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Abstract: Nepal was hard hit by a second wave of COVID-19 from April–May 2021. We investigated
the transmission dynamics of COVID-19 at the national and provincial levels by using data on
laboratory-confirmed RT-PCR positive cases from the official national situation reports. We performed
8 week-to-week sequential forecasts of 10-days and 20-days at national level using three dynamic
phenomenological growth models from 5 March 2021–22 May 2021. We also estimated effective and
instantaneous reproduction numbers at national and provincial levels using established methods
and evaluated the mobility trends using Google’s mobility data. Our forecast estimates indicated
a declining trend of COVID-19 cases in Nepal as of June 2021. Sub-epidemic and Richards models
provided reasonable short-term projections of COVID-19 cases based on standard performance
metrics. There was a linear pattern in the trajectory of COVID-19 incidence during the first wave
(deceleration of growth parameter (p) = 0.41–0.43, reproduction number (Rt) at 1.1 (95% CI: 1.1, 1.2)),
and a sub-exponential growth pattern in the second wave (p = 0.61 (95% CI: 0.58, 0.64)) and Rt at
1.3 (95% CI: 1.3, 1.3)). Across provinces, Rt ranged from 1.2 to 1.5 during the early growth phase
of the second wave. The instantaneous Rt fluctuated around 1.0 since January 2021 indicating well
sustained transmission. The peak in mobility across different areas coincided with an increasing
incidence trend of COVID-19. In conclusion, we found that the sub-epidemic and Richards models
yielded reasonable short-terms projections of the COVID-19 trajectory in Nepal, which are useful for
healthcare utilization planning.
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1. Introduction

South Asia is the most populated region of the world, with a population of about
2 billion. This region includes eight of the world’s 36 megacities with an urban population
greater than 10 million and population density greater than 10,000 per square kilometer [1].
When the first confirmed case of COVID-19 in the region was reported in Nepal, the
public health community feared for the worst given the high poverty and population
density levels and a poorly resourced health care system [2]. Nevertheless, South Asia
was not significantly affected by the first COVID-19 wave in 2020 compared to many
developed countries. Yet, the situation took a different turn when neighboring India
reported the emergence of the Delta variant (also called B.1.617) on 5 October 2020 [3], the
most transmissible variant of COVID-19 reported as of September 2021 [3–5]. Since early
March 2021, the Delta variant started to take hold of the Indian population and fueled
a devastating second wave that engulfed South Asia. As of 30 November 2021, South
Asia reported a total of 47.9 million confirmed cases (18.91% of global total) and 767,195
COVID-19 deaths (15.04% of global total) [6].

Nepal is one of the South Asian countries most heavily affected by the COVID-19
pandemic. By 30 November 2021, the Himalayan country of roughly 30 million people
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had reported 821,366 RT-PCR positive cases and 11,526 COVID-19 deaths, out of a total of
4.6 million RT-PCR tests performed in the country covering approximately 15 percent of
the total population [7]. The impact of the COVID-19 pandemic is especially detrimental
for countries such as Nepal, where the health infrastructure is fragile and less equipped. In
Nepal, there are only 194 hospitals with ICU facilities, with a capacity of 26,930 hospital
beds, 3076 isolation beds, 1595 ICU beds, and 840 ventilators [8]. The physician per 100,000
population ratio is only 0.7, and to manage the shortage of health workers during the
pandemic, the Nepal government had to call back those health workers on long-term
leave [9].

Nepal shares a border of 1125 miles with India and has historically allowed free move-
ment of people between the two countries for tourism, education, healthcare, marriage,
and economy [10]. Although the movement across these borders was restricted during
the initial period of the COVID-19 pandemic, the movement across borders resumed in
early 2021 [11]. As the devastating second wave started in India, tens of thousands of
Nepalese migrants living in India often returned to Nepal through porous borders without
undergoing testing or quarantine protocols [12]. In addition, instances of crowded move-
ment of people in the country, lack of practice of social distancing guidelines [13], and the
start of the Nepalese New Year and wedding season (from 23 April 2021), elevated the
reproduction number [14], giving rise to the second wave of COVID-19 in Nepal during
April–June 2021. Moreover, the political crisis that was ongoing in the country after the
prime minister dissolved parliament in December 2020, followed by pro-and anti-protests
and rallies in the country, and neglect by the government in preparing for the second wave
hindered the effective planning and response efforts [15,16]. During the second wave,
Nepal’s under-resourced public health system was already overstretched beyond capacity,
and many COVID-19 patients unnecessarily died due to a lack of oxygen supply [17].

From late July 2021, Nepal again saw a mild resurgence wave of COVID-19, which
occurred after a few weeks of steady decline in incidence during the second wave. The
low testing rates, weak social distancing guidelines, an open border policy with India,
and poor economic conditions likely negatively affected the prevalence of COVID-19 in
Nepal. Mathematical models help shed light on past and present outbreaks as well as
predict the future trends [18]. In this paper, we investigate the transmission dynamics of
COVID-19 in Nepal by analyzing case incidence data at the national and provincial levels.
Understanding the dynamics of disease transmission and the potential role of mitigation
strategies at the national and provincial level can help guide control efforts.

To forecast the epidemic trajectory, we utilize established and validated mathematical
models previously used to forecast and investigate dynamics of SARS, MERS, Ebola,
and the COVID-19 pandemic in other settings [19,20]. We estimate the effective and
instantaneous reproduction numbers of SARS-CoV-2 at the regional and national levels
to understand the transmission dynamics of the virus and examine the mobility trends in
relation to the implementation of lockdowns.

2. Materials and Methods
2.1. Setting

The Federal Democratic Republic of Nepal is a landlocked country located between
India and China. The country is divided into 7 provinces, which are further divided
into districts. There are total 14 districts in province 1, 8 in province 2, 13 in Bagmati
province, 11 in Gandaki province, 12 in Lumbini province, 10 in Karnali province, and 9 in
Sudurpaschim province [21].

Nepal confirmed its first case of COVID-19 on 23 January 2020, in a 32-year-old male
Nepalese student based at Wuhan University of Technology who had returned to Nepal.
The second case was detected after two months on 23 March 2020. By 31 May, a total of
1572 cases and eight deaths had been reported in Nepal [8]. After the confirmation of the
second case, the government imposed a national lockdown on 24 March and sealed its
borders [22] until 21 July 2020 [13].



Epidemiologia 2021, 2 641

2.2. Data

For short-term forecasting of the COVID-19 epidemic in Nepal, and for estimating
reproduction number at the national and provincial level from the case incidence data, we
utilized publicly available time series of laboratory-confirmed RT-PCR positive cases by
dates of reporting that were obtained from the COVID-19 situation reports published by
Ministry of Health and Population of the government of Nepal as of 30 November 2021 [23].
Similarly, to assess the mobility trend during the course of the pandemic in Nepal, we used
Google’s mobility data for Nepal [24]. Google’s mobility data shows how visits to places,
such as the grocery stores, parks, and recreation spots, are changing in each geographic
region. A baseline day represents the normal value for that day of the week. The baseline
day is the median value from the 5-week period from 3 January–6 February 2020. In this
study, we analyzed Google’s mobility data from 15 February 2020 to 30 November 2021.

2.3. Modeling Framework for Forecast Generation

We utilized three dynamic phenomenological growth models to generate short-term
forecasts for Nepal (10-days and 20-days ahead). These models have been applied to
various infectious diseases including SARS, foot and mouth disease, Ebola [25], and the
current COVID-19 outbreak [26,27]. Phenomenological growth models applied in this
study include the following differential equation models: the generalized logistic growth
model [25], the Richards growth model [28], and the sub-epidemic model [29]. The forecasts
obtained from these dynamic growth models can provide an assessment of the potential
scope of the outbreak in near real-time and insight on the impact of the implementation and
relaxation of control interventions, which help guide public health policy. The description
of these models is provided as follows.

2.3.1. Generalized Logistic Growth Model

The generalized logistic growth model (GLM) [25] displays a range of epidemic growth
profiles, including the polynomial and exponential growth patterns. GLM characterizes
epidemic growth by estimating three parameters: (i) the intrinsic growth rate, r (ii) a
dimensionless “deceleration of growth” parameter, p and (iii) k0, the epidemic size. The
varied epidemic growth patterns are observed by the modulation of the deceleration of
growth parameter resulting in the exponential growth dynamics (p = 1), the sub-exponential
growth (0 < p < 1), or the constant incidence (p = 0) patterns. The GLM model is given by
the following differential equation:

dC(t)
dt

= rC(t)p
(

1− C(t)
k0

)
,

where C(t) denotes the cumulative number of cases over time t, and dC(t)
dt describes the

incidence curve over time t.

2.3.2. Richards Growth Model

The Richards model [28] extends the simple logistic growth model by incorporating
a scaling parameter, a, that measures the deviation from the symmetric simple logistic
growth curve [28,30,31]. The Richards model is given by the differential equation:

dC(t)
dt

= rC(t)
[

1−
(

C(t)
k0

)a]
,

where C(t) represents the cumulative case count at time t, r is the growth rate, a is a scaling
parameter, and k0 is the final epidemic size.
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2.3.3. Sub-Epidemic Model

The sub-epidemic model [29] can be used to model an epidemic wave comprising of
multiple overlapping sub-epidemics where each sub-epidemic is modeled using a GLM
model denoted by the following differential equation:

dC(t)
dt

= rCp(t)
(

1− C(t)
ko

)
,

We model an epidemic wave comprising of n overlapping sub-epidemics using a
system of coupled differential equations, as follows,

dCi(t)
dt

= rAi−1(t)Ci(t)
p
(

1− Ci(t)
ki

)
,

where Ci(t) is the cumulative cases for the ith sub-epidemic, and ki is the size of ith sub-
epidemic where i = 1 . . . n. Hence when n = 1, the sub-epidemic model reduces to the
simple logistic-type model. To model the onset timing of the (i + 1)th sub-epidemic, we use
an indicator variable Ai(t), making sure that the sub-epidemics comprising an epidemic
wave follow a regular structure. Therefore,

Ai(t) =
{

1 if Ci(t) > Cthr
0 Otherwise

for i = 1, 2, 3, . . . n ,

where 1 ≤ Cthr < ko and A1(t) = 1 for the sub-epidemic 1. For the subsequent sub-
epidemics, the size of the ith sub-epidemic (ki) declines exponentially at a rate q. This
can happen due to multiple factors such as the seasonal transmission effect, effect of
interventions and population behavior changes. If q = 0, then the sub-epidemic model
predicts an epidemic wave composed of equal sized sub-epidemics [29]. If we assume that
the subsequent sub-epidemic sizes decline exponentially, we get ki = k0e−q(i−1), where
k0 is the size of initial sub-epidemic i.e., k1 = k0. Therefore, when q > 0, the total number
of sub-epidemics supported by the model depends on Cthr, q and k0 because the (i + 1)th
sub-epidemic is triggered only if Cthr > Ci(t) [29].

2.4. Model Calibration and Forecasting Approach

We conducted 8 week-to-week subsequential 10-days and 20-days ahead short-term
forecasts at the national level utilizing the data retrieved from Ministry of Health and
Population, Government of Nepal by the dates of report [23]. Table 1 shows the calibration
and forecast period for each of the three dynamic models used.

Table 1. Calibration period and forecast period for each forecast.

Forecast Number
Calibration Period for the

GLM, Richards, and
Sub-Epidemic Model

Number of Days in the
Calibration Period

Forecast Period for 10-Days
Ahead Forecast

Forecast Period for 20-Days
Ahead Forecast

1 5 March 2021–3 April 2021 30 4 April 2021–13 April 2021 4 April 2021–23 April 2021
2 12 March 2021–10 April 2021 30 11 April 2021–20 April 2021 11 April 2021–30 April 2021
3 19 March 2021–17 April 2021 30 18 April 2021–27 April 2021 18 April 2021–7 May 2021
4 26 March 2021–24 April 2021 30 25 April 2021–4 May 2021 25 April 2021–14 May 2021
5 2 April 2021–1 May 2021 30 2 May 2021–11 May 2021 2 May 2021–21 May 2021
6 9 April 2021–8 May 2021 30 9 May 2021–18 May 2021 9 May 2021–28 May 2021
7 16 April 2021–15 May 2021 30 16 May 2021–25 May 2021 16 May 2021–4 June 2021
8 23 April 2021–22 May 2021 30 23 May 2021–June 1 2021 23 May 2021–11 June 2021

For each of the models, we estimated the best fit solution using non-linear least square
fitting procedure [32]. This process minimizes the sum of squared errors between the model
fit f (t, Θ̂) and the smoothed data estimates yt, and yields the best set of parameter estimates
Θ = (θ1, θ2, . . . , θm), where the smoothed data was obtained by using smoothfactor = 7
in Matlab. The smooth function in Matlab reduces the noise within a data set by using a
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moving average method. Let Θ̂ = argmin ∑n
t=1
(

f (t, Θ̂
)
− yt)2 denote the best fit estimates.

Here Θ̂ = (r, p, ko) corresponds to the set of estimates for the parameters of the GLM
model Θ̂ = (r, ko, a) corresponds to estimates of parameters of the Richards model, and
Θ̂ = (r, p, ko, q, Cthr) corresponds to the estimates of parameters of the sub-epidemic
model [30]. While for the sub-epidemic model, we provided the initial best guesses of the
parameter estimates, for GLM and Richards growth model, we initialized the parameters
for the nonlinear least squares’ method [32] over a wide range of plausible parameters
sampled from a uniform distribution. This allowed us to test the uniqueness of the best fit
solution. Moreover, the initial conditions were set at the first data point for both models [30].
Uncertainty bounds around the best-fit solution were generated using parametric bootstrap
approach assuming a negative binomial error structure for each of the models, where the
variance was calculated by averaging mean to variance ratio in the data. The details of this
method are provided in ref [30].

For each model, we generated M = 300 datasets by the bootstrap approach during
the calibration phase, refitted the model to each generated dataset, and used the M sets
of parameters estimates to construct the 95% confidence intervals for each parameter.
Further, each M best fitted model was used to generate m = 30 additional data points
with negative binomial error structure extended through the forecasting period. For the
forecasting period, we constructed the 95% prediction intervals with these 9000 (M ×m)
curves. Detailed description of the methods of parameter estimation can be found in
references [30,33,34].

2.5. Performance Metrics

We utilized the following five performance metrics to assess the quality of our model
fit and the 10-days and 20-days ahead short-term forecasts: root mean squared error
(RMSE) [35], the mean absolute error (MAE) [36], the mean interval score (MIS) [35], the
coverage of the 95% prediction intervals [35], and the weighted interval score (WIS) [37]
for each of the three models. For calibration performance, we compared the model fit to
the smoothed incidence data fitted to the model, whereas for the performance of forecasts,
we compared our forecasts with the incidence data for the time-period of the forecast.

The root mean squared error (RMSE) and the mean absolute error (MAE) assess the
average deviations of the model fit to the observed data in L2 and L2 norm, respectively.
The root mean squared error (RMSE) is given by

RMSE =

√
1
n

n

∑
i=1

( f
(
ti, Θ̂

)
− yti )

2,

and the mean absolute error (MAE) is given by

MAE =
1
n

n

∑
i=1
| f
(
ti, Θ̂

)
− yti |,

where yti is the time series of cases by date of onset, ti is the time stamp, and Θ̂ is the set
of estimated parameters. For the calibration period, n equals the number of data points
used for calibration, and for the forecasting period, n = 10 and 20 for the 10-day and 20-day
ahead short-term forecast respectively.

Moreover, to assess the model uncertainty and performance of prediction interval,
we used the 95% PI and MIS. The prediction coverage is defined as the proportion of
observations that fall within 95% prediction interval and is calculated as

PI coverage =
1
n

n

∑
i=1

I{yti > Lti ∩ yti < Uti},
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where yti are the case incidence data, Lti and Uti are the lower and upper bounds of the
95% prediction intervals, respectively, n is the length of the period, and I is an indicator
variable that equals 1 if value of Yti is in the specified interval and 0 otherwise.

The mean interval score addresses the width of the prediction interval as well as the
coverage. The mean interval score (MIS) is given by

MIS =
1
n

n

∑
i=1

(Uti − Lti ) +
2

0.05
(Lti − yti )I{yti < Lti}+

2
0.05

(yti −Uti )I{yti > Uti}.

In this equation, Lti , Uti , n, and I are as specified above for PI coverage. Therefore, if
the PI coverage is 1, the MIS is the average width of the interval across each time point.
For two models that have an equivalent PI coverage, a lower value of MIS indicates
narrower intervals.

We also used the weighted interval score (WIS) [37,38] which is a distance sensitive
score to assess the performance of model calibration and forecast. The weighted interval
score (WIS) is given by

WISα0:K (F, y) = 1/(K + 1/2) ∗
(

ω0 ∗ |y−m|+
K

∑
k=1

{
ωk∗ ISαk (F, y)

})
(1)

where ωk = αk
2 for k = 1, . . . . . . K and ω0 = 1/2. Here, we use K = 11 interval scores

for α = 0.02, 0.05, 0.1, 0.2, . . . 0.9, F denotes the forecasts, and ISαk (F, y) = [(Ut −
Lt) +

2
α ∗ (Lt − yt) ∗ 1(yt < Lt) +

2
α ∗ (yt −Ut) ∗ 1(yt > Ut)] is the interval score for the

(1−αk) × 100% PI.

2.6. Reproduction Number

Reproduction number (Rt) characterizes the average number of secondary cases
generated by a primary case at calendar time t during an outbreak when control measures
are in place [39]. Rt is an important public health indicator of effectiveness of public
health interventions during an epidemic [39]. While Rt estimates of more than 1 indicate
continuation of widespread disease transmission, Rt less than 1 indicates that sustained
disease transmission is unlikely and the outbreak is under control [40].

2.7. Estimating Reproduction Number (Rt) Using GGM

We estimated the effective reproduction number (Rt) for the early ascending phase of
the COVID-19 epidemic in Nepal using a generalized growth model (GGM). We estimated
reproduction number (Rt) at the national level for first 30 days of the phase during initial
rise in cases (25 May to 23 June 2020), and first wave (1 August to 30 August 2020) of
COVID-19 pandemic. For the second wave, we estimated reproduction number for the
first 30 days, at both the national and at provincial level. Based on the growth of incidence
curve, we estimated Rt for the period from 12 April to 11 May 2021 for national level
and for six provinces, except for Karnali province for which we took data for the period
(20 April to 19 May 2021). Similarly, we also estimated Rt for the resurgence wave after the
second wave for the first 30 days period (10 July to 8 August 2021) at the national level.

We modeled the generation interval of SARS-CoV-2 assuming gamma distribution
with a mean of 5.2 days and a standard deviation of 1.72 days [41]. We estimated the
growth rate parameter r, and the deceleration of growth parameter p from the GGM. The
GGM model is used to simulate the progression of local incidence cases Ii at calendar time
ti. This is followed by the application of the discretized probability distribution of the
generation interval, denoted by ρi, to the renewal equation to estimate the reproduction
number at time ti [42–44]

Rti =
Ii

∑i
j=0(Ii−j + αJi−j)ρj
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The factor Ji represents the imported cases at time ti, Ii denotes the local case incidence
at calendar time ti, and ρj represents the discretized probability distribution of generation
interval. The factor α assesses the relative contribution of imported cases to secondary
disease transmission. The factor α was set at 0. The numerator represents the total new cases
Ii, and the denominator represents the total number of cases that contribute (as primary
cases) to generating the new cases Ii (as secondary cases) at time ti. Hence, Rt, represents
the average number of secondary cases generated by a single case at calendar time t.
The uncertainty bounds around the curve of Rt are derived directly from the uncertainty
associated with the parameter estimates (r, p) obtained from the GGM. We estimated Rt for
300 simulated curves assuming a negative binomial error structure where the variance was
estimated by averaging mean to variance ratio for the local case incidence [30].

2.8. Estimating Instantaneous Reproduction Number (Rt)

The instantaneous reproductive number is the expected number of secondary infec-
tions occurring at time t, divided by the number of infected individuals, each scaled by
their relative infectiousness at time t. We estimated the instantaneous reproduction number,
Rt, at the national and regional level using the case incidence date by dates of report, using
the method of Cori et al. [45] in which the instantaneous Rt is estimated as

Rt =
It

∑t
s=1 It−sws

,

where It is the number incident infections on day t and ws is the generation interval at time
since infection s. An individual’s relative infectiousness depends on generation interval
and time since infection (s) [45]. Here the term ∑t

s=1 It−sws describes the sum of infection
incidence up to time step (t − 1) weighted by the current infectiousness (ws) of individuals
who became infected s days in the past, and who may be shedding the virus now. The
standard assumption is that ws follows a discretized gamma distribution [45]. However,
since the infection time may not be accurately observed, the measurement of generation
time becomes difficult [46] and so the time of symptom onset is usually used to estimate
the distribution of serial interval (SI), which is the time interval between dates of symptom
onset among two successive cases in a disease transmission chain [45]. We assumed the
generation interval as equal to SI and that SI follows a gamma distribution with a mean
of 5.2 days and a standard deviation of 1.72 days [41]. We then obtained the Rt estimates
over weekly time interval within a Bayesian framework using EpiEstim R package in R
language [45]. We reported the mean and 95% credible interval (CrL).

3. Results

As of 30 November 2021, Nepal reported a total of 821,366 RT-PCR positive COVID-19
cases and a total of 11,526 deaths. Figure 1 shows the incidence curve of COVID-19 cases
and deaths in Nepal as of 30 November 2021. The COVID-19 epidemic curve shows three
distinct phases: an initial growth phase occurring during late-May to late-June 2020, the
first wave occurring from early-August 2020 to mid-January 2021, and the second wave
taking off in mid-April 2021 (Figure 1). The first wave started to peak after the lifting of the
first national lockdown, which lasted about four months. The second wave was preceded
by the second wave of COVID-19 in India, a celebration of Hindu massive festivals, and
the start of wedding season in Nepal. The second wave came to a decline in late June 2021,
but it resurged a few weeks later (Figure 1).
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Figure 1. Epidemic curve of the COVID-19 pandemic in Nepal as of 30 November 2021.

3.1. Model Calibration and Forecasting Performance

Figure 2 shows a comparison of the results for five performance metrics of model
calibration. We found that during the model calibration, sub-epidemic model outperformed
the GLM and Richards model based on RMSE, MAE, PI-Coverage, and WIS in all the
8-model calibrations conducted.
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Figure 2. Comparison of performance metric during model calibration. Red dots indicate perfor-
mance of the GLM model, green dots indicate performance of the Richards model, and the black dots
indicate performance of the sub-epidemic model.
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In Table 2, we present the comparison of performance metrics of the three models
for 10-days ahead forecasts. For 10-days ahead forecast, GLM model performed better
in RMSE and MIS, while sub-epidemic model performed better in PI-Coverage. Overall,
we saw that in the first three forecast periods, the sub-epidemic model out-performed the
GLM and Richards models in all the metrics. Likewise, the Richards model out-performed
GLM and the sub-epidemic model in all the metrics in the fifth and sixth forecast period,
while the GLM model performed better in the eighth forecast period (Table 2).

Table 2. Comparison of performance metric during 10-days ahead forecast.

3 April 2021 10 April 2021 17 April 2021 24 April 2021 1 May 2021 8 May 2021 15 May 2021 22 May 2021

RMSE

GLM 183.77 580.17 1.51 × 103 1.57 × 103 2.41 × 103 805.31 1.93 × 103 1.23 × 103

Richards 228.92 615.59 1.51 × 103 4.68 × 103 1.13 × 103 580.1 1.61 × 103 1.68 × 103

Sub-epidemic 184.21 591.12 1.07 × 103 4.44 × 103 2.41 × 103 2.64 × 103 1.68 × 103 6.03 × 103

MAE

GLM 163.17 446.36 1.32 × 103 1.28 × 103 2.23 × 103 549.5 1.74 × 103 891.01
Richards 206.49 472.57 1.31 × 103 4.02 × 103 1.09 × 103 425.69 1.47 × 103 1.44 × 103

Sub-epidemic 163.14 431.97 934.05 3.88 × 103 2.26 × 103 2.30 × 103 1.53 × 103 5.18 × 103

MIS

GLM 3.34 × 103 1.30 × 104 3.18 × 104 7.35 × 102 1.12 × 104 1.06 × 104 6.14 × 103 7.67 × 103

Richards 5.37 × 103 1.26 × 104 3.44 × 104 5.80 × 103 1.02 × 104 7.12 × 103 7.37 × 103 1.18 × 104

Sub-epidemic 5.97 × 103 7.06 × 103 3.40 × 103 9.49 × 103 7.76 × 103 1.01 × 104 6.25 × 103 4.96 × 104

PI-Coverage

GLM 10 10 10 100 100 100 90 80
Richards 10 30 10 100 100 100 90 60

Sub-epidemic 80 60 90 80 100 100 90 70

WIS

GLM 132.41 401.63 1.12 × 103 625.49 1.22 × 103 600.13 1.05 × 103 625.39
Richards 179.84 412.37 1.13 × 103 2.88 × 103 723.83 440.77 919.38 9.74 × 102

Sub-epidemic 114.41 341.45 538.37 2.74 × 103 1.33 × 103 1.37 × 103 8.97 × 102 3.30 × 103

Dates in each column indicate date of the end of 30-days calibration period.

Table 3 presents the comparison of performance metrics of the three models for
20-days ahead forecast. For 20-days ahead forecast, GLM model performed better in RMSE,
and sub-epidemic model performed better in MIS, and PI-coverage in the majority of the
forecast periods. Similar to the 10-days ahead forecast, the 20-days ahead forecast also
observed the Richards model performing better in most of the metrics.

Table 3. Comparison of performance metric during 20-days ahead forecast.

3 April 2021 10 April 2021 17 April 2021 24 April 2021 1 May 2021 8 May 2021 15 May 2021 22 May 2021

RMSE

GLM 985.56 2.39 × 103 3.65 × 103 3.80 × 103 4.03 × 103 2.37 × 103 2.08 × 103 1.11 × 103

Richards 1.06 × 103 2.50 × 103 3.81 × 103 7.07 × 103 1.18 × 103 937.85 1.57 × 103 1.68 × 103

Sub-epidemic 988.99 2.57 × 103 2.28 × 103 6.80 × 103 3.97 × 103 4.54 × 103 1.69 × 103 7.00 × 103

MAE

GLM 673.39 1.79 × 103 3.06 × 103 3.18 × 103 3.65 × 103 1.85 × 103 1.88 × 103 898.59
Richards 745.56 1.87 × 103 3.16 × 103 6.42 × 103 1.08 × 103 739.33 1.39 × 103 1.50 × 103

Sub-epidemic 675.72 1.90 × 103 1.96 × 103 6.20 × 103 3.65 × 103 4.06 × 103 1.49 × 103 6.47 × 103

MIS

GLM 2.34 × 103 6.56 × 104 7.29 × 104 2.60 × 104 2.41 × 104 1.65 × 104 6.27 × 103 5.89 × 103

Richards 2.69 × 104 6.67 × 104 9.18 × 104 9.11 × 103 1.78 × 104 7.67 × 103 7.37 × 103 1.47 × 104

Sub-epidemic 1.07 × 103 6.07 × 104 2.44 × 104 7.86 × 104 1.38 × 104 1.64 × 104 6.02 × 103 3.81 × 105

PI-Coverage

GLM 5 5 5 100 100 100 95 85
Richards 5 10 5 95 100 100 85 45

Sub-epidemic 45 30 95 35 100 100 90 85

WIS

GLM 639.32 1.73 × 103 2.60 × 103 1.64 × 103 2.19 × 103 1.17 × 103 1.14 × 103 575.45
Richards 719.45 1.79 × 103 2.78 × 103 4.93 × 103 895.16 534.59 899.52 1.05 × 103

Sub-epidemic 556.18 1.75 × 103 1.16 × 103 4.98 × 103 2.32 × 103 2.77 × 103 9.12 × 102 7.12 × 103

Dates in each column indicate date of the end of 30-days calibration period.
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Figures 3–5 below show the 10-days ahead forecast for 8 different sequential periods
for three dynamic phenomenological models. Similarly, Figures 6–8 show the 20-days
ahead forecast for the same forecast periods for the three models.
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Figure 7. Twenty-days ahead forecasts of the COVID-19 epidemic curves in Nepal by calibrating the Richards model for
eight different periods. Blue circles correspond to the data points; the solid red line indicates the best model fit, and the red
dashed lines represent the 95% prediction interval. The vertical black dashed line represents the time of the start of the
forecast period.
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Figure 8. Twenty-days ahead forecasts of the COVID-19 epidemic curves in Nepal by calibrating the sub-epidemic model
for eight different periods. Blue circles correspond to the data points; the solid red line indicates the best model fit, and the
red dashed lines represent the 95% prediction interval. The vertical black dashed line represents the time of the start of the
forecast period.
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3.2. Estimate of Reproduction Number, Rt from Case Incidence Data Using GGM

The reproduction number for the early ascending growth phase of the initial mild
wave of epidemic from the case incidence data (25 May to 23 June 2020) using GGM was
estimated at Rt~1.1 (95% CI: 1.1, 1.2) for the national data. The growth rate was 13 (95% CI:
7, 20) and the deceleration of growth rate parameter (p) was estimated at 0.41 (95% CI: 0.35,
0.48). Likewise, for the first 30 days of the first wave from 1 August to 30 August 2020, the
reproduction number was estimated at 1.1 (95% CI: 1.1, 1.2), the growth rate was estimated
at 15 (95% CI: 8.5, 20), and the deceleration of growth rate parameter was estimated
at 0.43 (95% CI: 0.39, 0.49). The deceleration of growth rate parameter for the initial mild
wave and the first wave (p~0.41–0.43) indicate almost a linear pattern of epidemic trajectory
of COVID-19 in Nepal.

For the second major wave, we estimated the reproduction number (Rt) at national
and provincial level. For the early phase of the second wave (first 30 days), Rt at national
level was 1.3 (95% CI: 1.3, 1.4) with the growth rate of 7.9 (95% CI: 5.8, 11) and p of
0.61 (95% CI: 0.58, 0.64) (Figure 9, Table 4), indicating a sub-exponential growth dynamic
of COVID-19 pandemic. At provincial level, while province 1, Gandaki, and Sudur-
paschim had the highest Rt at 1.5, Lumbini and Karnali regions observed the lowest Rt at
1.2 (Figure 10, Table 4). For province 1, Bagmati, Gandaki, and Sudurpaschim, the deceler-
ation of growth rate parameter indicated sub-exponential growth dynamics with estimated
between p~0.61–0.72. For other provinces, p~0.51–0.58 indicated an almost linear trajectory
of the COVID-19 epidemic (Table 4).
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Figure 9. Upper panel: reproduction number for Nepal for the early phase of the second wave of epidemic (12 April 2021–
11 May 2021) with 95% CI estimated using the GGM model. The estimated reproduction number of the COVID-19 epidemic
in Nepal as of 12 May 2020, is 1.3 (95% CI: 1.3, 1.3). The growth rate parameter, r, is estimated at 7.9 (95% CI: 5.8, 11) and the
deceleration of growth parameter, p, is estimated at 0.61 (95% CI:0.58, 0.64). Lower panel: the lower panel shows the GGM
fit to the case incidence data for the first 30 days of the second wave from 12 April 2021–11 May 2021.
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Table 4. Comparison of reproduction number estimated using GGM for provinces, for first 30 days
of second wave (12 April–11 May 2021).

Region Reproduction Number
(95% CI)

Growth Rate
(95% CI)

Deceleration of Growth
Parameter (95% CI)

National 1.3 (1.3, 1.3) 7.9 (5.8, 11) 0.61 (0.58, 0.64)
Province 1 1.5 (1.4, 1.6) 1.2 (0.77, 1.8) 0.72 (0.67, 0.79)
Province 2 1.3 (1.2, 1.3) 3.1 (2.1, 4.4) 0.58 (0.53, 0.63)
Bagmati 1.3 (1.3, 1.4) 6.6 (4.0, 9.7) 0.61 (0.56, 0.66)
Gandaki 1.5 (1.3, 1.8) 1.2 (0.53, 2.2) 0.73 (0.63, 0.84)
Lumbini 1.2 (1.2, 1.3) 8.7 (4.1, 16) 0.53 (0.46, 0.61)
Karnali 1.2 (1.1, 1,4) 6.1 (1.4, 15) 0.51 (0.36, 0.68)

Sudurpaschim 1.5 (1.3, 1.7) 1.3 (0.59, 2.4) 0.71 (0.61, 0.82)
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Figure 10. Map showing reproduction number at province level, for first 30 days of the second wave (12 April–11 May 2021).

We also estimated the reproduction number for the 30 days period from 10 July–
8 August 2021, for the early ascending phase of the resurgence that started to peak from
early July 2021. The reproduction number for the early ascending growth phase of the
resurgence phase after the second wave from the case incidence data (10 July to 8 August
2021) using GGM was estimated at Rt~1.2 (95% CI: 1.2, 1.2) for the national level. The
growth rate was 18 (95% CI: 12, 20) and the deceleration of growth rate parameter (p) was
estimated at 0.47 (95% CI: 0.46, 0.52).

3.3. Estimate of Instantaneous Reproduction Number, Rt

Figure 11 shows the weekly instantaneous reproduction number at national and
provincial level for the period from 1 October 2020 to 30 September 2021. The reproduction
number was estimated at, Rt~2.5 (95% CrI: 2.4, 2.5) on 16 April 2021, which declined
to 0.99 (95% CI: 0.98, 1.0) on 10 May 2021, and increased to 1.04 (95% CI:1.02, 1.06) on
9 July 2021 at national level (Figure 11). At the provincial level, highest Rt was observed
in Karnali region with an estimate of Rt~5.08 (95% CrI: 2.04, 9.48) on 26 February 2021.
The instantaneous reproduction number fluctuated at around ~1 from December 2020
to January 2021 for all the regions. Similarly, instantaneous reproduction has remained
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consistently below 1 for national level and fluctuated between 0–1.5 at provincial level
since 8 August 2021.
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3.4. Analysis of Mobility Data

The curves of mobility from Google data tracked in the form of visits to retail and
recreation, grocery and pharmacy, parks, and workplaces all follow the same pattern,
showing inclining trends from late May to late June 2020, which correspond to the peak
of initial rise in cases of COVID-19. The mobility curve started to incline again in August,
which corresponded to the early phase of the first wave. The second wave started soon
after there was a peak in mobility around parks and grocery and pharmacy. During the
peak in the second wave, mobility declined rapidly in all the areas except residential,
which corresponds to the lockdown by government as an intervention to contain the
epidemic (Figure 12).
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Figure 12. (A) Google mobility trends data showing the variation in movement of people across the following five categories:
grocery and pharmacy (blue curve), parks (green curve), residential (black curve), retail and creation (red curve), and
workplace (purple curve) among the population in Nepal. (B) COVID-19 incidence curve in Nepal by the dates of report as
of 30 November 2021.

4. Discussion

Reliable forecasting tools are of critical importance in guiding public health policy
during the period of an ongoing pandemic [47]. Appropriate short-term forecasts not
only help assess the impact of interventions but also help guide the distribution of limited
resources. In this study we compared the performance of three different phenomenological
models for short term forecast of COVID-19 cases based on the estimates derived using case
incidence data at national level. We performed eight different week-to-week sequential
forecasts of 10-days and 20-days. Our findings indicate the better performance of sub-
epidemic model based on five performance metrics during the model calibration phase.
However, for the 10-days and 20-days ahead forecast performance, we found the sub-
epidemic model performing better in the initial forecast periods and the Richards model
performing better in the later forecast periods. Our finding is in line with previous studies
indicating that the sub-epidemic model frequently outperforms the GLM and Richards
model [48]. Our forecast estimates from the three phenomenological models indicate a
declining trend of COVID-19 cases in Nepal as of June 2021.

The early estimate of Rt in different epidemic waves reflect a sustained transmission
of COVID-19 in Nepal with Rt above 1. We report almost a linear pattern of COVID-19
incidence during the initial transmission phase and the first waves in Nepal (deceleration
of growth parameter p~0.41–0.43) with a reproduction number at 1.1 (95% CI: 1.1, 1.2). We
also report a sub-exponential growth pattern in the second wave with a deceleration of
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growth parameter p at 0.61 (95% CI: 0.58, 0.64) and a corresponding reproduction number
at 1.3 (95% CI: 1.3, 1.3). We found much variation in the reproduction number, growth
rate, and deceleration of growth rate parameters at the provincial level, with province 1,
Gandaki and Sudurpaschim provinces having Rt at 1.5 during the initial phase of the major
second wave. Our estimate of reproduction number is less than that of India [49,50] and
comparable with early estimates of reproduction number reported from Mexico [48] and
South Korea [51], and higher than that of the early estimates reported from Singapore [52].

As of 24 August 2021, the SARS Cov-2 variants of concern (VOC) reported from Nepal
include Alpha and Delta variants [53]. The Delta variant is at least twice as contagious
as previous variants [54]. The national public health laboratory of Nepal confirmed the
detection of the Delta variant in 47 of the 48 swab samples collected from infected indi-
viduals from different parts of the county from 9 May to 3 June 2021, and in nine of these
samples, the highly infectious new sub-lineage K417N (also called AY.1) was detected [55],
indicating the presence of Delta variant since at least May 2021. However, unlike expected
higher value of reproduction number for the period with the circulating Delta variant, our
estimate of instantaneous reproduction number did not show an increase in Rt above 1,
both at national level and provincial level since 25 May–12 June 2021 (Figure 11). This
could be due to the vaccination efforts by the country during early/mid 2021 [56,57] and
also due to inadequate COVID-19 testing rates around that time, due to a large number of
cases that may have been undetected [9].

Our analysis of mobility trend shows the peak in mobility across different areas relative
to the trajectory of the COVID-19 incidence (Figure 12). The increase in mobility before the
third wave corresponds to the start of wedding season [14], celebration of Hindu massive
festivals in Nepal, crowded movement of people in the country, a lack of adherence to social
distancing guidelines [13], and the start of second wave in India (Figure 1). Our findings
from google mobility data are in line with the country’s severity index of public health
and social measures (PHSM) published by the WHO regional office for South East Asia
(Figure 13) [58]. Figure 13 shows that decline in the severity index for PHSM was followed
by the surge in daily COVID-19 cases. The lifting of bans on businesses, gatherings, stay at
home, and public transport during February and March 2021 preceded the start of second
wave during April 2021 in Nepal (Figure 1, Figure 13).
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Our findings from google mobility data are in line with the country’s severity index of 

public health and social measures (PHSM) published by the WHO regional office for 

South East Asia (Figure 13) [58]. Figure 13 shows that decline in the severity index for 

PHSM was followed by the surge in daily COVID-19 cases. The lifting of bans on busi-

nesses, gatherings, stay at home, and public transport during February and March 2021 

preceded the start of second wave during April 2021 in Nepal (Figure 1, Figure 13). 

 Figure 13. Daily COVID-19 cases over severity of public health and social measures (PHSM) in Nepal (March 2021–
23 November 2021). Figure source: PHSM dashboard published by WHO regional office for South East Asia [58]. Indicators
and PHSM severity index are assigned a color. The shading of that color is based on the severity score. The darkest shade
represents the most severe measure/s (value of 100) and a lack of color represents no measure (value of 0).
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Nepal depends on India for most of its supplies, including medical equipment, liquid
oxygen, and vaccines. Therefore, when the situation deteriorated in India’s health system
with a total of 26,031,991 COVID-19 cases and 291,331 deaths, as of 21 May 2021, Nepal
struggled to find alternate sources of supplies beyond India [15]. India’s surge in COVID-19
cases impacted the availability of COVID-19 vaccines in Nepal. Nepal launched its COVID-
19 vaccination program on 27 January 2021 after receiving a first batch of one million
doses of AstraZeneca (Covishield) vaccines produced by the Serum Institute of India [15].
Nepal also received doses from Covax and from China [15]. However, Nepal’s attempt
to buy additional doses of AstraZeneca vaccine from India failed due to the increase in
demand in that country [16]. As of 30 November 2021, 27.8% of the total population in
Nepal have been fully vaccinated and 32.5% have received at least one dose [7]. Given the
vaccination rate, fragile health system, direct impact of the COVID-19 trajectory in India (in
terms of cases flow due to open border as well as in terms of management as seen during
the vaccination), and a sustained COVID-19 transmission, there is a need to implement
non-pharmaceutical measures in order to reduce the reproduction number.

Our study has several public health implications. Short-term forecasts using the
sub-epidemic and Richards models yield the most reliable short-term forecasts. This can
be useful in planning the interventions during the early growth phase of the epidemic
at present and for similar epidemics in the future. Furthermore, the analysis of the sub-
national estimates of the reproduction numbers could help prioritize subpopulations on
interventions, especially for a resource-scarce country such as Nepal.

Our study has some limitations. The case positivity rate fluctuated around 10% during
the second week of April 2021 and rose to 73% between mid-April and mid-May [16],
suggesting that only severe symptomatic cases were being tested and a much larger
population could have been infected. Therefore, our estimates of reproduction number
may be underestimated. Similarly, we used only RT-PCR positive case counts in our study
while the national situation reports provide the total number of cases includes both RT-
PCR and antigen positive cases. Of note, the descriptive analysis of the data in most of
situational reports included only the RT-PCR positive cases. Considering only RT-PCR
cases will make our findings comparable with other countries [59]. Moreover, the cases
incidence and mortality data used in this study are based on the reporting date, rather than
date of symptom onset or date of death. Therefore, the difference in the report date and
actual date of event occurrence, including the differences in testing rates and reporting
delay, might affect our model estimates and estimates of reproduction number.

5. Conclusions

The reproduction number in Nepal has been fluctuating around 1 since January 2021
indicating a sustained virus transmission in the country. We report a sub-exponential
growth dynamic during the early phase of the second wave with a reproduction number
at 1.3 at the national level with province 1, Gandaki and Sudurpaschim provinces having
higher reproduction numbers (Rt at 1.5) during the initial phase of the major second wave.
The increase in mobility in the country appears to be positively correlated with COVID-
19 transmission. The sub-epidemic and Richards model provide reasonable short-term
projections of the COVID-19 trajectory in Nepal and indicate a declining trend of COVID-19
cases in the country until June 2021. Simple mathematical models can provide reliable
short-term projections, which are crucial for public health planning.
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