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Abstract: The administration of vaccines against the coronavirus disease 2019 (COVID-19) started
in early December of 2020. Currently, there are only a few approved vaccines, each with different
efficacies and mechanisms of action. Moreover, vaccination programs in different regions may vary
due to differences in implementation, for instance, simply the availability of the vaccine. In this
article, we study the impact of the pace of vaccination and the intrinsic efficacy of the vaccine on
prevalence, hospitalizations, and deaths related to the SARS-CoV-2 virus. Then we study different
potential scenarios regarding the burden of the COVID-19 pandemic in the near future. We construct
a compartmental mathematical model and use computational methodologies to study these different
scenarios. Thus, we are able to identify some key factors to reach the aims of the vaccination programs.
We use some metrics related to the outcomes of the COVID-19 pandemic in order to assess the impact
of the efficacy of the vaccine and the pace of the vaccine inoculation. We found that both factors have
a high impact on the outcomes. However, the rate of vaccine administration has a higher impact in
reducing the burden of the COVID-19 pandemic. This result shows that health institutions need to
focus on increasing the vaccine inoculation pace and create awareness in the population about the
importance of COVID-19 vaccines.
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1. Introduction

The world is facing the COVID-19 pandemic, and in mid-December of 2020, the first
vaccines were given to a few people [1–8]. This pandemic has caused more than 80 million
confirmed cases and more than 1.7 million deaths [9,10].

The SARS-CoV-2 virus causes an illness called COVID-19 that can result in severe pneu-
monia and death [11,12]. The complex process of the SARS-CoV-2 spread involves several
factors that are currently not very well understood [12–17]. There are several aspects that
impact the spread of the virus in the human population, such as social behavior, age, weather
variables, mutation of the virus, and immunocompetence [18–20]. Other factors may affect the
spread of the SARS-CoV-2 virus but are still unknown. Regarding mutations, SARS-CoV-2
could acquire mutations with fitness advantages and immunological resistance [21]. Therefore,
studying evolutionary transitions is important to ensure effectiveness of the vaccines and
immunotherapeutic interventions [21–25]. It has been stated that not only is the efficacy of the
vaccine important, but whether a vaccine reduces infection and transmission as well as disease
progression [26].

The genomic analysis suggested that the base sequence of SARS-CoV-2 is almost
80% similar to that of SARS-CoV. Further, both these viruses bind to the same host cell
receptor ACE-2 [27]. However, the development of vaccines for this novel SARS-CoV-2
virus took nearly a year. There are now more than 80 vaccines in development [21,26,28–32].
Vaccination programs have recently begun (December) in a few countries, and there are
many uncertainties regarding the optimal implementation of these vaccination programs
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and the probable outcomes [26,33,34]. Therefore, studying the COVID-19 vaccination
programs is of paramount importance. Effective vaccination helps tackle the transmission
of the SARS-CoV-2 virus in the population [26,34–38].

Mathematical models, statistical analyses and computational techniques are very
useful tools to study different processes, including testing hypotheses and understanding
how factors affect the processes. For infectious disease processes, mathematical models
can be used to perform in silico simulations of different potential scenarios, vaccination
programs, and test different strategies to slow down epidemics [39–48]. The outcomes of
the complex infectious disease processes under different scenarios are generally impossible
to predict without mathematical models and computational techniques. In some cases,
results of the simulations can be counter-intuitive and very interesting from a predictive
point of view.

There are many articles related to the use of mathematical modeling in combination with
computational and statistical techniques to study the spread of the SARS-CoV-2
virus [7,16,41,42,49–54]. Some mathematical models used the Susceptible–Infected–Recovered
(SIR) mathematical model [55–57]. Previous studies have used susceptible-exposed-infected-
recovered (SEIR) type models [7,58,59]. Other mathematical models use a curve fitting of
some particular growth model to the data, and also artificial intelligence techniques have
been considered for fitting models to real data related to COVID-19 [60–62].

The main advantage of mathematical models is that many different simulations can
be done and this allows us to study the main driving factors of pandemics under a variety
of complex scenarios [39–42,44–48]. However, many forecasts related to the COVID-19
pandemic disagree with each other due to many related uncertainties in key characteristics
of the SARS-CoV-2 virus [7,41,42,50,53,54,63–68]. Moreover, currently we are facing new
strains due to mutations of the virus, which has raised questions about the efficacy of the
vaccines against the mutations of the SARS-CoV-2 virus. Recently, it has been found that
the SARS-CoV-2 is mutating and its transmission is more efficient [22,69–71]. There is a
growing literature about mutations of the SARS-CoV-2, but it is not clear what further
mutations could occur in the near future [21–25].

A new vaccine campaign against the SARS-CoV-2 virus began in December of 2020 in
the United States and other countries. Currently, there are only a few approved vaccines
with different efficacies and mechanisms of action. Our principal aim in this article is to
study the impact of the pace of vaccination and the efficacy of the vaccine on the outcome or
dynamics of the incidence, prevalence, and deaths related to the SARS-CoV-2 virus [72–76].
This will help us to explain different potential patterns in different countries related to their
vaccination programs [14,69,77,78]. Despite the huge health crisis caused by the spread of
the SARS-CoV-2 virus around the world, there are few studies related to the prediction of
feasible scenarios in the year 2021 [79–82]. In [81], the authors used a SEIR mathematical
model based on differential equations to study the situation in South Africa with respect to
the number of reported cases of COVID-19. They found that a vaccine with 70% efficacy
had the capacity to contain the COVID-19 outbreak but only at a very high vaccination
coverage of 94.44%. In [79], the authors proposed a distribution of vaccines in time and space,
which sequentially prioritizes regions with the highest new cases of infection in a given time
period. They used a SEIR type model that includes an extra class for mild infected individuals
and with spatio-temporal effects. They found that, for a locally well-mixed population, the
proposed strategy strongly reduces the number of deaths. In [80], the authors implemented
a SEIR type model that includes pre-symptomatic, asymptomatic and the entire equivalent
vaccinated classes. They studied the impact of different vaccination coverages, efficacy and
reduction of symptoms on different metrics such as deaths and ICU hospitalizations. The
outcomes of these studies are important because they help to better understand the impact of
vaccination programs, and generate optimal actions to diminish the spread of the SARS-CoV-2
virus [18–20,41,42,50,80,83]. One factor that brings uncertainty to the outcomes and that must
be taken into account is the fact that vaccines are under threat in different places and there are
antivaccine movements that have gained traction with some people [33,84].
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In this article, we construct a compartmental mathematical model and use compu-
tational methodologies to study different scenarios. In particular, we include the asymp-
tomatic carriers of the virus, who are nevertheless able to spread the virus. It has been
mentioned that asymptomatic people are in some way a key contributor to the spread of
the SARS-CoV-2 virus and are a real threat for the control policies [16,85–99]. For instance,
it has been found that quantitative SARS-CoV-2 viral loads were similarly high for infected
individuals with symptoms, pre-symptomatic, or asymptomatic. Moreover, it has been
found 6 to 24 times more estimated infections per site with seroprevalence than with coron-
avirus disease 2019 (COVID-19) case report data [100]. Thus, we construct a mathematical
model taking into account asymptomatic people, which have been missed in other studies.
In addition, we will study scenarios with different SARS-CoV-2 virus transmission rates,
which results in different effective reproduction numbers Rt of COVID-19 [101–104].

2. Materials and Methods
2.1. Mathematical Model

We constructed a compartmental model based on differential equations that includes
individuals in the susceptible, latent, infected, asymptomatic, and hospitalized stages. The
mathematical model considers transitions of individuals through the aforementioned stages
depending on the COVID-19 progression. In addition to the previous stages, the model in-
corporates vaccinated individuals that might be in analogous stages such as susceptible or
asymptomatic vaccinated. Thus, in some way we can classify individuals into two disjoint
groups: unvaccinated and vaccinated. We assume that unvaccinated individuals in the suscep-
tible, latent, and asymptomatic compartments can receive the vaccine against the SARS-CoV-2
virus. On the other hand, we assume that symptomatic, recovered and hospitalized unvacci-
nated individuals do not receive the vaccine. The individuals can transit from the unvaccinated
susceptible class to vaccinated susceptible if they get the vaccine. In an analogous way, the
latent and asymptomatic unvaccinated individuals can move to the respective vaccinated
compartment. It is important to mention that the model incorporates the type of vaccine that
diminishes the progression to the COVID-19 disease [80,82]. Individuals in the latent stage
are not yet infectious. The individuals remain in the latent stage for a certain time, which
is chosen from an exponential distribution with mean time α. The individuals then transit
into the infective symptomatic or asymptomatic stages, where they are able to spread the
SARS-CoV-2 virus to other individuals. They stay in the infectious stage for a time chosen from
an exponential distribution with mean time γ. After that, individuals in the asymptomatic
stage move to the recovered stage. However, individuals in the infective symptomatic stage
can move to the recovered or to the hospitalized stages, depending on the level of disease
progression. Even though we assume exponential distributions, the Erlang distributions are
more realistic but at the expense of more complex models and more parameters [65,105–109].
Thus, many studies assume exponential distributions to avoid greater complexity in the mod-
els and in the analysis. However, in some cases exponential distributions are not far from
reality. We have found that the length of stay in the hospital is not far from an exponential
distribution [110]. Finally, hospitalized individuals can die due to the COVID-19
disease [42,110–112]. This last metric (or outcome) is of paramount importance [42,113–115].

We use a mathematical model that is similar to a SEIR-type epidemiological model to
explain the dynamics of COVID-19 spread on the human population under a vaccination
program. This model has parameters that can be varied in order to study different possible
scenarios. For instance, the pace of vaccination and efficacy of the vaccine can be modified.
This is important since it is known that the efficacy of vaccines varies and they have
different underlying mechanisms of action [26,35,37,72,74]. Moreover, different countries
and regions would apply the vaccines at different rates due to a variety of factors such as
availability and resources [26,33,74,84,116].
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The constructed mathematical model based on differential equations is given by

Ṡ(t) = µN(t)− dS(t)− (β I I(t) + βA A(t) + β I IV(t) + βA AV(t))
S(t)
N(t)

− ν pS,

Ė(t) = (β I I(t) + βA A(t) + β I IV(t) + βA AV(t))
S(t)
N(t)

− (d + α)E(t)− ν pE,

İ(t) = (1− a) αE(t)− (d + h + γ)I(t),

Ȧ(t) = a αE(t)− (d + γ)A(t)− ν pA,

Ḣ(t) = hI(t)− (d + δ + ρ) H(t),

Ṙ(t) = γ(I(t) + A(t)) + γv(IV(t) + AV(t)) + ρH(t) + ρv HV(t)− dR(t), (1)

˙SV(t) = ν pS,−(1− ε) (β I I(t) + βA A(t) + β I IV(t) + βA AV(t))
SV(t)
N(t)

− dSV(t),

˙EV(t) = ν pS + (1− ε) (β I I(t) + βA A(t) + β I IV(t) + βA AV(t))
SV(t)
N(t)

− (d + αv)EV(t),

˙IV(t) = (1− a) αvEV(t)− (d + hv + γv)IV(t),

ȦV(t) = ν pA + a αvEV(t)− (d + γv)IV(t),

ḢV(t) = hv IV(t)− (d + δv + ρv)HV(t),

Ḋ(t) = δH(t) + δv HV(t),

where S(t) denotes the number of susceptible individuals. When a susceptible and an
infectious individual comes into infectious contact, the susceptible individual contracts the
disease and transitions to the latent compartment E(t). Individuals in compartment E(t)
are infected (carry the virus) but cannot spread the virus. Compartment I(t) represents
individuals who have been infected and show symptoms. These individuals are capable of
infecting susceptible individuals after being in the E(t) subpopulation. The subpopulation
A(t) represents the number of individuals who have been infected but are asymptomatic.
These individuals are capable of infecting susceptible individuals after being in the E(t)
subpopulation. The variable H(t) denotes the number of hospitalized individuals at time t.
The compartment D(t) represents the number of deaths due to the SARS-CoV-2 virus from
the beginning of the simulation period. Similarly, SV(t), EV(t), IV(t), AV(t) and HV(t)
denote the analogous vaccinated population at time t. Individuals in the S(t), E(t) and
A(t) classes are vaccinated with rates ν pS, ν pE and ν pA, respectively. These proportions
are related to the their respective size populations. The model assumes that people in
states E(t), EV(t), HV(t), H(t), and R(t) do not transmit the infection. The mathematical
model (1) is depicted graphically in Figure 1.

In this model we consider that COVID-19 confers immunity after recovery (currently
assumed but not confirmed), and assume that when an individual is in the latent and latent
vaccinated stages the virus cannot be transmitted. In addition, we consider that once the
individuals receive the vaccine inoculation, they transit to the vaccination compartments.
The model assumes one vaccine inoculation to cause the individual to transit to one of
the vaccinated compartments. Notice that if we consider two inoculations the rate should
be reduced 50%, and the model would be more complex since it might need to take into
account different efficacies (uncertainty included) after one or two inoculations and assume
some particular time frame for the second inoculation. We avoided taking into account
this last fact since the outcomes would be the same from a qualitative point of view. The
model also considers that hospitalized individuals are not able to transmit the SARS-CoV-2
virus. This assumption is arguable, but we assume the conditions in the hospitals are safe
regarding the transmission of the SARS-CoV-2 virus. We also assume that individuals in
the susceptible, latent, and asymptomatic compartments are those that can be vaccinated.
This assumption might sound arguable, but recently it has been mentioned that a nurse
tested positive for COVID-19 more than a week after receiving Pfizer Inc’s vaccine [117].
One hypothesis to explain this observation is that the nurse was in the latent stage before
being inoculated.



Epidemiologia 2021, 2 144

S

E

IA

SV

H

R

D

EV

AVIV

HV

μ N (t )

β (t )
S ( t)
N ( t)

(1−ε )β (t )
SN (t )
N (t)

(1−a)α v EV ( t) (1−a)α E(t )aα v EV (t ) aα E(t)

hv IV (t) h I (t )

γ I ( t)γ v IV ( t)

γ A( t)γ v AV ( t)

ν pA

ν pE

ν pS

ρ H (t )ρ vHV ( t)

δ v∗HV ( t) δ H (t )

d S (t)

d E( t)

d A (t )

d I ( t)

d H (t )

d R( t)

d AV (t)

d IV (t)

d HV (t )

d EV (t )

d SV (t )

β (t )=β A A (t )+β I I (t )+β A AV ( t)+β I IV (t )

Figure 1. Diagram for the COVID-19 mathematical model (1). The boxes represent the subpopulation
and the arrows the transition between the subpopulations. Arrows are labeled by their corresponding
model parameters.

2.2. Parameter Values

In this work we are interested in the impact of the vaccination rate and the efficacy
of the vaccines on the infected, hospitalized, and death cases. We assume that the rates of
virus transmission in asymptomatic and symptomatic individuals are constant from the
beginning of the period of study, i.e., when the vaccination program starts. This implicitly
assumes that people would not change behavior (on average) until the vaccination program
is well advanced. This is a credible assumption in the USA, and previous physical and
social behavior changes can be included in the transmissibility. Many health policies and
guidelines would have been implemented before the vaccination program started. In some
cases it is more realistic to include time-varying transmissibility, which has been used to
study other infectious diseases and in particular one closely related to the SARS-CoV-2
virus [41,118–120]. This latter approach is more troublesome to implement since it is
necessary to estimate a time-varying parameter, and identifiability issues thus arise. Even
with accurate data from the past it is difficult to estimate a time-varying transmission.
Moreover, in this study we can not predict how the behavior of individuals might change
in the future. Thus, we take an approximation and a conservative assumption that the
transmissibility would not change during the beginning of the vaccination program.

We assume that the parameters related to the COVID-19 disease progression are
the same for vaccinated and unvaccinated. In addition, we consider that vaccinated
individuals are not able to get the disease unless the vaccine was not effective. This aspect
is not clear in the relevant scientific literature due to the different types of COVID-19
vaccines [26,35,37,72,74]. In addition, some studies have indicated that the antibody titers
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may decline over time in patients recovered from COVID-19, particularly in those who
were asymptomatic [121]. However, we do not consider that recovered individuals can
return to the susceptible stage. One reason for this is that further studies are needed to
check how long the immunity lasts, and furthermore, the time horizon of this study is
less than 16 months. We also consider that for this period the immunity provided by the
vaccines does not diminish.

Reasons for doubting this undiminished immunity come from studies on the SARS
virus. For example, in a study of 56 patients recovered from SARS it was found that the
neutralizing and IgG antibodies quickly declined after 16 months and continued to decline
further to a very low level after 3 years [121]. Moreover, trials of SARS vaccines also suggest
that the neutralizing antibody responses may decline over time [121]. On the other hand, it
is unclear whether vaccine induced antibody levels could persist and, if not, whether the
long-lasting memory T cells could affect susceptibility and pathogenesis of SARS-CoV-2
infection [121,122].

It has been mentioned that US federal officials hoped for twenty million people to
get their first of two required shots by the end of 2020. However, they changed that goal
and just over one million doses of vaccines had been administered (1 January 2021) [123].
Therefore, we assume as a lower bound rate ν for the inoculation of the vaccine a value of
one million per week. This rate can be increased since it is expected that the process of the
vaccine administration will be improved. However, this value of the parameter is subject to
variation due to the reluctance of some people to vaccinate because of doubtfulness about
the preliminary tests of efficacy to pressure from anti-vaccination movements [84].

For the death rate of hospitalized individuals we use a variety of data from the
scientific literature [42,81,82,124,125]. We used the weighted average of the probability of
dying for severe and critical cases (ICU), and in addition we took into account the average
length of stay in the hospital [82]. We varied in a reasonable way the death rate in order to
take into account the possible uncertainty in the data.

For the asymptomatic cases and proportions we also relied on data from the scientific
literature [42,88,92,126–130]. However, the discrepancies in the relevant data are great. We
chose as a conservative starting point that the percentage of infections that are asymp-
tomatic is 50% [9]. However, for the numerical simulations we additionally considered a
percentage of 40% [9,129].

For the parameters β I and βA we assume values in the range of [0.1–0.5], which are
values found in some studies. Currently, in the USA there are several non-pharmaceutical
interventions. We also assume for the numerical simulations that βA ≤ β I . This assumption is
based on the uncertainty in these values as well as results from the literature that the infectious-
ness of asymptomatic carriers is similar or smaller to the symptomatic [42,92,126,127,130,131].
One interesting article found that asymptomatic carriers have a higher viral load, and, taking
into account that asymptomatic carriers might have more physical contacts, it is possible to
assume that βA ≥ β I [132].

2.3. Initial Conditions for the Scenarios

For the initial conditions we assume the particular situation of the USA since it is one
of the first countries that started a vaccination program [123,133]. We rely on data from the
scientific literature and demographics of the USA. As expected, there are some uncertainties
related to data of the COVID-19 pandemic and which is usual in many epidemics. For
instance, the infected reported cases have uncertainties due to many factors such as sensitivity
and specificity of COVID-19 tests [134,135]. Moreover, asymptomatic cases represent a great
uncertainty [16,85,87–91,93,94]. Taking into account these uncertainties, we set the initial
conditions presented in Table 1. The total initial population N(0) is taken from the current
USA population [136]. The birth and death rates are taken from the official website of the
CDC in USA [137,138]. The total population of the simulation varies since the birth and death
rates are different. In addition, the mathematical model considers that some hospitalized
people die due to the SARS-CoV-2. All the initial vaccinated subpopulations are set to zero
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since the simulations are performed at the beginning of the vaccination program. Two key
initial subpopulations are those corresponding to the infected and asymptomatic, since they
affect the initial dynamics of the COVID-19 pandemic under the vaccination program. We
took the seven-day average of the infected reported cases and then multiplied by seven days
(assumed infectiousness period) and by 0.8 to obtain the initial number of symptomatic cases
(assumption of the proportion of symptomatic cases in the reported cases) [130,139–146]. The
percentage of asymptomatic cases in the official statistics varies for each country. In some
countries it may be close to zero, since no random tests are performed. However, the detection
of asymptomatic infections is possible in the case of the USA in situations in which testing
is mandatory (as in some universities) or random. We approximated this value by relying
on data from different studies [130,139–146]. However, in our simulations we varied the
parameter through reasonable values. This variability only affects the initial conditions of
some of the populations.

In the reported cases we have a subpopulation of asymptomatic cases since the testing
programs take into account the entire population. We take the initial subpopulation of
asymptomatic carriers as equal to the symptomatic one. This implicitly assumes that
the percentage of asymptomatic cases is 50%. We use this value based on information
from the CDC official website, even though it is mentioned that there is uncertainty in
this percentage. We found that there is a large uncertainty in the scientific literature
regarding this percentage [9,16,85,87–91,93,94]. Therefore, we vary it in order to deal with
its uncertainty. For the initial latent subpopulation we take into account that the latent
period is around 5.2 days and the latent stage includes individuals who will become either
asymptomatic or symptomatic [42]. For the initial hospitalized subpopulation we take into
account that hospitalized individuals spend an average of 10.4 days in the hospital and that
around 4% of the symptomatic infected transit to the hospitalization stage [3,42,147]. For
the recovered COVID-19 cases we take into account the current total of reported infected
cases and the fact that a subset of the asymptomatic cases are not reported. In addition,
we notice that we need to subtract the current number of infected and asymptomatic
cases. This approximation gives us a plausible number of recovered cases that exceeds
the reported recovered cases (≈11 million) [9,10]. Finally, we use for the initial susceptible
subpopulation the fact that initially there are no vaccinated individuals and therefore
S(0) = N(0)− E(0)− I(0)− A(0)−R(0)−H(0). All the initial vaccinated subpopulations
SV(t), EV(t), IV(t), AV(t) and HV(t) are zero, since the numerical simulations consider
the case where the USA was starting the vaccination program. This would be the case for
other countries that have not yet started their vaccination programs. In Table 1, we present
the initial conditions for the subpopulations.

Table 1. Initial conditions assumed for the different subpopulations using the USA current situation
(mid-December).

Parameter Symbol Value

Latent E(0) 1,782,857
Infected (symptomatic) I(0) 1,200,000

Asymptomatic A(0) 1,200,000
Hospitalized H(0) 71,552
Susceptible S(0) 309,974,354
Recovered R(0) 16,462,937

Total population N(0) 330,705,643

3. Results

In this section, we perform numerical simulations of the mathematical model (1) to
analyze the impact of the vaccination rate and the efficacy of the vaccine on the dynamics of
the COVID-19 pandemic. We use the parameter values of Table 2 and the initial conditions
given in Table 1. We vary the values of the vaccination rate, the efficacy of the vaccine and
the transmission rates in order to include a variety of scenarios that take into account the
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uncertainty in the aforementioned factors. We introduce some important metrics related to
the outcomes of the COVID-19 pandemic in order to assess the impact of the inoculation
rate and the efficacy of the vaccine. For all the numerical simulations we use the Python
integrator odeint, which numerically solves a system of ordinary differential equations
using lsoda from the FORTRAN library odepack. This integrator has been used to solve
many differential equations in the biology field. However, there are many other efficient
integrators with different characteristics [148].

Table 2. Mean values of parameters used to perform numerical simulations of the different scenarios.

Parameter Symbol Value

Incubation period α−1 5.2 days [3,118]
Infectious period γ−1 7 days [3]

Hospitalization rate h−1 3.5 days × 0.04 [3,42,147]
Hospitalization period ρ−1 10.4 days [3,42,147]

Death rate (hospitalized) δ−1 10.4 days × 0.103 [82,149]
Probability of being asymptomatic a 0.5 [9,129]

Birth rate µ 0.00003178 days−1 [136]
Death rate d 0.00002378 days−1 [136]

Transmission rate between classes S and I, IV β I Varied
Transmission rate between classes S and A, AV βA Varied

Vaccination rate for the subpopulation S νpI Varied
Vaccination rate for the subpopulation E νpE Varied
Vaccination rate for the subpopulation A νpA Varied

Efficacy of the vaccine ε Varied

3.1. Vaccination Rate, Efficacy, and Transmission Rate Scenarios

Here we present the results of the numerical simulations for different scenarios varying
the inoculation rate, efficacy of the vaccine, percentage of infections that are asymptomatic,
and the transmission rates. We consider two different plausible efficacies for the vaccines. We
set the efficacy (ε) to 80% and 94%. These values were chosen based on some results of vaccine
trials and the current approved vaccines [26,28–32,123]. We could simulate scenarios with
lower efficacies if we desire and based on the fact that the FDA established a minimum efficacy
threshold of at least 50% [72,82]. We also vary the inoculation rate (vaccination pace) to test
different potential vaccination program scenarios [123,133]. It is important to remark that
despite the plans that health institutions make regarding vaccination, there are uncertainties
present in the logistics [123,133,150,151]. For instance, currently there is a significant delay
in coronavirus vaccinations while hospitalizations continue to set records in the USA [133].
Therefore, here we considered two different plausible inoculation rates based on the current
situation. Specifically, we chose vaccination rates of two and four million per week. It is
important to mention that even though these rates might not be 100% accurate, this approach
helps to elucidate the impact of the inoculation rate on the main outcomes of the COVID-19
pandemic under a vaccination program.

Regarding the values of the SARS-CoV-2 virus transmission rate that plays an important
role in the value of the effective reproduction number Rt, we chose two different values.
These two values of the SARS-CoV-2 virus transmission rate between humans correspond
to two different reproduction numbers R0. Thus, we can relate them using the following
equation R0 = (1− a)β 1

γ+h + aβ 1
γ . It is important to remark that the effective reproduc-

tion number Rt varies over time, and several methods have been proposed to compute
it [101,118,152–156]. For instance, under certain conditions Rt = R0S(t)/N, which relates
the value of the virus transmissibility β to the effective reproduction number [153]. It is
important to remark that independently of the method that is used to compute the effective
reproduction number Rt all of them show that it depends explicitly or implicitly on the
value of the transmission rates (βs). Therefore, varying these rates implies a variation in the
basic reproduction numberR0 and on the effective reproduction numberRt. Thus, we are
considering different scenarios regarding the risk of becoming infected by the SARS-CoV-2.
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The aim is to test the impact of the inoculation rate and efficacy of the vaccine un-
der two different SARS-CoV-2 virus transmission rate scenarios. As it has been men-
tioned before, there are a lot of uncertainties in the transmission rates for different re-
gions and they vary over time depending on official and unofficial non-pharmaceutical
interventions [42,83,101,102,104,154,157]. However, the approach used here allows us to
understand the impact of inoculation rate and vaccine efficacy under two different trans-
missions of the SARS-CoV-2 virus environments. Then results can be extrapolated to other
environment settings.

3.2. Numerical Simulation of Scenarios

Here we present the results of the numerical simulations for different scenarios varying
the inoculation rate and efficacy, under low transmission rate scenarios. Table 3 shows
the peak of the number of infected (symptomatic plus asymptomatic) and hospitalized
people for the different vaccine efficacies and inoculation rates. In addition, the number
of deaths and recovered cases at the end of the simulation period of 365 days is shown.
In this table we considered several scenarios with two different transmission rates for
β I , assumed that the infectiousness of the asymptomatic individuals is the same as the
symptomatic (βA = β I), and that the percentage of infections that are asymptomatic is
50% (a = 0.5). It can be seen that the impact of the vaccination rate is greater than the
efficacy of the vaccine. For instance, observing the first row of Table 3 it is seen that the
peak of the number of infected people is 5,765,525 under a scenario with a transmission
rate of β I = 0.2, vaccine efficacy of ε = 94% and a vaccination rate of two million per week.
Additionally, it is seen that this peak becomes 5,864,871 if the vaccine efficacy decreases to
80%. However, the peak of the number of infected people is 4,791,577, if under the same
scenario we change the vaccination rate to four million per week. Thus, it can be seen that
the impact of the vaccination rate on the number of infected people is larger than that from
vaccine efficacy. It is important to remark that even though we considered a maximum
number of vaccines per week of four million, if we increase this inoculation rate then the
impact of the vaccination rate would be even greater than the results presented in Table 3.

We performed additional numerical simulations varying all the parameters in rea-
sonable ranges, and the impact of the vaccination rate was always larger than the vaccine
efficacy. In Figure 2, we show the peak of the number of infected and hospitalized indi-
viduals for a wide range of different vaccine efficacies and inoculation rates. In addition,
the number of deaths and recovered cases is shown. The variation of all these outcomes
is larger when the vaccination rate is varied. The results in Table 3 make sense since
the effect of the vaccination rate and vaccine efficacy reduce the number of infections,
hospitalizations, and deaths.

We present additional tables for different scenarios varying the transmission of the
asymptomatic carriers and the proportion of asymptomatic individuals. Table 4 shows the
same outcomes that we mentioned above, but we consider now that the infectiousness of
the asymptomatic individuals relative to symptomatic is 75%. The impact of the vaccination
rate is greater than the efficacy of the vaccine. The first row of Table 4 shows that the peak
of the number of infected people is 2,932,727 when the transmission rate is β I = 0.2, the
vaccine efficacy is ε = 94% and the vaccination rate is two million per week. This metric
is just 2,954,850 if the vaccine efficacy decreases to 80%. This is a small change if we
compare it to that when the rate of vaccination is increased to four million per week. Thus,
this scenario also supports the importance of a high vaccination rate. Figure 3 shows the
different outcomes for a wide range of different vaccine efficacies and inoculation rates.
The variation of all these outcomes is larger when the vaccination rate is varied.

Finally, Tables 5 and 6, show the outcome when the percentage of infections that are
asymptomatic is 40% (a = 0.4) and the infectiousness of the asymptomatic individuals
relative to symptomatic is 100% and 75%, respectively. The numerical simulation results
show similar trends to the two previously studied cases. Again, it can be observed that the
impact of the vaccination rate is greater than the efficacy of the vaccine. This qualitative
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effect can be seen under a variety of scenarios regarding vaccine efficacy and vaccination
rate in Figures 4 and 5, respectively. The numerical simulations include many different pa-
rameter values for the infectiousness of asymptomatic individuals, percentage of infections
that are asymptomatic, efficacy of the vaccine, and the vaccination rate. Thus, uncertainty
in these parameters has been considered in this study.

Based on the previous results, we can conclude that under some plausible scenarios
that the impact of the inoculation rate is more relevant to control the burden of the COVID-
19 pandemic. Thus, these results suggest that health authorities should focus on increasing
the inoculation rate in order to avert more infected people, hospitalizations, and deaths. Our
results agree with previous results under different assumptions, and with recommendations
made by some scholars [82,151].

Table 3. Impact of the inoculation rate (Vac.) and the efficacy (ε) of the vaccine on the peak of the infected (I) and hospitalized
(H) subpopulations. In addition, on the deaths (D) and recovered (R) cases. In these scenarios, the infectiousness of the
asymptomatic individuals relative to symptomatic is 100% (βA = β I), and the percentage of infections that are asymptomatic
is 50%.

Vac. 2 Million 4 Million

Eff. (ε) 94% 80% 94% 80%
Pop Trans. (βI)

I 0.2 5.765256 ×106 5.864871 ×106 4.791577 ×106 4.977115 ×106

0.22 9.002534 × 106 9.153061 × 106 7.432046 × 106 7.762321 × 106

H 0.2 2.946735 × 105 2.998006 × 105 2.445378 × 105 2.541361 × 105

0.22 4.566316 × 105 4.643245 × 105 3.768272 × 105 3.937063 × 105

R 0.2 1.315812 × 108 1.347213 × 108 1.018598 × 108 1.079459 × 108

0.22 1.649504 × 108 1.681808 × 108 1.331096 × 108 1.404869 × 108

D 0.2 4.089271 × 105 4.198674 × 105 3.052741 × 105 3.265081 × 105

0.22 5.255777 × 105 5.368480 × 105 4.144543 × 105 4.402026 × 105

Table 4. Impact of the inoculation rate (Vac.) and the efficacy (ε) of the vaccine on the peak of the infected (I) and hospitalized
(H) subpopulations. In addition, on the deaths (D) and recovered (R) cases. In these scenarios, the infectiousness of the
asymptomatic individuals relative to symptomatic is 75% (βA = β I), and the percentage of infections that are asymptomatic
is 50%.

Vac. 2 Million 4 Million

Eff. (ε) 94% 80% 94% 80%
Pop Trans. (βI)

I 0.2 2.932727 × 106 2.954850 × 106 2.741826 × 106 2.773311 × 106

0.22 4.630903 × 106 4.704678 × 106 3.938121 × 106 4.063971 × 106

H 0.2 1.508243 × 105 1.519984 × 105 1.404651 × 105 1.422230 × 105

0.22 2.372996 × 105 2.411171 × 105 2.013844 × 105 2.079448 × 105

R 0.2 8.310916 × 107 8.523820 × 107 6.496555 × 107 6.810785 × 107

0.22 1.157629 × 108 1.187113 × 108 8.874861 × 107 9.395817 × 107

D 0.2 2.395987 × 105 2.469869 × 105 1.764218 × 105 1.873815 × 105

0.22 3.536476 × 105 3.639092 × 105 2.594795 × 105 2.776527 × 105
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Table 5. Impact of the inoculation rate (Vac.) and the efficacy (ε) of the vaccine on the peak of the infected (I) and hospitalized
(H) subpopulations. In addition, on the deaths (D) and recovered (R) cases. In these scenarios, the infectiousness of the
asymptomatic individuals relative to symptomatic is 100% (βA = β I), and the percentage of infections that are asymptomatic
is 40%.

Vac. 2 Million 4 Million

Eff. (ε) 94% 80% 94% 80%
Pop Trans. (βI)

I 0.2 5.542887 × 106 5.637083 × 106 4.625919 × 106 4.799400 × 106

0.22 8.694897 × 106 8.840743 × 106 7.180468 × 106 7.497133 × 106

H 0.2 3.426932 × 105 3.485607 × 105 2.855083 × 105 2.963821 × 105

0.22 5.335221 × 105 5.425334 × 105 4.403929 × 105 4.599537 × 105

R 0.2 1.289053 × 108 1.320051 × 108 9.968921 × 107 1.056169 × 108

0.22 1.624433 × 108 1.656592 × 108 1.307745 × 108 1.380529 × 108

D 0.2 4.768158 × 105 4.897834 × 105 3.544676 × 105 3.793021 × 105

0.22 6.175980 × 105 6.310708 × 105 4.848819 × 105 5.153864 × 105

Table 6. Impact of the inoculation rate (Vac.) and the efficacy (ε) of the vaccine on the peak of the infected (I) and hospitalized
(H) subpopulations. In addition, on the deaths (D) and recovered (R) cases. In these scenarios, the infectiousness of the
asymptomatic individuals relative to symptomatic is 75% (βA = β I), and the percentage of infections that are asymptomatic
is 40%.

Vac. 2 Million 4 Million

Eff. (ε) 94% 80% 94% 80%
Pop Trans. (βI)

I 0.2 3.165047 × 106 3.196961 × 106 2.886104 × 106 2.932840 × 106

0.22 5.103234 × 106 5.189472 × 106 4.277550 × 106 4.430910 × 106

H 0.2 1.966936 × 105 1.987256 × 105 1.786035 × 105 1.817093 × 105

0.22 3.158189 × 105 3.211994 × 105 2.642139 × 105 2.738498 × 105

R 0.2 8.946476 × 107 9.181957 × 107 6.917128 × 107 7.274332 × 107

0.22 1.230787 × 108 1.261358 × 108 9.460603 × 107 1.002532 × 108

D 0.2 3.113456 × 105 3.211641 × 105 2.264752 × 105 2.414360 × 105

0.22 4.523586 × 105 4.651427 × 105 3.331442 × 105 3.568021 × 105
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Figure 2. Impact of the inoculation rate and efficacy of the vaccine on the peak of the infected (I)
and hospitalized (H) subpopulations. In addition, on the deaths (D) and recovered (R) cases. In
these scenarios, the infectiousness of the asymptomatic individuals relative to symptomatic is 100%
(βA = β I), and the percentage of infections that are asymptomatic is 50%. In all these scenarios the
transmission rate is β = 0.2.
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Figure 3. Impact of the inoculation rate and efficacy of the vaccine on the peak of the infected (I)
and hospitalized (H) subpopulations. In addition, on the deaths (D) and recovered (R) cases. In
these scenarios, the infectiousness of the asymptomatic individuals relative to symptomatic is 75%
(βA = β I), and the percentage of infections that are asymptomatic is 50%. In all these scenarios the
transmission rate is β = 0.2.
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Figure 4. Impact of the inoculation rate and efficacy of the vaccine on the peak of the infected (I)
and hospitalized (H) subpopulations. In addition, on the deaths (D) and recovered (R) cases. In
these scenarios, the infectiousness of the asymptomatic individuals relative to symptomatic is 100%
(βA = β I), and the percentage of infections that are asymptomatic is 40%. In all these scenarios the
transmission rate is β = 0.2.
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Figure 5. Impact of the inoculation rate and efficacy of the vaccine on the peak of the infected (I)
and hospitalized (H) subpopulations. In addition, on the deaths (D) and recovered (R) cases. In
these scenarios, the infectiousness of the asymptomatic individuals relative to symptomatic is 75%
(βA = β I), and the percentage of infections that are asymptomatic is 40%. In all these scenarios the
transmission rate is β = 0.2.

4. Discussion

Currently there are authorized and recommended vaccines to prevent COVID-19 in
the United States. The COVID-19 vaccination program started in early December. De-
pending on the specific vaccine, the people will get a second shot 3–4 weeks after the first
in order to achieve the most protection against the disease caused by the SARS-CoV-2
virus [9,133]. The vaccines against the SARS-CoV-2 virus have different efficacies and
mechanisms of action [21,26,28–32]. Vaccination programs have recently begun in other
countries, using several different types of programs and different outcomes can therefore be
anticipated [26,33,34]. For instance, a vaccination program can focus first on health care
workers or on elderly people [80]. However, whatever group the vaccination program
targets first, there is an inoculation rate of the vaccine. In this study we propose a mathe-
matical model to assess the impact of the vaccination programs as a function of the efficacy
of the vaccine and the inoculation pace. The study of different COVID-19 vaccination
programs is of paramount importance to reduce the burden of the COVID-19 pandemic.
An optimal vaccination program helps to tackle the transmission of the SARS-CoV-2 virus
in the population in an efficient way [26,34–38]. It is important to mention that the vac-
cination programs in different regions or countries vary due to multiple constraints. For
instance, there are vaccines that require special storage and transportation, and this affects
the availability of the vaccine. Moreover, the current number of vaccine shots are not
enough to vaccinate the whole world population [29,80,158–160].

In this article, we studied the qualitative impact of the vaccination pace and the effi-
cacy of the vaccine on the dynamics of the COVID-19 pandemic. We studied the particular
scenario of the USA, but the methodology presented here can be extrapolated to other coun-
tries or regions. We were able to study different potential scenarios regarding the burden
of the COVID-19 pandemic. We varied the inoculation rate, efficacy of the vaccine, and the
SARS-CoV-2 virus transmission rates. The constructed compartmental mathematical model
allows the variation of the aforementioned factors, and using computational methodologies
we obtained metrics that indicate which are the most important factors to decrease the
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burden of the COVID-19 pandemic. The results presented here are not a quantitative
forecast about the number of infected or vaccinated people over time. Accomplishing that
task over a time period over even one month is a very complex task that has not been
achieved during the year 2020. The current COVID-19 pandemic has many uncertainty
factors including the change of people’s behavior, and this drastically affects the evolution
of the pandemic [7,41,42,50,53,54,63–68]. Moreover, including in the mathematical model
an accurate vaccination rate is also a difficult task due to changes in government policies,
weather factors, approval of new vaccines, and resources available for vaccine distribution.
However, since the vaccination rates assumed here for the situation of the USA are very
conservative, then increasing those rates (same efficacies) would emphasize the qualitative
results presented here.

We found that the efficacy of the vaccine and the vaccine inoculation rate have a high
impact on the outcomes. However, the rate of vaccine administration has a larger impact
on reducing the infected and hospitalized subpopulations. In a similar way, it has a greater
impact on the number of deaths caused by the SARS-CoV-2 virus. Another important
finding is that the impact of the inoculation rate and vaccine efficacy is larger for scenarios
with higher SARS-CoV-2 virus transmission rates. It is important to remark that even
though we considered a maximum number of vaccines per week of four million, if we
increase this inoculation rate then the impact of the vaccination rate would be even greater
than the results obtained in this study. Thus, our results suggest that health institutions
need to focus on increasing the vaccine inoculation rate in the regions with a higher rate of
new infections. Our results are in accordance with previous recommendations made by
some scholars [82,151].

As expected from a vaccination program, the results show that the benefits depend on
how it is implemented and the efficacy of the vaccine. As we have mentioned, the total
coverage of the population would depend on the production of the vaccine doses and the
deployment of resources to execute the vaccination programs. In addition, there is a poten-
tial limitation of the total coverage due to the reluctance of some parts of the population
who have been influenced by doubting the science or by pressure from anti-vaccination
groups [34,84,160,161]. Our results also show that the impact of a COVID-19 vaccination
program is highly dependent on the SARS-CoV-2 virus transmission rates and these affect
the effective reproductive number Rt of the SARS-CoV-2 virus. Thus, it is important to
educate the population about the importance of maintaining non-pharmaceutical control
interventions such as the use of facial masks and physical distancing [9,13,41,42,57].

Furthermore, the additional benefit of a vaccine with 80% or 94% efficacy depends
on the SARS-CoV-2 virus transmission rate as has been observed in this study. When we
have low SARS-CoV-2 virus transmission rates (equivalently: lower effective reproductive
number) the vaccine with 80% efficacy has a smaller impact on the COVID disease related
metrics in comparison with a scenario with a high SARS-CoV-2 virus transmission rate
(equivalently higher effective reproductive number). Thus, even with a highly effective
vaccine it is important to maintain as low as possible the SARS-CoV-2 virus transmission
rate to reduce the burden of the current pandemic. Moreover, if the immunity against
the SARS-CoV-2 virus diminishes over time, then lowering transmission rates is even
more crucial.

The constructed compartmental model is a SEIR type but with some additional fea-
tures such the compartment for asymptomatic cases. We expanded the model to include
vaccinated people even if the vaccine is not effective in some subset. The SARS-CoV-2
virus spread is mainly driven by the values of the parameters, which have some uncer-
tainty, as is usual in this type of epidemiological model. The uncertainty related to the
COVID-19 pandemic is higher in comparison with other diseases such influenza due to
the novelty of the SARS-CoV-2 virus. The parameter values were chosen from scientific
literature. Despite the limitations of this type of mathematical model, they have been useful
in many epidemics and are a classical method to deal with epidemics [40,41,46,162–167].
Some particular limitations of this study are that constant inoculation rates were used
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and the vaccination programs do not target any specific subpopulation. We hopefully
anticipate that the inoculation rates will increase due to an increase in vaccine production
and the improvement of logistics. However, the vaccination programs might face several
obstacles along the way. The model does not consider a subpopulation that is not willing
to take the vaccine, and this has been an issue for other vaccines [34,84,160,161]. Further
studies are needed to extend the mathematical model for other vaccination programs. For
instance, those that target first health care workers or specific age groups. This would
require more parameters and therefore more uncertainty and details. In addition, our
mathematical model does not consider the fact that immunity wanes. In fact, the US
FDA recommends that follow-up of study participants should continue, for as long as
is feasible, to assess the duration of protection [72]. We would like to mention that one
limitation of this study that is common in many articles regarding the transmission of
SARS-CoV-2, is that the mathematical model does not consider the SARS-CoV-2 variants.
However, with the current variants and different vaccine efficacies our results become more
important. Recently, several variants of the SARS-CoV-2 virus have been detected and
there are many concerns about what the characteristics of these new variants are regarding
infectiousness and severity of disease [168,169]. There are many concerns about what the
characteristics of these new variants are regarding infectiousness and efficacy of the current
vaccines against the new variants. The mutations of viruses are common and, as a conse-
quence, the SARS-CoV-2 can acquire mutations with fitness advantages and immunological
resistance [21,170]. A new variant of the SARS-CoV-2 virus has been detected in England
and is the VOC-202012/01 of lineage B.1.1.7. [171–174]. However, several researchers
and institutions have mentioned that the new SARS-CoV-2 variant VOC-202012/01 is
more transmissible than the previously prevalent variants [170,172,174–176]. Moreover,
it has been found recently that the SARS-CoV-2 vaccine produced by the US biotech-
nology company Novavax is 95.6% effective against the original variant of SARS-CoV-
2, but the protection is reduced against the newer variants B.1.1.7 (85.6%) and B.1.351
(60%) [177]. Thus, new and more complex mathematical models are necessary to consider
the appearance of new SARS-CoV-2 variants [178].

5. Conclusions

The results presented in this study show that the effectiveness of a COVID-19 vacci-
nation program strongly depends on the vaccination rate and the efficacy of the vaccine.
Moreover, the SARS-CoV-2 virus human transmission rates and consequently the effective
reproductive number impact the outcome of the vaccination programs. It is important to
remark that the vaccination rate depends on many variables or resources such as health
care facilities or logistical transportation aspects. On the other hand, the efficacy of the
vaccine is out of the hands of health institutions and official entities. However, the rate of
vaccine administration plays a more important role in reducing the burden of the COVID-
19 pandemic. Our results show that health institutions need to focus on increasing the
vaccine inoculation pace and create awareness in the population about the importance of
the COVID-19 vaccines. In some countries the vaccination rate would be limited due to
the availability of the vaccine. Currently, in the USA there are issues with the vaccination
rate due to logistics, but not regarding availability [123,133]. As we mentioned in the
introduction, at some point there might be difficulties keeping a constant vaccination rate
since a proportion of the population is not willing to be vaccinated. This topic is interesting
and can be studied in the future.

The type of mathematical model, based on ordinary differential equations, used here
suffers from the following limitations: exponential distributions in the transitions from one
stage to another are implicitly assumed as well as homogeneous mixing in the population.
Additionally, the behavior of individuals is averaged in order to avoid more complex
models that in turn have their own limitations. For instance, individual agent based
models have many parameters and in several cases the values of these parameters are
very difficult to obtain. However, in some cases exponential transition between stages are
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not very far from reality. Despite the limitations of our model, we found valuable results
to face the current COVID-19 pandemic. Support is given to characteristics of efficient
vaccine campaigns. In particular, our study encourages governments and their health
institutions to increase the pace of the vaccination in the population in order to diminish
the consequences of the catastrophic COVID-19 pandemic.
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