
Citation: Adeyemo, S.; Sangotola, A.;

Korosteleva, O. Modeling

Transmission Dynamics of

Tuberculosis–HIV Co-Infection in

South Africa. Epidemiologia 2023, 4,

408–419. https://doi.org/10.3390/

epidemiologia4040036

Academic Editor: Hana Dobrovolny

Received: 5 August 2023

Revised: 7 October 2023

Accepted: 9 October 2023

Published: 10 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Modeling Transmission Dynamics of Tuberculosis–HIV
Co-Infection in South Africa
Simeon Adeyemo 1,* , Adekunle Sangotola 2 and Olga Korosteleva 1

1 Department of Mathematics and Statistics, California State University, Long Beach, CA 90840, USA;
olga.korosteleva@csulb.edu

2 Department of Physical Sciences, Bells University of Technology, Ota 112212, Ogun, Nigeria;
aosangotola@bellsuniversity.edu.ng

* Correspondence: simeon.adeyemo@outlook.com

Abstract: South Africa has the highest number of people living with the human immunodeficiency
virus (HIV) in the world, accounting for nearly one in five people living with HIV globally. As of 2021,
8 million people in South Africa were infected with HIV, which is 13% of the country’s total population.
Approximately 450,000 people in the country develop tuberculosis (TB) disease every year, and
270,000 of those are HIV positive. This suggests that being HIV positive significantly increases
one’s susceptibility to TB, accelerating the spread of the epidemic. To better understand the disease
burden at the population level, a Susceptible–Infected–Recovered–Dead (SIRD) TB–HIV co-infection
epidemic model is presented. Parameter values are estimated using the method of moments. The
disease-free equilibrium and basic reproduction number of the model are also obtained. Finally,
numeric simulations are carried out for a 30-year period to give insights into the transmission
dynamics of the co-infection.
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1. Introduction

Tuberculosis (TB) is an infectious disease caused by the pathogen Mycobacterium tuber-
culosis. The bacteria are transmitted from the lungs of an active individual to the respiratory
tracts of uninfected individuals by droplet nuclei that contain M. tuberculosis and are dis-
persed by the air–capillary route. The TB bacteria can cause infection without always
leading to symptoms of illness. As a result, two conditions are associated with TB: latent
TB infection (LTBI) and TB disease. People who have LTBI are asymptomatic and have the
bacteria but are unable to pass it on to others. According to the World Health Organization,
one-third of the world’s population is infected, either latently or actively, with TB [1]. TB
is a serious public health issue in South Africa. About 450,000 people develop the disease
every year, and 270,000 of those are also living with HIV. TB is South Africa’s leading cause
of death. About 89,000 people die from it every year; that is ten people every hour [2].
This suggests that being HIV positive significantly increases one’s susceptibility to TB,
accelerating the spread of the epidemic. Additionally, the huge difference in TB infections
between persons with and without HIV infection remains a global challenge as a result of
the high incidence rate among HIV-infected individuals [3]. TB and HIV can also coexist
with diseases such as malaria and COVID-19 [4,5]. Effective treatments are available, and
the country has made considerable progress in fighting the disease, but much more is
needed to bring it under control. TB has slow intrinsic dynamics. The incubation period, la-
tent period, and infectious period span long time intervals, in the order of years on average.
The slow progression of TB at the individual level leads to slow temporal dynamics and
long-term outcomes at the population level. Therefore, mathematical models are needed to
estimate prolonged results, and future trends, and develop a better understanding of the
epidemic [6–8].
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For a long time, compartmental models have been useful in the mathematical modeling
of infectious diseases. The Susceptible–Infectious–Recovered (SIR) model was developed
by William Kermack and Anderson McKendrick [9]. SIR models, also known as Kermack–
McKendrick models, depict the various states an individual can be in when exposed to an
epidemic. SIR models include states that are not compatible with one another; therefore,
individuals in the population can only be in one of those states at any given time. As
the epidemic spreads, people may relocate from one compartment to another depending
on their current illness level. Basic SIR models account for two types of transitions: the
transition from susceptible (S) to infectious (I) and that from infectious (I) to recovered
(R). The rate at which someone moves from S to I is called the rate of infection. This rate
represents individuals moving from S to I after coming into contact with the disease. The
rate at which an infected individual moves into the recovered population is referred to as
the rate of recovery.

There exist several models of the co-infection of TB/HIV depending on the research
directive and objective. Awoke and Kassa [10] formulated a mathematical model for
the transmission of TB–HIV/AIDS co-infection that incorporates prevalence-dependent
behavior change in the population and treatment for the exposed and infectious. The
two sub-models of the individual disease were analyzed. Azeez et al. [11] formulated the
TB and HIV mathematical model to give more insight and to forecast the spread of the two
infectious diseases in different populations. One major conclusion was that a community
endemic with TB without undergoing treatment is at a greater risk of HIV co-infection.
Ali et al. [12] investigated HIV/AIDS and TB within a population of varying size using a
nonlinear model by incorporating media coverage as a form of awareness. Similar work
was carried out by [13] but in the presence of protection as a form of control. Agusto and
Adekunle [14] formulated an optimal control strategy for the mathematical modeling of
HIV/AIDS co-infection. The impact of the several control combinations on the disease
spread was also examined.

Additional work on TB/HIV co-infection can be seen in [15–21]. In the present paper,
an extension of the original SIR model is studied. It accounts for HIV prevalence, TB–HIV
co-infection, and death components. We use the data obtained from 2012–2020 on TB
and HIV cases to derive parameter values. The fitted model is then applied for a 30-year
forward-in-time numerical simulation of the co-infection flow dynamics specific to the
population of South Africa.

This paper is organized as follows. In Section 2, we formulate TB–HIV co-infection
transmission dynamics using the SIRD model. In Section 3, the model parameter values
for and results of the analysis are presented for a forward-in-time numerical simulation.
The impact of the results obtained is elaborated in detail in Section 4. A summary of the
research work, implications for policy and practice, limitations, and future research is given
in Section 5.

2. Materials and Methods
2.1. Model Specification

The compartmental structure of this model utilizes the available data on TB (World
Health Organization (WHO), StopTB Partnership) and HIV (Joint United Nations Pro-
gramme on HIV and AIDS (UNAIDS)) in South Africa from 2012–2020, shown in Tables 1–3,
to describe the TB–HIV co-infection flow dynamics. The Susceptible (S)–Infectious
(I)–Recovered (R)–Dead (D) TB–HIV co-infection model is illustrated in Figure 1. The model
subdivides the human population into nine (9) mutually exclusive compartments, namely,
susceptible individuals (S), TB infected (IT), HIV infected (IH), TB–HIV co-infected (C),
TB-recovered individuals (RT), TB-recovered individuals with HIV infection (RC), TB death
(DT), TB–HIV co-infection death (DC), and HIV death (DH).
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Table 1. The number of people living in South Africa with TB alone, HIV, and TB–HIV co-infection
by year.

Year TB TB–HIV Co-Infection HIV

2012 383,000 677,000 6,300,000
2013 383,000 615,000 6,600,000
2014 377,000 588,000 6,800,000
2015 382,000 500,000 7,100,000
2016 273,000 398,000 7,300,000
2017 237,000 363,000 7,500,000
2018 223,000 319,000 7,700,000
2019 203,000 282,000 7,900,000
2020 132,000 313,000 8,000,000

Data from WHO and UNAIDS. https://www.who.int/teams/global-tuberculosis-programme/data accessed on
24 March 2023; https://www.unaids.org/en/regionscountries/countries/southafrica accessed on 24 March 2023.

Table 2. The number of people in South Africa who died due to TB alone, HIV, and TB–HIV co-
infection by year.

Year TB Death TB–HIV Co-Infection Death HIV Death

2012 23,000 131,000 160,000
2013 22,000 117,000 130,000
2014 21,000 111,000 120,000
2015 21,000 100,000 110,000
2016 22,000 90,000 100,000
2017 22,000 78,000 94,000
2018 22,000 72,000 81,000
2019 23,000 67,000 72,000
2020 23,000 66,000 67,000

Data from WHO and UNAIDS. https://www.who.int/teams/global-tuberculosis-programme/data; https://
www.unaids.org/en/regionscountries/countries/southafrica accessed on 24 March 2023.

Table 3. The number of people in South Africa who recovered from TB alone and TB–HIV co-infection
by year.

Year TB Recovery TB–HIV Recovery

2012 105,000 148,000
2013 107,000 145,000
2014 108,000 140,000
2015 104,000 133,000
2016 87,000 107,000
2017 84,000 101,000
2018 99,000 63,000
2019 94,000 77,000
2020 87,000 90,000

Data from StopTB Partnership. https://www.stoptb.org/static_pages/ZAF_Dashboard.html accessed on
24 March 2023.

The total population at time t, denoted by N(t), is given by:

N(t) = S(t) + IT(t) + IH(t) + C(t) + RT(t) + RC(t) + DT(t) + DC(t) + DH(t), (1)

The susceptible population is increased at recruitment rate λ and reduced as a result
of interaction with TB-infected individuals or HIV-infected individuals at the rate βT and
βH , respectively, which leads to an increase in both the TB and HIV classes. All individuals
suffer from natural death at a constant rate µ. The HIV class is reduced by disease-induced
death at the rate θH . The TB class is reduced as a result of recovery at the rate γT , disease-
induced death at the rate θT , and interaction with HIV-infected individuals at the rate ε,
which leads to an increase in the co-infection class. The co-infection class is reduced as a
result of disease-induced death at the rate θC and recovery from TB infection at the rate
γC. TB re-infection is possible and does occur; however, for simplicity of the model, it is
assumed that recovered individuals are immune and no longer susceptible to re-infection.
The aforementioned assumption results in the system of differential equations given in
Equation (2) that describe the transmission dynamics of TB–HIV co-infection.

https://www.who.int/teams/global-tuberculosis-programme/data
https://www.unaids.org/en/regionscountries/countries/southafrica
https://www.who.int/teams/global-tuberculosis-programme/data
https://www.unaids.org/en/regionscountries/countries/southafrica
https://www.unaids.org/en/regionscountries/countries/southafrica
https://www.stoptb.org/static_pages/ZAF_Dashboard.html
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Using the year 2012 as a baseline for the model, we write the initial conditions as
S(0) = N − 383, 000− 63, 000, 000− 677, 000, IT(0) = 383, 000, IH(0) = 6, 300, 000, and
C(0) = 677, 000. The argument goes as follows. It is assumed that in an infinitesimally small
interval [t, t + dt], the probability of a susceptible individual being infected with TB is IT(t)

N ,

while the probability of being infected with HIV is IH(t)
N . It is assumed that a TB-infected

individual passes on the disease with a probability βT , while an HIV-infected individual
passes on the virus with a probability βH . Thus, the chance for a susceptible individual
to become infected is βT

IT(t)
N , and, on average, βT

S(t)IT(t)
N susceptible individuals become

infected. The same goes for HIV infection, which happens with a probability βH
IH(t)

N , and

the mean number of susceptible individuals who catch an HIV infection is βH
S(t)IH(t)

N .
Additionally, it is assumed that each TB-infected individual will recover with probabil-

ity γT or die with probability θT , and so, on average, γT IT(t) TB-infected individuals will
leave the TB-infected compartment and move to the TB-recovered compartment (HIV neg-
ative). In addition, on average, θT IT(t) TB-infected individuals will leave the TB-infected
compartment due to death from the infection and move to the TB death compartment.

Exit from the HIV compartment is only through death with a probability θH , and an
average of θH IH(t), since there is currently no cure for the virus. This exit is from the HIV
compartment to the HIV death compartment. Co-infection with TB and HIV occurs with
probability ε, and so, on average, εIT(t)IH(t) individuals leave the HIV compartment and
move to the co-infected compartment.

A co-infected individual will recover from TB alone (since there is currently no cure
for HIV) with a probability γC or die with probability θC, and so, on average, γCC(t)
TB–HIV-co-infected individuals will leave the co-infected compartment and move to the
TB-recovered compartment (HIV positive). Additionally, on average, θCC(t) TB–HIV-
co-infected individuals will leave the co-infected compartment due to death from the
co-infection and move to the death compartment due to co-infection.

dS(t)
dt = λN − βT IT(t)S(t)

N − βH IH(t)S(t)
N − µS(t),

dIT(t)
dt = βT IT(t)S(t)

N − (γT + θT + µ)IT(t),
dIH(t)

dt = βH IH(t)S(t)
N − εIT(t)IH(t)− (θH + µ)IH(t),

dC(t)
dt = εIT(t)IH(t)− (γC + θC + µ)C(t),

dRT(t)
dt = γT IT(t)− µRT(t),

dRC(t)
dt = γCC(t)− µRC(t),

dDT(t)
dt = θT IT(t),

dDH(t)
dt = θH IH(t),

dDC(t)
dt = θCC(t).

(2)
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and 𝐷ு represents HIV death. 

Using the year 2012 as a baseline for the model, we write the initial conditions as 𝑆ሺ0ሻ  ൌ  𝑁 െ  383,000 െ  63,000,000 െ  677,000,  𝐼்ሺ0ሻ ൌ  383,000, 𝐼ுሺ0ሻ  ൌ  6,300,000, 
and 𝐶ሺ0ሻ  ൌ  677,000. The argument goes as follows. It is assumed that in an infinitesi-
mally small interval ሾ𝑡, 𝑡 ൅  𝑑𝑡ሿ, the probability of a susceptible individual being infected 
with TB is ூ೅ሺ௧ሻே , while the probability of being infected with HIV is ூಹሺ௧ሻே . It is assumed that 
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tion is 𝛽ு ௌሺ௧ሻூಹሺ௧ሻே .  
Additionally, it is assumed that each TB-infected individual will recover with prob-

ability 𝛾் or die with probability 𝜃், and so, on average, 𝛾்𝐼்ሺ𝑡ሻ TB-infected individuals 
will leave the TB-infected compartment and move to the TB-recovered compartment (HIV 
negative). In addition, on average, 𝜃்𝐼்ሺ𝑡ሻ TB-infected individuals will leave the TB-in-
fected compartment due to death from the infection and move to the TB death compart-
ment.  

Figure 1. Deterministic SIRD for TB–HIV co-infection model. S represents susceptible individuals, IT

represents TB-infected individuals, IH represents HIV-infected individuals, C represents TB–HIV-co-infected
individuals, RT represents TB-recovered individuals, RC represents TB-recovered individuals with HIV
infection, DT represents TB death, DC represents TB–HIV co-infection death, and DH represents HIV death.
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2.2. Parameter Estimation

Consider discrete time points a unit interval apart (1, 2, 3, etc.). The above differential
equations in Equation (2) turn into the difference equations for j = 0, 1, 2, . . . .

S(j + 1) = S(j) + λN − βT IT(j)S(j)
N − βH IH(j)S(j)

N − µS(j),
IT(j + 1) = IT(j) + βT IT(j)S(j)

N − (γT + θT + µ)IT(j),
IH(j + 1) = IH(j) + βH IH(j)S(j)

N − εIT(j)IH(j)− (θH + µ)IH(j),
C(j + 1) = C(j) + εIT(j)IH(j)− (γC + θC + µ)C(j),

RT(j + 1) = RT(j) + γT IT(j)− µRT(j),
RC(j + 1) = RC(j) + γCC(j)− µRC(j),

DT(j + 1) = DT(j) + θT IT(j),
DH(j + 1) = DH(j) + θH IH(j),
DC(j + 1) = DC(j) + θCC(j).

(3)

Denoting the increments by ∆S(j) = S(j + 1) − S(j), ∆IT(j) = IT(j + 1) − IT(j),
∆IH(j) = IH(j + 1) − IH(j), ∆C(j) = C(j + 1) − C(j), ∆RT(j) = RT(j + 1) − RT(j),
∆RC(j) = RC(j + 1) − RC(j), ∆DT(j) = DT(j + 1) − DT(j), ∆DH(j) = DH(j + 1) −
DH(j), and ∆DC(j) = DC(j + 1)− DC(j), the equations in Equation (3) can be rewritten as:

∆S(j) + ∆IT(j) + ∆RT(j) + ∆DT(j) + ∆IH(j) + ∆C(j) + ∆RC(j) + ∆DC(j) + ∆DH(j)+
(RT(j) + IT(j) + RC(j) + C(j) + IH(j) + S(j))µ = λN,

∆IT(j)+∆RT(j)+∆DT(j)+(RT(j)+IT(j))µ
S(j)IT(j) = βT

N ,
∆IH(j)+∆C(j)+∆RC(j)+∆DC(j)+∆DH(j)+(RC(j)+C(j)+IH(j))µ

S(j)IH(j) = βH
N ,

∆C(j)+∆RC(j)+∆DC(j)+(RC(j)+C(j))µ
IT(j)IH(j) = ε,

∆RT(j)+µRT(j)
IT(j) = γT ,

∆RC(j)+µRC(j)
C(j) = γC,

∆DT(j)
IT(j) = θT ,

∆DH(j)
IH(j) = θH ,

∆DC(j)
C(j) = θC.

(4)

From these equations in Equation (4), it follows that the parameters λ, βT , βH , ε, γT ,
γC, θT , θH , and θC can be estimated by the method of moments, according to which:

λ̂MM = 1
N

sample mean of

∆S(j) + ∆IT(j) + ∆RT(j) + ∆DT(j) + ∆IH(j)

+∆C(j) + ∆RC(j) + ∆DC(j) + ∆DH(j)

+(RT(j) + IT(j) + RC(j) + C(j) + IH(j) + S(j))µ

,

β̂TMM = N
(

sample mean of
(

∆IT(j)+∆RT(j)+∆DT(j)+(RT(j)+IT(j))µ
S(j)IT(j)

))
,

β̂HMM = N

sample mean of


∆IH(j) + ∆C(j) + ∆RC(j) + ∆DC(j) + ∆DH(j)

+(RC(j) + C(j) + IH(j))µ
S(j)IH(j)


,

ε̂MM = sample mean of
(

∆C(j)+∆RC(j)+∆DC(j)+(RC(j)+C(j))µ
IT(j)IH(j)

)
,

γ̂TMM = sample mean of
(

∆RT(j)+µRT(j)
IT(j)

)
, γ̂CMM = sample mean of

(
∆RC(j)+µRC(j)

C(j)

)
,

θ̂TMM = sample mean of
(

∆DT(j)
IT(j)

)
, θ̂HMM = sample mean of

(
∆DH(j)
IH(j)

)
,

and θ̂CMM = sample mean of
(

∆DC(j)
C(j)

)
.

(5)
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2.3. Disease-Free Equilibrium

The disease-free equilibrium is the point where there is no disease present in the
population. In mathematical terms, the equilibrium point is a constant solution to the
system of differential equations which is found by setting the derivatives on the left-hand
side of Equation (2) equal to zero. Here, we consider two sub-models that have well-defined
disease-free equilibrium points: the TB-only and HIV-only models.

For the TB-only model, consider the sub-model of Equation (2) with no HIV infection
given by: 

dS(t)
dt = λN − βT IT(t)S(t)

N − µS(t),
dIT(t)

dt = βT IT(t)S(t)
N − (γT + θT + µ)IT(t),

dRT(t)
dt = γT IT(t)− µRT(t),

dDT(t)
dt = θT IT(t).

(6)

N(t) = S(t) + IT(t) + RT(t) + DT(t). (7)

Let s = S
N , iT = IT

N , rT = RT
N , and dT = DT

N represent the fractions of the susceptible,
TB infected, TB recovered, and TB deaths in the population, respectively. Then, from
Equation (7) we obtain:

s(t)+iT(t) + rT(t) + dT(t) = 1. (8)

Thus, Equation (6) is reduced to:
d
dt s(t) = λ− βTiT(t)s(t)− µs(t),

d
dt iT(t) = βTiT(t)s(t)− (γT + θT + µ)iT(t),

d
dt rT(t) = γTiT(t)− µrT(t),

d
dt dT(t) = θTiT(t).

(9)

The disease-free equilibrium for the TB-only model is obtained as the solution of the
equations in (9) with the left-hand sides replaced by zeros. The result is (s∗, iT

∗, rT
∗, dT

∗) =(
λ
µ , 0, 0, 0

)
.

For the HIV-only model, the sub-model of Equation (2) with no TB disease is given by:
dS(t)

dt = λN − βH IH(t)S(t)
N − µS(t),

dIH(t)
dt = βH IH(t)S(t)

N − (θH + µ)IH(t),
dDH(t)

dt = θH IH(t).

(10)

N(t) = S(t) + IH(t) + DH(t). (11)

Let s = S
N , iH = IH

N , and dH = DH
N represent the fractions of the susceptible, HIV in-

fected, and HIV deaths in the population, respectively. Then, from Equation (11), we obtain:

s(t)+iH(t) + dH(t) = 1. (12)

Hence, Equation (10) is reduced to:
d
dt s(t) = λ− βTiH(t)s(t)− µs(t),

d
dt iH(t) = βTiH(t)s(t)− (θH + µ)iH(t)

d
dt dH(t) = θH iH(t).

(13)

The disease-free equilibrium is obtained by setting to zero the left-hand sides of the
equations in (13) and solving them. It is not difficult to see that the equilibrium point is

(s∗, iH
∗, dH

∗) =
(
λ
µ , 0, 0

)
.
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2.4. Basic Reproduction Number

The basic reproduction number R0 is a crucial metric that dictates the course that an
epidemic will take in the future. It is defined as the average number of secondary infections
that occur after an infected person is introduced into a population in which every person is
susceptible to the disease. If R0 > 1, the infection can start spreading, but if R0 < 1, it is
bound to die out.

The next-generation matrix approach by Driessche and Watmough [22] is applied to
evaluate the basic reproduction number.

For the TB-only model, the nonlinear terms with the new infection F and the outflow
term V are given byF = βTiT(t)s(t) and V = (γT + θT + µ)iT(t). The partial derivatives of
F and V with respect to iT at the disease-free equilibrium (s∗, iT

∗, rT
∗, dT

∗) =
(
λ
µ , 0, 0, 0

)
are F = βTs∗ = λβT

µ and V = γT + θT + µ. The basic reproduction number is computed as:

R0T = FV−1 =
λβT

µ(γT + θT + µ)
. (14)

For the HIV-only model, the nonlinear terms with the new infection F and the outflow
term V are given by F = βTiH(t)s(t) and V = (θH + µ)iH(t). The partial derivatives of
F and V with respect to iH at the disease-free equilibrium (s∗, iH

∗, dH
∗) =

(
λ
µ , 0, 0

)
are

F = βTs∗ = λβH
µ and V = θH + µ. The basic reproduction number is obtained as:

R0H = FV−1 =
λβH

µ(θH + µ)
. (15)

Finally, combining the results for the two sub-models, we see that the basic reproduc-
tion number R0 of the full model in Equation (2) is given by [23]:

R0 = max{R0T , R0H} = max
{

λβT
µ(γT + θT + µ)

,
λβH

µ(θH + µ)

}
. (16)

3. Results
3.1. Parameter Estimates

The model parameters are estimated according to the expressions given in Equation (5).
The estimated values are shown below in Table 4. The dataset and code used in the
numerical computation can be found in the Supplementary File S1. For the estimate of the
natural death rate µ, we use the value of 1/70 = 0.0143 given in [24].

Plugging the values listed in Table 4 into Equation (16), we estimate the basic repro-
duction number as R̂0 = max{1.69, 5.47} = 5.47.

Table 4. Parameter notation and values of estimates.

Parameter Estimated Value

Recruitment rate (λ) 0.0280 person−1 year−1

TB infection rate (βT ) 0.3859 person−1 year−1

HIV infection rate (βH ) 0.0828 person−1 year−1

TB–HIV co-infection rate (ε) 8× 10−8 person−1 year−1

HIV− negative TB recovery rate (γT ) 0.3568 year−1

HIV− positive TB recovery rate (γC ) 0.2654 year−1

TB infection death rate (θT ) 0.0767 year−1

HIV death rate (θH ) 0.0154 year−1

TB–HIV death rate (θC )
Natural death rate (µ)

0.2096 year−1

0.0143 year−1

3.2. Numerical Simulation

Numerical simulations were carried out using the R software to show the trajectories
of the population in HIV-infected, HIV death, TB-infected, TB recovery, and TB death
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classes, subject to the given initial values and estimated parameters: S(0) = 45, 785, 033,
IT(0) = 383, 000, IH(0) = 6, 300, 000, C(0) = 677, 000, RT(0) = 0, RC(0) = 0, DT(0) = 0,
DC(0) = 0, DH(0) = 0, λ̂ = 0.0280, β̂T = 0.3859, β̂H = 0.0828, ε̂ = 8.383e − 08,

γ̂T = 0.3568, γ̂C = 0.2654, θ̂T = 0.0767, θ̂H = 0.0154, θ̂C = 0.2096, and µ̂ = 0.0143.
The trajectories of the compartmental dynamics are shown in Figures 2–4 below. The

dynamics trajectory excluding the HIV compartments is shown in Figure 5. Figure 6 displays
the observed vs. simulated data for the TB–HIV co-infection and HIV infection compartments.
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Figure 2. (a) Susceptible population trajectory; (b) TB-infected population trajectories for HIV-positive
individuals (blue) and HIV-negative individuals (red).
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Figure 3. (a) HIV-infected population trajectory; (b) TB recovery trajectory for HIV-positive individu-
als (blue) and HIV-negative individuals (red).
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Figure 5. TB dynamics trajectory. Class C represents TB–HIV-co-infected individuals, DC represents
TB–HIV co-infection death, DT represents TB death, IT represents TB-infected individuals, RC

represents TB-recovered individuals with HIV infection, and RT represents TB-recovered individuals.
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population trajectory (observed (red) vs. simulated (blue)).

4. Discussion

The method of moments is utilized to estimate the values of the model parameters
for data obtained from the WHO, UNAIDS, and StopTB Partnership. The data are given
in Tables 1–3, and the results are presented in Table 4. The estimated basic reproduction
numbers for TB-only and HIV-only models are 1.69 and 5.47, respectively. This shows
that both infections are endemic in the population since R0 > 1, with a person infected
with HIV being more susceptible to contracting TB. Ensuring effective treatment for people
living with HIV can help improve immune function, reducing the risk of developing TB. In
addition, conducting contact tracing as a means to identify individuals who have been in
close contact with TB patients, such as household contacts and healthcare workers, and
providing them with the appropriate care can help reduce the likelihood of transmission.

The estimated parameters are used to perform a 30-year numerical simulation of
the dynamics of the model using 2012 as the baseline, and the results are presented in
Figures 2–4. The numerical simulations agree with the data obtained from 2012–2020 and
the likelihood of future trends (see Figure 6). Figure 2a shows a steady increase in the
susceptible class for a while, which can be attributed to an increase in the population
through migration and birth. However, over time, a steady decrease in the susceptible
class is observed due to more people being infected with HIV. Figure 2b demonstrates that
the numbers of HIV-negative and HIV-positive individuals both decrease in TB infection
at similar rates due to effective treatment but do not die out over time consequent to the
basic reproduction number being R0 > 1. Essentially, infected individuals will still be
present in the population at any given time irrespective of the effectiveness of treatment.
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From Figure 3b, it can be seen that HIV-positive individuals have a slightly higher recovery
rate than HIV-negative individuals. We would expect the opposite given that people
living with HIV have a weaker immune system; however, in South Africa, more than
60% of TB cases are co-infected with HIV, which could explain why greater recovery
from TB is seen amongst people living with HIV. It is important to note that while HIV-
positive individuals may have a slightly higher TB recovery rate, they are still at a higher
risk of developing active TB and experiencing more severe TB symptoms compared to
HIV-negative individuals. Therefore, it is crucial to prioritize early detection and timely
treatment for both HIV-positive and HIV-negative individuals to control the spread of TB
and improve overall health outcomes.

Figure 4b shows a sharp contrast in TB death for both HIV-positive and HIV-negative
individuals, with people living with HIV having a much higher TB death rate, which
could be due to HIV-positive individuals being co-infected with other life-threatening
diseases and, in most cases, the development of Acquired Immunodeficiency Syndrome
(AIDS). The weakened immune system caused by HIV/AIDS makes individuals more
vulnerable to severe forms of TB and complicates their treatment outcomes, resulting
in higher mortality rates. Prioritising a comprehensive and integrated approach to TB
and HIV care, including access to antiretroviral therapy (ART), preventive measures, and
coordinated healthcare services, will help to improve survival rates and enhance the overall
well-being of individuals living with HIV and TB co-infection.

Figures 3a and 4a display an exponential increase in both HIV-infected individuals
and HIV deaths over time, with the prevalence of HIV infection reaching almost 18 million,
indicating a significant burden of the disease within the population. Similarly, the number
of HIV recorded deaths reaches close to 5 million, highlighting the impact of HIV on mortal-
ity rates in the country. This increase in HIV infection and death rates highlights the urgent
need for comprehensive prevention, testing, and treatment strategies to address the HIV
epidemic in South Africa. Efforts should focus on implementing robust prevention pro-
grams that prioritize education and awareness about HIV transmission, safe sex practices,
and access to preventive measures such as condoms and pre-exposure prophylaxis (PrEP).
Empowering individuals with adequate knowledge and resources can reduce the incidence
of new HIV infections and promote healthier behaviours. Additionally, early diagnosis and
timely initiation of ART for people living with HIV are essential as they improve immune
function and reduce the risk of HIV-related deaths. It is essential to continue investing
in research, innovation, and evidence-based interventions to effectively combat the HIV
epidemic and reduce the number of HIV-related deaths in the country.

5. Conclusions

The co-infection of TB and HIV is a common health burden in South Africa. People
living with HIV are significantly more likely to develop active TB disease than those without
HIV. Conversely, TB can accelerate the progression of HIV to AIDS. To describe the flow
dynamics of TB–HIV co-infection specific to the population of South Africa, we formulated
a mathematical model using available TB and HIV data from 2012–2020. Parameter values
in the model were estimated using the method of moments to make projections for a
30-year period using 2012 as the baseline. The basic reproduction number of the model
was obtained, which showed that both TB and HIV are endemic in the population (R0 > 1),
with a person infected with HIV being more at risk of contracting TB.

Most people infected with TB can fully recover with the appropriate care, and South
Africa has made significant progress in fighting the disease. This is also supported by our
analysis, which showed a reduction in TB infection over time. However, challenges remain,
particularly with the co-epidemic of TB and HIV. Findings from our analysis revealed a
sharp contrast in TB-induced death in the population, with people living with HIV having
a much higher TB death rate than those without HIV. Both diseases can progress more
rapidly when coexisting, leading to higher morbidity and mortality rates. Furthermore, our
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projections indicated an exponential increase in HIV infection and death leaning towards
18 million people living with HIV and about 5 million recorded HIV-induced deaths.

To address the dual burden of TB/HIV and achieve better outcomes for infected
individuals, TB policies and practices must be integrated with HIV care. HIV can carry a
stigma, which may discourage people from seeking treatment or disclosing their status.
Community education, awareness campaigns, and legal protections against discrimination
can help establish a supportive environment for people living with HIV and TB. Enhancing
the understanding of HIV transmission dynamics, treatment strategies, and prevention
interventions through research and innovation needs to be prioritized. This includes sup-
porting studies on new prevention technologies, vaccine development, and implementation
science research. In addition, engaging communities, including people living with HIV
and TB, in the design and implementation of interventions can play a significant role in
providing support and advocacy for affected individuals and their families, as well as help
to address barriers to care and ensure the sustainability of interventions.

Having obtained some useful insights from the modeling of transmission dynamics of
TB–HIV co-infection in South Africa, it is necessary to note its limitations. The model relied
on certain assumptions which did not fully capture the complex and varied realities of
co-infection dynamics. Due to lack of data availability, assumptions were made to exclude
TB re-infection in the population, as well as ART for people living with HIV. Factors such
as healthcare infrastructure, social determinants, and demographic characteristics can also
significantly influence transmission dynamics. Future research can investigate the impact of
ART on TB transmission dynamics and outcomes. This includes studying the effect of ART
on reducing the risk of developing active TB, the impact on TB treatment outcomes, and
the potential for HIV treatment to indirectly reduce TB transmission by improving immune
function. The impact of comorbidities, such as non-communicable diseases (NCDs), on the
health outcomes of people living with HIV is also worth exploring. Understanding the
interactions between HIV, TB, and NCDs can inform integrated approaches to care that
address the multiple health needs of affected individuals.

By adopting a multi-faceted and integrated approach that combines prevention, testing,
treatment, stigma reduction, research, and community engagement, South Africa can make
significant progress in reducing HIV infection rates, decreasing HIV-related deaths, and
mitigating the impact of TB–HIV co-infection. These efforts will contribute to better public
health outcomes and improve the quality of life for individuals affected by these diseases.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/epidemiologia4040036/s1, Supplementary File S1: Simdata,
TB-HIV code.

Author Contributions: S.A. developed the concept of the study, gathered information from a variety
of sources, participated in data analysis, and wrote the manuscript. A.S. contributed to the model
specification and interpretation. O.K. revised the study, contributed to the model specification and
methodology, and edited the final version of the manuscript. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in Supplementary File S1.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. World Health Organization. Global Tuberculosis Control: Epidemiology, Planning, Financing: WHO Report; World Health Organization:

Geneva, Switzerland, 2009; Available online: https://apps.who.int/iris/handle/10665/44035 (accessed on 10 April 2023).
2. Vassal, A. South Africa Perspective: Tuberculosis. Copenhagen Consensus Center 2015. Available online: https://www.

copenhagenconsensus.com/publication/south-africa-perspective-tuberculosis (accessed on 10 April 2023).

https://www.mdpi.com/article/10.3390/epidemiologia4040036/s1
https://apps.who.int/iris/handle/10665/44035
https://www.copenhagenconsensus.com/publication/south-africa-perspective-tuberculosis
https://www.copenhagenconsensus.com/publication/south-africa-perspective-tuberculosis


Epidemiologia 2023, 4 419

3. Otiende, V.; Achia, T.; Mwambi, H. Bayesian modeling of spatiotemporal patterns of TB-HIV co-infection risk in Kenya. BMC
Infect. Dis. 2019, 19, 902. [CrossRef] [PubMed]

4. Mekonen, K.G.; Balcha, S.F.; Obsu, L.L.; Hassen, A. Mathematical Modeling and Analysis of TB and COVID-19 Coinfection. J.
Appl. Math. 2022, 2022, 2449710. [CrossRef]

5. Mukandavire, Z.; Gumel, A.B.; Garira, W.; Tchuenche, J.M. Mathematical analysis of a model for HIV-malaria co-infection. Math.
Biosci. Eng. 2009, 6, 333–362. [CrossRef] [PubMed]

6. Brauer, F. Mathematical epidemiology is not an oxymoron. BMC Public Health 2009, 9, S1–S2. [CrossRef] [PubMed]
7. Aparicio, J.P.; Capurro, A.F.; Castillo-Chavez, C. Long-term dynamics and re-emergence of tuberculosis. In Mathematical Approaches

for Emerging and Reemerging Infectious Diseases: An Introduction; Springer: Berlin/Heidelberg, Germany, 2002; pp. 351–360.
8. Aparicio, J.P.; Castillo-Chávez, C. Mathematical modelling of tuberculosis epidemics. Math. Biosci. Eng. 2009, 6, 209–237.

[CrossRef] [PubMed]
9. Kermack, W.O.; McKendrick, A.G. Contributions to the mathematical theory of epidemics—I. Bull. Math. Biol. 1991, 53, 33–55.

[CrossRef] [PubMed]
10. Awoke, T.D.; Kassa, S.M. Optimal Control Strategy for TB-HIV/AIDS Co-Infection Model in the Presence of Behaviour Modifica-

tion. Processes 2018, 6, 48. [CrossRef]
11. Azeez, A.; Ndege, J.; Mutambayi, R.; Qin, Y. A Mathematical Model for TB/HIV Coinfection Treatment and Transmission

Mechanism. Asian J. Math. Comput. Res. 2017, 22, 180–192.
12. Ali, S.; Raina, A.A.; Iqbal, J.; Mathur, R.; López-Bonilla, J.L. Mathematical Modeling and Stability Analysis of HIV/AIDS-TB

Co-infection. Palest. J. Math. 2009, 8, 380–391.
13. Joyce, K.; Manyonge, N.A. Mathematical Modelling of Tuberculosis as an Opportunistic Respiratory Co-Infection in HIV/AIDS

in the Presence of Protection. Appl. Math. Sci. 2009, 9, 5215–5233.
14. Agusto, F.; Adekunle, A. Optimal control of a two-strain tuberculosis-HIV/AIDS co-infection model. Biosystems 2014, 119, 20–44.

[CrossRef]
15. Kaur, N.; Ghosh, M.; Bhatia, D. HIV-TB co-infection: A simple mathematical model. J. Adv. Res. Dyn. Control. Syst. 2015, 7, 66–81.
16. Zhang, L.; Rahman, M.; Arfan, M.; Ali, A. Investigation of mathematical model of transmission co-infection TB in HIV com-munity

with a non-singular kernel. Results Phys. 2021, 28, 104559. [CrossRef]
17. Inayaturohmat, F.; Anggriani, N.; Supriatna, A.K. A mathematical model of tuberculosis and COVID-19 coinfection with the

effect of isolation and treatment. Front. Appl. Math. Stat. 2022, 8, 95808. [CrossRef]
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