 0.3334 a1 3.8630 cases 7,320,636
plateau(days) 122 EV 0.7728 γ1 1202.6787

cases 5,488,350 plateau(days) 282 b1 0.06890
T 74 cases 6,221,115 RMSE 1657179

MAPE 0.3403
EV 0.7792

plateau(days) 317
cases 6,458,279

Table 5. Comparative analysis of model parameters, plateau days, plateau cases, and error metric for
constant, rational, birational, and time-series models for the cumulative Omicron infections in Italy.
This table shows how the four distinct mathematical models are evaluated to determine the fitting
accuracy of the observed data and predict the plateau days and cases. It also provides insights into
the effectiveness of different models in capturing the infection dynamics. The table illustrates the
superiority of the time-series model in terms of reduced error metrics and higher variance explained,
demonstrating its optimal fit and reliability in modeling the epidemic’s cumulative data in Italy.

Parameters Constant Parameters Rational Parameters Birational Parameters Time-Series

N 9,502,524 N 13,375,081 d 73,618 N 13,338,639
k 0.1182 a 2.2535 a 14.8388 RMSE 2604505
γ 953.5184 γ 7499.3847 γ 1998.6043 MAPE 0.3933

RMSE 2605441 b 0.6809 b 4.8570 EV 0.8957
MAPE 0.4474 RMSE 2652081 d1 18,112,258 plateau(days) 381

EV 0.8953 MAPE 0.3515 a1 1.5291 cases 13,337,516
plateau(days) 96 EV 0.8832 γ1 996.7389

cases 9,396,847 plateau(days) 442 b1 1.1285
T 58 cases 13,121,787 RMSE 2651400

MAPE 0.4851
EV 0.8940

plateau(days) 641
cases 15,409,748
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Table 6. Comparative analysis of model parameters, plateau days, plateau cases, and error metric
for constant, rational, birational, and time-series models for the cumulative Omicron infections in
Portugal. This table shows how the four distinct mathematical models are evaluated to determine the
fitting accuracy of the observed data and predict the plateau days and cases. It also provides insights
into the effectiveness of different models in capturing the infection dynamics. The table illustrates the
superiority of the time-series model in terms of reduced error metrics and higher variance explained,
demonstrating its optimal fit and reliability in modeling the epidemic’s cumulative data in Portugal.

Parameters Constant Parameters Rational Parameters Birational Parameters Time-Series

N 2,556,208 N 2,901,213 d 21614 N 3,396,848
k 0.1280 a 3.8416 a 14.5922 RMSE 720538
γ 1954.1612 γ 7499.4426 γ 2498.6008 MAPE 0.4133

RMSE 743396 b 0.1478 b 4.6981 EV 0.8821
MAPE 0.4732 RMSE 723210 d1 18,112,258 plateau(days) 312

EV 0.8490 MAPE 0.4209 a1 3.9029 cases 3,395,243
plateau(days) 94 EV 0.8787 γ1 999.9216

cases 2,526,824 plateau(days) 305 b1 0.0797
T 59 cases 2,892,395 RMSE 723022

MAPE 0.4972
EV 0.8747

plateau(days) 308
cases 2,911,888

(a) (b)

(c) (d)

Figure 9. Simulation results of China cumulative Omicron data from 25th of March to 31 of Au-
gust 2022. The graph of the cumulative Omicron infective data and the learned infectives using
(a) the constant model by the LINN Algorithm 1; (b) the rational model by the LINN Algorithm 2;
(c) the birational model by the LINN Algorithm 3; (d) the time-series model by the LINN Algorithm
4. The figure shows how closely each model accurately fits the data. Notably, the time-series model
fits the observed data better than the other models, which shows how well it can learn and describe
how the Omicron variant infection spreads in China. This excellent fit shows that the model captures
the complex patterns and trends of cumulative data on Omicron infections in China.
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(a) (b)

(c) (d)

Figure 10. Simulation results of Italy cumulative Omicron data from 30th of November 2021 to
8th of May 2022. The graph of the cumulative Omicron infective data and the learned infectives using
(a) constant model; (b) rational model; (c) birational model; (d) time-series model. The figure shows
how closely each model accurately fits the data. Notably, the time-series model fits the observed
data better than the other models, which shows how well it can learn and describe how the Omicron
variant infection spreads in Italy. This excellent fit shows that the model captures the complex patterns
and trends of cumulative data on Omicron infections in Italy.

The learned rational and birational transmission rate in Figures 12a,b, 13a,b, and 14a,b
shows an exponential decay for the cumulative Omicron infection in China, Italy, and Portu-
gal. In addition, it was observed from Figures 12c, 13c, and 14c that the learned time-series
model in this paper was able to capture the form of α(t) and the information going on
in the cumulative Omicron infection in China, Italy, and Portugal. This means that the
time-series model will be able to capture any sudden change in the tendency of newly
infected cumulative cases.

(a) (b)

Figure 11. Cont.
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(c) (d)

Figure 11. Simulation results of Portugal cumulative Omicron data from 5th of April to 11th of
September 2022. The graph of the cumulative Omicron infective data and the learned infectives using
(a) constant model; (b) rational model; (c) birational model; (d) time-series model. The figure shows
how closely each model accurately fits the data. Notably, the time-series model fits the observed
data better than the other models, which shows how well it can learn and describe how the Omicron
variant infection spreads in Portugal. This excellent fit shows that the model captures the complex
patterns and trends of cumulative data on Omicron infections in Portugal.

(a) (b)

(c)

Figure 12. Simulation results of the rate of transmission (α(t)) for the cumulative Omicron infection
in China using (a) rational model; (b) birational model; (c) time-series model.
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(a) (b)

(c)

Figure 13. Simulation results of the rate of transmission (α(t)) for the cumulative Omicron infection
in Italy using (a) rational model; (b) birational model; (c) time-series model.

(a) (b)

(c)

Figure 14. Simulation results of the rate of transmission (α(t)) for the cumulative Omicron infection
in Portugal using (a) rational model; (b) birational model; (c) time-series model. This figure illustrates
the learning and representation of the cumulative Omicron variant’s transmission rate from observed
data. It is evident that the rational and birational models exhibit a trend in α(t) that suggests
exponential decay, whereas the time-series model reveals a different, more varied trend in α(t). This
distinction implies that the time-series model has successfully captured extensive information on the
ongoing mitigation measures evident in the data. Basically, this difference shows that the time-series
model is better at capturing the details and nuances of the data, pointing to its enhanced reliability in
representing the real-world dynamics of the Omicron variant’s spread.
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4.2. Prediction of Daily and the Cumulative Number of Omicron Infections

As the data fitting of LINN for the mathematical models and the parameters has
been obtained, predictions for the day and the time that a plateau will be reached and the
cumulative number of individuals reported to be infected by the Omicron variant in a
given country can be made. The logistic difference equation is a nonlinear ODE with a
constant parameter and a time-dependent function. The time-dependent functions result
in the constant, rational, and birational formula in which the analytical solutions to the
logistic differential equation, called constant, rational, and birational models, are obtained.
The parameters obtained from these three mathematical models are added to the analytical
solution to obtain the prediction results. We could obtain the prediction for the time that a
plateau will be reached and the cumulative number of individuals reported to be infected
by the Omicron variant in a given country. Still, the daily prediction could not be obtained.
However, to obtain both the daily and cumulative prediction results, the initial conditions
for all of the compartments, as well as the model parameters, should be known. We
obtained the initial values, the constant parameter, and the time-dependent function from
the training data using LINN for the time-series model. The learned parameter, together
with initial values and the time-dependent functions of the time-series model, was passed
into a differential equation solver to predict the day and the time that a plateau will be
reached and the cumulative number of individuals reported to be infected by the Omicron
variant in a given country.

Figure 15 shows the predicted daily number of individuals infected with the COVID-
19 Omicron variant in China, Italy, and Portugal. The 14-day prediction was based on the
learned time-series model. The model predicts that on 14 September 2022, the daily number
of individuals infected with the COVID-19 Omicron variant in China will be 48,053, in Italy
it will be 16,203, and in Portugal it will be 2301. On 14 September 2022, the record shows
that 49,311 individuals were infected with the Omicron variant in China, 12,081 in Italy,
and 2671 in Portugal.

The constant model in Table 4 predicted that the Omicron outbreak in China would
plateau on 24 June 2022 (122 days), with 5,488,350 cumulative cases of infected people.
The rational model predicted that the Omicron outbreak in China would plateau on 31 De-
cember 2022 (282 days after 24 March 2022), with 6,2211,15 cumulative cases of people to be
infected. The birational model predicted that the Omicron outbreak in China would plateau
on 4 March 2022 (317 days after 24 March 2022), with 6,458,279 cumulative cases of people
to be infected. Finally, the time-series model predicted that the Omicron outbreak in China
would plateau on 18 April 2022 (390 days after 24 March 2022), with 7,320,636 cumulative
cases of people to be infected. Therefore, the above analysis shows that the constant model
underestimated the actual plateau days and the cumulative number of individuals reported
to be infected by the COVID-19 Omicron variant in China on 31 August 2022, the last day
of acquired data for this study. However, the cumulative number of individuals reported
to be infected by the Omicron epidemic in China on the last day of acquired data for this
study was 6,243,423.

The constant model in Table 5 predicted that the Omicron outbreak in Italy would
plateau on 5 March 2022 (96 days), with 9,396,847 cumulative cases of people to be infected.
The rational model predicted that the Omicron outbreak in Italy would plateau on 15 Febru-
ary 2023 (442 days after 30 November 2021), with 13,121,787 cumulative cases of people
to be infected. The birational model predicted that the Omicron outbreak in Italy would
plateau on 1 September 2023 (641 days after 30 November 2021), with 15,409,748 cumulative
cases of people being infected. Finally, the time-series model predicted that the Omicron
outbreak in Italy would plateau on 15 December 2022 (381 days after 24 March 2022),
with 13,337,516 cumulative cases of people to be infected. Therefore, the above analysis
shows that the constant model underestimated the actual plateau days and the cumulative
number of individuals reported to be infected by the COVID-19 Omicron variant in Italy
on 31 August 2022, the last day of acquired data for this study. However, the cumulative
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number of individuals reported to be infected by the Omicron epidemic in Italy on the last
day of acquired data for this study was 11,772,882.

(a) (b)

(c)

Figure 15. The prediction for the 14-day daily number of individuals reported to be infected by
COVID-19 Omicron variant using time-series model in (a) China; (b) Italy; (c) Portugal. This accom-
plishment was realized by utilizing both the constant parameter and the time-dependent function
(α(t)) for predictions. The success in fitting the daily data for the COVID-19 Omicron variant enabled
this approach with the time-series model. Using the time-series model, the outcomes derived from the
constant parameter and the time-dependent function were then integrated into the logistic differential
equation to formulate predictions for the subsequent 14 days. We noticed that the infection numbers
in China continue to rise, contrasting with Italy, where the numbers are declining, and Portugal, where
the numbers seem stable. These trends accurately reflect the real-life situations of the COVID-19
Omicron variant infection in these countries.

The constant model in Table 6 predicted that the Omicron outbreak in Portugal would
plateau on 2 July 2022 (94 days), with 2,526,824 cumulative cases of people being infected.
The rational model predicted that the Omicron outbreak in Portugal would plateau on
2 March 2023 (305 days after 1 May 2022), with 2,892,395 cumulative cases of people
being infected. The birational model predicted that the Omicron outbreak in Portugal
would plateau on 5 March 2023 (308 days after 1 May 2022), with 2,911,888 cumulative
cases of people being infected. Finally, the time-series model predicted that the Omicron
outbreak in Portugal would plateau on 8 March 2023 (312 days after 1 May 2022), with
3,387,466 cumulative cases of people to be infected. Therefore, the above analysis shows
that the constant model underestimated the actual plateau days and the cumulative number
of individuals reported to be infected by the COVID-19 Omicron variant in Portugal on
August 31, 2022, the last day of acquired data for this study. However, the cumulative
number of individuals reported to be infected by the Omicron epidemic in Portugal on the
last day of acquired data for this study was 2,980,125.

The Omicron variant’s spread analysis reveals interesting patterns when observed
through different predictive models. The constant model provides a lower bound, while
the time-series model provides an upper bound for China, Italy, and Portugal when the
prediction curves of these models are plotted against the actual data. China and Portugal
exhibited predictive accuracy across the rational, birational, and time-series models. These
models were adept at predicting the plateau, which is when the infection rate stabilizes
and the cumulative number of infected individuals no longer increases significantly. This
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showcases the robustness of these models in understanding and extrapolating the spread
pattern, at least in the contexts of China and Portugal. Furthermore, due to the partial
mitigation measures in Italy, we could not obtain an accurate curve for predicting cumula-
tive Omicron infection using the constant, rational, and birational models. However, we
obtained an accurate curve using the time-series model because the learned time-series
model captured the form of the transmission rate and the information reported in Italy’s
Omicron variant data.

To optimize modeling and predictive efforts related to the spread of infectious diseases
like the Omicron variant, practitioners should prioritize deploying a time-series model,
which is a neural network-based model. This model has shown that it is better at adapting
to different situations and being accurate, especially when only some mitigation measures
are in place. This is shown by the fact that the model obtains the best results for different
error metrics and fits well with daily epidemic data. It is important to update and test these
models against changing real-world data on a regular basis. This keeps the predictions
accurate and up-to-date and considers that infectious diseases are always changing and
that infection trends can change quickly. Additionally, a sophisticated understanding and
comprehensive incorporation of external and country-specific factors, such as government
measures, population movements, and reporting structures, is fundamental to enhancing
the reliability and accuracy of the models.

Special attention must be taken to understand and learn about important parameters
like the transmission rate, which is a key factor in figuring out epidemic trends and helping
to accurately predict sudden changes in infection patterns. A comprehensive approach
involving the comparative use of multiple models provides nuanced insights and a more
reliable understanding of infection spread patterns and potential outcomes. The constant
model, in spite of its underestimating tendency, offers a valuable baseline for effective risk
assessment and resource allocation. For models to be more reliable in different situations,
they need to be carefully integrated with different types of mitigation measures and external
factors, and they need to be constantly adapted to each region’s specific situations and
characteristics. The insights obtained from such refined models should subsequently guide
proactive and effective intervention strategies and resource allocation, enabling a more
informed and enlightened response to epidemics. In conclusion, a structured, iterative,
and multifaceted approach, leveraging the strengths of time-series and constant models
while incorporating critical parameters and contextual nuances, will significantly elevate
the efficacy of predictive modeling in infectious disease spread.

4.3. Error Metrics of the Neural Network Training

The neural network training and validation performance is demonstrated in
Figures 16 and 17, where the random splits [38] have been used to generate training
and validation for the cumulative infected Omicron dataset in China. Figures 16 and 17
present the training and testing of MSE and RMSE at different epochs.

(a) (b)

Figure 16. Cont.
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(c) (d)

Figure 16. Error metrics for the infected cases using the random splits for China COVID-19 Omicron
data, where we use 30% of the dataset for testing. Training and testing errors in LINN for nonlinear
time-varying transmission rate. MSE at different epochs, using four hidden layers, learning rate
of 0.001, and 64 neurons per layer in (a) constant model; (b) rational model; (c) birational model;
(d) time-series model.

(a) (b)

(c) (d)

Figure 17. RMSE at different epochs, using three hidden layers, learning rate of 0.001, and 64 neurons
per layer in (a) constant model; (b) rational model; (c) birational model; (d) time-series model.

5. Conclusions

We have shown a data-driven, deep learning algorithm based on a logistically in-
formed neural network that uses daily and cumulative infective data in a logistical model
to find patterns in the transmission rate. This logistics-informed neural network was made
to learn the time-varying transmission rate parameters of the constant, rational, and bira-
tional models and the time-series model. The algorithm can be adapted to most logistical
models. Using the learned constant parameters of the mathematical models, the analytical
solution was used to predict the daily and cumulative number of individuals reported
to be infected by the COVID-19 Omicron variant and plateau characteristics. However,
the rational and birational models could not accurately predict the daily and cumulative
number of individuals reported to be infected with the COVID-19 Omicron variant in a
given country with partial mitigation measures. Instead, the time-series model introduced
could predict the time that a plateau will be reached as well as the daily and cumula-
tive number of individuals infected with the COVID-19 Omicron variant in a country
observing partial mitigation measures, as shown in Figures 15 and 18. The error met-
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rics in the simulations of each model were also computed and compared. Tables 1–3,
Figures 3d, 4d, and 5d of the daily COVID-19 Omicron variant, and Tables 4–6 and
Figures 9d, 10d, and 11d of the cumulative COVID-19 Omicron variant have shown
that the time-series model performs better in accurately fitting the data. Furthermore,
Figures 6d, 7d, 8d, 12d, 13d, 14d show how the time-series model and the logistic-informed
neural network could learn the dynamics of time-dependent functions from the data. In
addition, the models and the proposed model demonstrated how the dependence on time
reflects various time-dependent elements, including the impact of public actions on the
rate of transmission of the COVID-19 Omicron variant and various mitigation measures.
Finally, the results and error metrics have shown that the time-series model performs better
in fitting and prediction than other mathematical models.

(a) (b)

(c)

Figure 18. The mathematical model prediction for the time that a plateau will be reached as well as
the cumulative number of individuals reported to be infected by the Omicron variant in (a) China;
(b) Italy; and (c) Portugal. The predictions displayed in the figure were made possible by employing
the learned parameters of each model, combined with their analytical solutions. It is evident from
the figure that the time-series model excels both in fitting the data and in predicting the time when
a plateau will be reached and the cumulative number of individuals reported to be infected by the
Omicron variant in the given country. The plateau is when the rate of change in the people reported
to be infected is 5% of the maximum infection rate. Additionally, observations revealed a consistent
increase in the predicted trends for Italy when using the rational and birational models. These models
struggled to perform accurately due to implementing only partial mitigation measures at that time in
Italy. However, these models demonstrated better accuracy in predicting the time when a plateau
will be reached and the cumulative number of individuals reported to be infected by the Omicron
variant in China and Portugal, attributed to the strict mitigation measures enforced in these countries.
Lastly, the constant model tended to underestimate the predictions, failing to account for the long
series of existing data on the epidemics in the given country.

The outstanding achievement in this research is that we introduced a time-series model
that learns the form of the time-dependent function of the logistic differential equation from
the COVID-19 Omicron variant infection data, which also provides an accurate prediction.
Since the logistic-informed neural network algorithm and deep learning have been shown
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to be good at figuring out transmission rate patterns and predicting infection trends, future
research can look into adding other analytical methods, machine learning, and statistical
methods to improve the accuracy of predictions and the stability of the model. Employing
ensemble learning techniques, where multiple models are integrated, could provide more
reliable and diversified insights, compensating for individual model limitations. Bayesian
methods and probabilistic models can be explored to incorporate the uncertainty inherently
present in epidemiological data, allowing for more nuanced predictions. The methodology
can be expanded and refined in several ways for future work. The logistic-informed neural
network, along with the time-series model, could be applied to other infectious diseases to
understand their transmission dynamics and predict their spread. It would also be beneficial
to incorporate more diverse datasets, including different demographic, socioeconomic, and ge-
ographic variables, to make the model more generalized and applicable across varied contexts.
The model could be refined by integrating real-time data and continually updating the model
parameters to account for the evolving nature of infectious diseases and their transmission
patterns. Also, exploring the impact of different public health interventions and govern-
ment policies on the transmission rate could provide valuable insights for designing effective
strategies to control the spread of infectious diseases. Additionally, the developed models
can be validated against more extensive and diverse datasets, and their performance can
be compared with other state-of-the-art models. Furthermore, integrating multidisciplinary
knowledge, from epidemiology to social science, can enrich the model’s contextual under-
standing and improve its predictive capabilities. Finally, the focus can also be on developing
user-friendly tools and applications based on this methodology, which can aid policymakers,
researchers, and healthcare professionals in making informed decisions and implementing
effective interventions to control the spread of infectious diseases.
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