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Abstract: Outbreaks of SARS-CoV-2 can be attributed to expanding small-scale localized infection
subclusters that eventually propagate into regional and global outspread. These infections are
driven by spatial as well as temporal mutational dynamics wherein virions diverge genetically as
transmission occurs. Mutational similarity or dissimilarity of viral strains, stemming from shared
spatiotemporal fields, thence serves as a gauge of relatedness. In our clinical laboratory, molecular
epidemiological analyses of strain association are performed qualitatively from genomic sequencing
data. These methods however carry a degree of uncertainty when the samples are not qualitatively,
with reasonable confidence, deemed identical or dissimilar. We propose a theoretical mathematical
model for probability derivation of outbreak-sample similarity as a function of spatial dynamics,
shared and different mutations, and total number of samples involved. This Similarity Index utilizes
an Essen-Möller ratio of similar and dissimilar mutations between the strains in question. The indices
are compared to each strain within an outbreak, and then the final Similarity Index of the outbreak
group is calculated to determine quantitative confidence of group relatedness. We anticipate that
this model will be useful in evaluating strain associations in SARS-CoV-2 and other viral outbreaks
utilizing molecular data.
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1. Introduction

Lineage identification in conjunction with virion mutational analysis showed rapid
expansion shortly post the SARS-CoV-2 (CoV-2) pandemic that began in Wuhan/China in
late 2019. This in part was due to increased accessibility of Next Generation Sequencing
(NGS) technology within research and diagnostic laboratories. During that time, the utility
of targeted genomic sequencing was used to address a combination of research and clinical
questions related to CoV-2 infections. First, it permitted tracking of temporal viral mutagen-
esis. Second, defining CoV-2 mutational repertoire allowed identification of infections that
could be clinically addressed with targeted treatments, including monoclonal antibodies,
in critically ill patients [1,2]. Third, laboratories were equipped with molecular data for
epidemiological investigations. Specifically, sequencing data would allow confirmation
or rejection of the hypothesis that a certain group of infected individuals carry the same
CoV-2 virion, given similar spatiotemporal parameters.

The utility of molecular sequencing data can be applied within a pandemic or to
localized outbreak clusters that occur within hospitals or assisted living facilities. In the
latter case, public algorithms such as NextClade (v1.14.1) can be useful, qualitatively, for
defining similarity or dissimilarity in localized CoV-2 outbreak strains [3]. This method
was used in our clinical laboratory as part of the Sequencing for Research Clinical and
Epidemiology (SeqFORCE) (SeqFORCE) group within the Veteran Health Administration.
Other studies put forth excellent probabilistic models for defining infection kinetics within
the COVID-19 pandemic. To this end, Shadabfar et al. proposed an extended susceptible-
exposed-infected-vaccinated-recovered (SEIVR) epidemic model [4]. The modified SEIVR
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model allows the quantitative prediction of the COVID-19 spreading profile in society
while being careful to implement uncertainties in data collected from research and clinical
laboratories. Nevertheless, current tools for assessment of localized outbreak clusters are
generally in the domain of qualitative assessment. We propose that quantitative analyses
for localized outbreaks should be included in order to compute a measure of confidence for
CoV-2 strain relatedness. To this end, we derived a sequencing-based mathematical model
that can be applied as a quantitative confidence estimator of how similar (or dissimilar)
the samples are, in terms of combined Essen-Möller ratios and probabilities (Similarity
Index or “SI”). The Similarity Index is purely based on empirical mutational frequencies
obtained from circulating CoV-2 sequenced strains. This model was empirically tested in
our laboratory in a similar manner that we demonstrate with the two clinical cases shown
in this work. As such, we believe that this procedure can be utilized as part of future
molecular epidemiological analyses for localized viral outbreak investigations and/or
improved upon with other algorithms.

2. Materials and Methods
2.1. Sample Collection, RNA Extractions, and Next Generation Sequencing (NGS) of
CoV-2 Genome

CoV-2 RNA was extracted utilizing Qiagen’s QIAamp Viral RNA kit per manufac-
turer’s guidelines (Qiagen, 19300 Germantown Road, Germantown, MD, USA). Exclusion
criteria for any outbreak investigation included samples that had >30 cycle threshold (Ct)
as defined by quantitative reverse-transcription PCR (qRT-PCR). All patient CoV-2 viral
sequences in this study were used by permission of originating facilities.

Sequencing of CoV-2 genomes was performed by a clinically validated ARTIC-v3
assay. Preparations of CoV-2 NGS libraries were performed with QIAseq SARS-CoV-2
Primer Panel per manufacturer’s guidelines (Qiagen). All single libraries were loaded into
Illumina’s reagent cartridge (300 cycle v2) on a standard flow cell at 7 pM (Illumina, 5200 Il-
lumina Way, San Diego, CA, USA). Sequencing quality controls, including cluster density,
total reads, and percent reads reaching Q30, were all within optimal ranges provided by
Illumina. Secondary quality controls, provided by Illumina’s DRAGEN COVID Lineage
software (v3.5.5) that reads and quantifies the sequencing files, were all within acceptable
ranges. Attained values for median depth and breadth of coverage were at least 500× and
95%, respectively.

2.2. Bioinformatics and Consensus Sequences of CoV-2 Variants

FASTQ files were obtained from the Illumina MiSeq and then uploaded onto Illumina’s
DRAGEN COVID Lineage software (v3.5.5). The consensus FASTA files were then uploaded
to NextClade’s algorithm (v1.14.1) in order to define each strain’s mutational repertoire.
NextClade can be found at (https://clades.nextstrain.org/).

2.3. Calculation of Nucleotide Mutation Frequency

COVID CG was utilized for attaining the frequency of mutational occurrence during
the date range of 1 April 2021–14 December 2021 (COVIDCG, v2.5.1-beta1, https://covidcg.
org/). This query included 1127754 CoV-2 sequences where the Delta CoV-2 variant was
dominant [5,6]. Note that the time-framed frequencies reported here may slightly change
for the aforementioned period, since data from COVID CG are continuously updated with
new sequences.

Each mutation frequency was derived from the equation:

Frequency =
Total Occurrence of Mutation

Total Number of CoV-2 Genomes
(1)

2.4. Geometrical Representations

Graphs presented in this manuscript were obtained from Desmos software, API v1.7.0
(https://www.desmos.com/).

https://clades.nextstrain.org/
https://covidcg.org/
https://covidcg.org/
https://www.desmos.com/
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3. Similarity Index—A Theoretical Model

Frequency estimates of specific mutations appearing within CoV-2 genomes can be
produced by utilizing the number of times a certain mutation is observed divided by
total genomes analyzed (Equation (1)). The probability (P) multiplication rule can then
be employed in this scenario to infer the P of a certain mutation appearing in multiple
CoV-2 genomes selected at random [7]. From our experience with molecular epidemiology,
we observed that the CoV-2 ORF1a region contains a degree of nucleotide instability (i.e.,
more informative) when compared to the Spike region. This is true within the CoV-2 Delta
strain, and similar observations were noted within Omicron’s ORF1a regions. Regions
with relative genomic instabilities can be used to compare outbreak strains qualitatively in
their mutational repertoire utilizing low frequency mutations as a first-tier choice. Here,
were propose rather the quantitative utility of mutational frequencies incorporating the
full mutational repertoire within ORF1a (i.e., both low and high frequency mutations).
It is important to note that, due to temporal mutational dynamics, we should expect a
degree of undulation within each nucleotide site [8,9]. For this reason, frequency calcula-
tions should be dependent on recent circulating variants, not based on the bulk of total
CoV-2 viral sequences with strains that are no longer circulating. For example, applying
frequency data from the Delta wave to samples collected during the Omicron wave can be
substantially misleading. Date ranges of observed mutations can be set within COVIDCG
online software.

We hence propose the use of the ORF1a genomic region to produce a combined,
time-framed, frequency profile of the mutational repertoire integrated with the number
of samples containing this profile (i.e., P product-rule). These calculations are then ap-
plied to the Essen-Möller equation initially produced to prove or disprove paternity [10].
The merged equations are utilized to produce a Similarity Index as we show in the
following derivations.

3.1. Similarity Index–Derivation of Base Equation

Mutational profiles, factored in as mutational frequencies, can be applied when com-
paring two or more strains that are part of a localized outbreak. Here, two variables are of
most importance. The first is each nucleotide’s mutational frequency. The second is the
number of outbreak samples carrying that same mutation.

Therefore, the P (Pm) of a certain mutation with Frequency (F) to appear together in a
pool of CoV-2 samples at random or by chance is:

Pm = Fs1 × Fs2 × Fs3 × Fsn

where F relates to the calculated mutational frequency (Equation (1)), and (s1, s2, s3, sn)
relate to the individual outbreak samples carrying the exact mutation with frequency F.
Since all samples are carrying the same mutation with the same F, the equation can be
simplified to the following form:

Pm = Fsn

where sn denotes the total number of samples carrying a mutation with frequency F. Next,
in an outbreak scenario, we are rather interested in defining the P that a certain mutation
will not appear together at random (Pmn). Thus, the above equation can be transformed to
the following form:

Pmn = 1− Fsn (2)

where F relates to a single mutational frequency, and sn relates to the total sample number
where all samples are carrying the same mutation with frequency F.

Thus, Equation (2) states that the P of a certain mutation not appearing at random is
dependent on the number of samples as well as the mutational frequency carried by sn
samples. We can also extrapolate from this base formula that incorporating a large outbreak
sample number, sn, will compensate for a higher frequency (e.g., 0.15–0.65). In other words,
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five outbreak samples carrying a mutation with 0.3 (30%) frequency produce a higher P in
samples that are related, compared to only two samples (Table 1). Alternatively, a low or
rare mutational frequency would also raise the P in a smaller outbreak sample (Table 1).
Geometrical representation of this argument is displayed in Figure 1. As the frequency (F)
of shared mutations approaches zero, the P of association approaches 1 (100%). Similarly,
as the number of samples, sn, carrying a mutation with multiplied-frequency (F) approaches
infinity, the P of association drifts towards one. One limitation in the utility of mutation
frequencies in P calculations is that mutations should be independent. Specifically, utilizing
mutations that are co-dependent will produce misleading outputs utilizing the P multiplication
rule [7]. To this end, Fang et al. utilized a concurrence-ratio whereby two single nucleotide
variants can be assessed for the likelihood of coexisting in the same viral genomes [11].

Table 1. P of non-random Association (Frequency vs. Sample Number).

Frequency p (2 Samples) p (3 Samples) p (5 Samples)

0.6 0.6400 0.7840 0.9222

0.5 0.7500 0.8750 0.9688

0.3 0.9100 0.9730 0.9976

0.15 0.9775 0.9966 0.99992406

0.1 0.9900 0.9990 0.99999

0.05 0.9975 0.9999 0.99999968
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and the number of samples carrying such mutation (sn)—Here, sn is varied, and F is kept constant.
An increase in sn produces a larger Pm.



Epidemiologia 2022, 3 242

3.2. Incorporation of Mutational Differences

Heterogeneity of the mutational repertoire in outbreak samples is evidence towards
non-similarity, depending on the degree of divergence. Therefore, it would be misleading
to base the P model (Equation (2)) entirely on identical/unique mutations. We specifically
observed in our epidemiological investigations that although strains within an outbreak
can carry unique mutations, some nevertheless had non-identical mutational signatures.
It would be important to estimate quantitatively the relatedness of these strains based on
both similar and dissimilar mutations. The main question is, how confident are we that
the strains on-hand are related? The answer to this can in part be effectuated by incorpo-
rating dissimilar mutational frequencies within the final P value in order to normalize for
mutational differences between samples.

To this end, we propose the use of a modified Essen-Möller’s W value as a base-
equation:

(W =
X

X + Y
)

In its original form, W combines two hypotheses: X (paternity) and Y (non-paternity).
Essen-Möller proposed this in order to include both possibilities wherein X + Y becomes a
probability of 1 [10].

In our case, we seek to calculate W by summing two Ps (i.e., similar or dissimilar
strains based on mutational profiles) and then dividing the P of interest (similar) by the sum,
thence attaining an index on which we shall name here the Similarity Index (SI) [10]. To
this end, Equation (2) and Essen-Möller’s equation are coalesced as follows for comparing
multiple (≥2) samples:

SI = 1− F1s1 + F2s2 + Fnsn

(F1s1 + F2s2 + Fnsn) +
(

F1s1
d + F2s2

d + Fnsn
d
)

where F1→Fn and Fd1→Fdn relate to the shared and non-shared (d = different) mutations
with a frequency of F, respectively. s1→sn relates to the total sample number associ-
ated with the frequency F1→Fn. For example, if F1 is (0.05), and s1 relates to 5 samples,
then F1 s1 = 0.055. This would be followed by calculations and summing of all frequen-
cies (F2 s2, F3 s3, Fnsn) relating to each specific CoV-2 nucleotide mutation. In essence,
(F1 s1 + F2 s2 + Fnsn) present in both the numerator and denominator would be equivalent
to “X” in Essen-Möller’s ratio. In contrast, (F1 ds1+ F2 ds2+ Fndsn) is equivalent to “Y” in in
Essen-Möller’s ratio.

This equation allows a multi-sample approach incorporating the differences in muta-
tions, frequencies, and sample number which all contribute to the Similarity Index. The
convolution of multi-sample comparison is evident when comparing samples carrying a
host of identical mutations along with mutations only present within a certain subset of
the group. It therefore becomes important to add in the factor of s, where it can guide the
statistical “swaying” power of each mutation present as shown geometrically in Figure 1.

Based on this, the final equations can be summarized as follows:

SI = 1− ∑n
i=1 Fsii

∑n
i=1 Fsi i + ∑n

i=1 Fsi
d i

(3)

where the product summation relates that every frequency of a shared mutation (F) is
summed until all total (n) frequencies are incorporated. The same concept applies for non-
shared mutational frequencies (Fd). The ratio of the summation products is then subtracted
from 1 to give a Similarity Index, or a confidence of relatedness, for the outbreak strains.

Equation (3) can be performed either in a dual fashion (two strains) or via a multi-
comparison approach wherein all strains are weighted together. In the case of duality,
the (si) as the exponent will always be equivalent to 2, since by default there are only
two samples. It is important to note here that if the ORF1a regions are identical, then
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Equation (3) cannot be used as it depends on shared vs. non-shared ratios. In this case,
the full summation expression should be equivalent to 0 to give a Similarity Index of 1 (or
100% confidence in identity). In this case, it may be of use to include other genomic regions
for inferring potential mutational differences. Next, as discussed above, the Similarity
Index in Equation (3) will be dependent on the increase/decrease in the number of shared
or different mutations. It will also depend on the number of samples carrying a certain
mutation along with the mutational frequency. Table 2 summarizes some aspects of the
normalization incorporated in Equation (3) and their effects on the Similarity Index. With
regards to the combined mutational frequencies, this can be observed geometrically wherein
shared (F) or non-shared (Fd) combined frequencies oppositely shift the Similarity Index
towards or away from 1 (100%) (Figure 2).

Table 2. Effects on Similarity Index Outcome (Equation (3)) ↑/↓.

Parameter Increase Decrease

Samples Sharing a Mutation ↑ ↓
Samples with a Differing Mutation ↓ ↑

Absolute Frequency of a Shared Mutation (F) ↓ ↑
Absolute Frequency of a Differing Mutation (Fd) ↑ ↓
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3.3. Incorporation of Spatial Dynamics

Incorporation of distance into the overall Similarity Index is useful when comparing
only two patients suspected of direct contact and with confirmed interactions such as a
nurse physically assisting an infected patient or simply being in the same room. One may
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also estimate the general average distance observed between all outbreak patients (>2) and
incorporate into the Similarity Index as such. The limitation here is that some infections
occur indirectly through the action of touching mucous sites with un-sanitized hands where
direct patient-to-patient contact was not a factor.

The CDC’s guidelines states that the risk of CoV-2 transmission is greatest within three
to six feet of an infectious source. The risk is reduced post six feet but is not eliminated
due to multiple variables, such as timing compounded with other factors. Specifically,
even if one is distant from the infectious source by more than six feet, the chance of
transmission increases if they are in the space for longer than 15 minutes (CDC). The
chance of infection increases in enclosed spaces with inadequate ventilation or if the
infected person is undergoing physical and vocal exertion (e.g., exercise, singing) due to
increased dispersion of virions. Nonetheless, incorporation of temporal dynamics within
the Similarity Index equation will require more studies to integrate most factors with
optimal mathematical presumptions precisely.

In order to incorporate patient-to-patient spatial dynamics at its simplest form, we
propose utilizing a ratio of observed distance of two patients to the suggested safe distance.

The physical space can be modeled as a sphere with volume, V =
4
3

πr3. The geometry of
the sphere (i.e., full vs. half) is not relevant since we are targeting a ratio. Therefore, the
relationship can be written as such:

Distance Ratio = DR =

4
3

πr3

4
3

πk3
=

r3

k3

where r is the minimum radius observed between patients; k is the distance constant
(7 feet—in alignment with recommendations of the CDC). The distance constant should be
subject to amendment depending on observational/empirical studies.

From this, the new Similarity Index with simple spatial dynamics can be written as:

SI = 1−
(

r3

k3 ×
∑n

i=1 Fsi i
∑n

i=1 Fsi i + ∑n
i=1 Fsi

d i

)
(4)

Based on this, if the minimum distance r observed is 7 feet, then the DR ratio collapses to
“1” producing a “neutral” result (i.e., does not affect the index). If, however, the minimum
distance is observed at 3.5 feet, then the ratio equates to 0.5, thence increasing the index—
in other words, closer distances increase the chance that the strains are shared. This is
geometrically displayed in (Figure 3) in its simplest form utilizing the hypothetical Essen-
Möller frequency ratio (FRatio). Here, as the radius r approaches a distance of 0 feet, the
Similarity Index approaches 1 (100%), regardless of the frequency ratio. This would be true,
based on the model, even if the frequency ratio of mutations observed,

∑n
i=1 Fsii

∑n
i=1 Fsii + ∑n

i=1 Fsi
d i

is equivalent to >0.8 (>80%). Conceptually, the fact that two patients were observed
to interact at less than two feet while one of them was a known symptomatic CoV-2
positive substantially increases the Similarity Index even if there are no unique shared
mutations. We must emphasize the assumptions in Equation (4)—that is, the patients
should have confirmed or have been observed to be close together. Second, patient “zero”
must have been confirmed to be infected around the time of the encounter to patient
“one”. Third, patient “one” would need to test positive in a short period of time and/or
show symptoms of infection. The latter point is already evident for many of the outbreak
investigation samples.
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of two patients behaves as a tuning knob for the Similarity Index. Close distance encounters (r < 7)
increase the probability (SI) that the two strains are similar.

A limitation with the spatial Similarity Index Equation (4), as seen in (Figure 3), is that
high r values (above 7 feet) reduce the geometric curves ever towards the y-axis and limit
the highest possible normalized frequency that can be used (i.e., resultant of

∑n
i=1 Fsii

∑n
i=1 Fsii + ∑n

i=1 Fsi
d i

For example, at a r = 9, a resultant frequency expression of ~0.47 would produce
an index of 0 (Figure 3) and with any frequency above 0.47 producing a negative index.
Although this demonstrates the mathematical limits of this spatial equation, conceptually it
means that similarity is unlikely—with an increased negative Similarity Index correlating
with higher unlikeliness. Next, we do not foresee these limits to be reached incessantly
given that, with our experience, most resultants of

∑n
i=1 Fsii

∑n
i=1 Fsii + ∑n

i=1 Fsi
d i

show low frequency-ratio computations. Additionally, it would be seemingly rare to
receive suspect localized outbreak samples with patients who were never observed less
than 20–30 feet apart.

A second limitation for the spatial Similarity Index Equation (4) is that the curves
generated by the distance ratio (DR, and Figure 3) are linear and would not fully represent
real-time kinetics. A true representation of real-time spatial effects must include a tempo-
ral component where both factors are then guided by the physics of viral transmission,
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infectivity (Ct value), and length of exposure [12]. Case-A analysis below demonstrates
the use of Equation (4) where two of five specimens that are qualitatively expected to be
similar had a reduced Similarity Index. Nonetheless, the equation should be used with full
understanding of these limitations.

3.4. Analysis of Outbreak Samples via Similarity Index–Proof of Concept

To test our model, we utilized two cases (case-A and case-B) from our clinical reports
on which we have concluded qualitatively as an outbreak case with similar and dissimilar
strains, respectively. With regard to case-A, although it was qualitatively deemed to contain
shared strains, there were samples that were more similar to each other when comparing
nucleotide sequences within ORF1a. We utilized Equation (4) with a DR of one (i.e., neutral
spatial dynamics). Table 3 shows the mutations found within CoV-2 strains (extracted from
suspected outbreak patients), while Table 4 describes the Similarity Index between each
pair of strains and the group. As expected, we can see that most samples have an index
of >98%. The most dissimilarity was observed between p-1 and p-4 along with p-2 and
p-4 showing a Similarity Index of 62.83% (Table 4). This is logical as patients 1 and 2 are
identical at ORF1a (Table 4).

Table 3. Case-A ORF1a Mutations and Frequencies.

Mutation C884 T C1191 T C3737 T C5184 T C6402 T G9203 A T9678 C C11005 A A11201 G

Frequency 0.004188 0.035824302 0.001129679 0.109622311 0.683634019 0.0095136 0.009166893 0.009759221 0.685742635

P1 X X X X X X X

P2 X X X X X X X

P3 X X X X X X X

P4 X X X X X X X X

P5 X X X X X X X

Mutations observed within ORF1a gene between all outbreak samples. “X” denotes the presence of the mutation.
The frequency of each mutation is listed below its designation. P1–P5 imply CoV-2 extracted from outbreak
patient-1 to patient-5.

Table 4. Case-A Similarity Index (SI). Case-A calculated SI utilizing Equation (4).

P1 P2 P3 P4 P5 Combined Similarity Index

P1 100.000 99.895 62.828 99.895 99.999 (Averaged Single SI = 92.135)

P2 99.895 62.828 99.895

P3 98.057 100.000

P4 98.057

P5

Interestingly, we observe here that p-1 and p-3 have a higher Similarity Index than
p-1 and p-4. This seemed paradoxical since p-1 and p-4 have an extra shared mutation
compared to p-1 and p-3 (Table 4). The reason is that this extra shared mutation appears at
a high frequency (68%). Albeit this seems paradoxical, it demonstrates that Equation (4)
reduced the certainty of strain similarity since approximately 68% of circulating CoV-2
strains share this mutation and that the equation is based on random selection. It simply
tells us that we have reduced confidence that p-1 and p-4 are similar given that they are
chosen at random. This is one reason why it becomes important to include spatiotemporal
components. These components integrate the important evidence, that the patients were
close together in space and time during a known period of infection thence reducing the
element of randomness with the Similarity Index. To this end, we shall hypothetically
assume that p-1 and p-4 were observed at 5 feet, while one was symptomatic with a known
positive low qRT-PCR Ct at the time of observation. In this case, using Equation (4) with a
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spatial component of 5 feet, the index is increased from 62.828% to 86.453%. Overall, these
results show that lower frequency mutations are highly important in the differentiation
process (i.e., excluding dissimilarity).

Using Equation (4), the combined Similarity Index was at 99.999%, but we also at-
tempted to average the single indices for all five patients, producing an average of 92.135%.
The discrepancy between Equation (4)-combined and the averaged single indices can be
explained by the differential inclusion of all mutations with the total number of samples
carrying shared vs. non-shared mutations, as detailed in the derivations section. Here, the
combined Similarity Index by Equation (4) is heavily affected by low frequency mutations
being shared, which increases the confidence that all samples are derived from the same
source. In this case, the non-shared mutations had higher frequencies than the shared,
which as we expect swayed the calculated values towards confidence of similarity (Table 4).

Next, we analyzed case-B which we qualitatively reported clinically as a dissimilar
group. We can observe that, although these three patients share plenty of mutations, they
mostly nevertheless appear at high frequencies (Table 5). Additionally, all three patients
harbor non-shared low frequency mutations. As expected, the Similarity Index for all
patients was overall lower than 5% (Table 6). Thus, the equation demonstrates that even
if all strains in question share several high frequency mutations, it still may not provide
enough confidence to define similarity. Instead, high frequency mutations drive the index
towards lower values due to reduced confidence stemming from the presence of high-
prevalence mutations. The latter, occurring in the presence of non-shared low frequency
mutations, substantially reduces the confidence in strain sharing as seen in this case. To this
end, the combined Similarity Index by Equation (4) is calculated at 6.429% with averaged
single indices at 3.031%.

Table 5. Case-B ORF1a Mutations and Frequencies. Mutations observed within ORF1a gene between
all outbreak samples. “X” denotes the presence of the mutation. The frequency of each mutation is
listed below its designation. P1–P3 imply CoV-2 extracted from outbreak patient-1 to patient-3.

Mutation C1191 T G4181 T C6402 T C7124 T G9053 T C10029 T A10323 G A11201 G A11456 G

Frequency 0.0358243 0.68507671 0.683634019 0.66987836 0.684267136 0.697208788 0.014608 0.685742635 0.081708422

P1 X X X X X X X

P2 X X X X X X X

P3 X X X X X X X

Table 6. Case-B Similarity Index (SI). Case-B calculated SI utilizing Equation (4).

P1 P2 P3 Combined Similarity Index

P1 1.763 3.314

6.429 (Averaged Single SI = 3.031)P2 4.015

P3

4. Conclusions

We herein proposed the use of a theoretical probability-based model for defining
relatedness between CoV-2 viral strains in localized outbreak scenarios. We showed
the utility of this equation with two outbreak evaluations performed at our center. The
proposed inputs include outbreak sample number, mutational frequencies, and spatial
dynamics, thence producing a probability or a likelihood of association (i.e., Similarity
Index). The utility of this value was demonstrated utilizing outbreak cases wherein the
interplay of the aforementioned factors controlled the outcome of relatedness. Nevertheless,
we list potential limitations, within the above arguments, associated with the use of input
variables. We propose that there is a need for empirical evidence in order to provide
more accurate constants for the Similarity Index. The latter includes more defined spatial
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parameters along with temporal dynamics and inclusion of infectivity factors (i.e., qRT-PCR
Ct values).

It is important to note here that the index, produced by Equations (3) and (4), is
reflecting our confidence in strain relatedness when chosen from a random population
of infected individuals, and not necessarily how related the strains are in absolute terms
(genetically). An example would be when the strains of interest are almost identical but
only share common high frequency mutations. In this case, even though the strains appear
near identical in the mutational repertoire, we are nevertheless not confident that they
are from the same spatiotemporal source (related) since most circulating CoV-2 samples
would be sharing these mutations. This is where additional criteria can be added including
evidence of spatial connection between two samples which will then increase the Similarity
Index. On the other hand, if all strains are 100% identical in the mutational repertoire, even
with common mutations, then this would give an index of 100% confidence that they are
same especially when we have the evidence of physical transmission in the same period.

One concern that may arise from this argument is the single use of one genomic
region (ORF1a). There are two reasons behind the use of one gene, specifically ORF1a.
First, when a certain clade is dominant (as was observed with Delta), the classically varied
regions between clades, such as the Spike gene, are in fact relatively stable within a single
clade. It then becomes difficult to compare localized outbreak samples when the Spike
region is notably stable and homologues. In contrast, the ORF1a gene is relatively unstable
(i.e., informative). We observed, at least within Delta, that ORF1a mutations vacillate
and drift spatiotemporally thereby allowing the potential for comparisons. We suppose
that if potentially upcoming variants show stability (i.e., non-informative regions) within
ORF1a, then other instable genes can instead be considered. We have thus far observed
that Omicron virions behave in a similar fashion to Delta, within the ORF1a gene, whereby
enough instability occurs for proper comparisons of outbreak strains. We emphasize here
that frequency values utilized for Omicron, or other emerging strains, should utilize the
appropriate current timeframe to exclude mutational data for non-circulating strains such
as the Delta variant.

Second, genetically (by nucleotide basis) evaluating the full genome between outbreak
strains can be misleading. The reason is that full genome comparisons of the same species
are too general and are rather more beneficial when comparing different species or genus
(i.e., CoV-2 to CoV-1, or CoV-2 to HCoV-HKU1). An example of this is demonstrated with
forensic science whereby genomic DNA from a victim and a suspect are compared. In
this case, specific polymorphic (i.e., instable/informative) regions such as Short Terminal
Repeats (STR) are utilized to define similarities/differences and attain a probability to use
for/against the suspect [7]. We do not compare whole genomes which will misleadingly
produce a false-positive result of high similarity since most of the nucleotide sequences
(between two humans) are generally identical. These types of whole genome comparisons
are more practical when comparing human vs. other species’ DNA. In essence, this is where
polymorphic regions become valuable in forensics, such as STR. Thus, constricting the
genomic analysis in a viral strain to one unstable genomic region provides a more accurate
extrapolation in terms of strain relatedness. Therefore, this method presented here should
not be used to compare viruses from different species, as the assumption is that one species
(which is genetically homologous) is being compared. Overall, this model can function
as a platform for future refinements and developments including implementation in the
analysis of localized outbreaks with other pathogens.
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