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Abstract: The development of lithium-ion batteries (LIBs) based on current practice allows an energy
density increase estimated at 10% per year. However, the required power for portable electronic
devices is predicted to increase at a much faster rate, namely 20% per year. Similarly, the global
electric vehicle battery capacity is expected to increase from around 170 GWh per year today to
1.5 TWh per year in 2030—this is an increase of 125% per year. Without a breakthrough in battery
design technology, it will be difficult to keep up with their increasing energy demand. The objective of
this investigation is to develop a design methodology to accelerate the LIB development through the
integration of electro-chemical numerical simulations and machine learning algorithms. In this work,
the Gaussian process (GP) regression model is used as a fast approximation of numerical simulation
(conducted using Simcenter Battery Design Studio®). The GP regression models are systematically
updated through a multi-objective Bayesian optimization algorithm, which enables the exploration of
innovative designs as well as the determination of optimal configurations. The results reported in this
work include optimal thickness and porosities of LIB electrodes for several practical charge—discharge
scenarios which maximize energy density and minimize capacity fade.

Keywords: lithium-ion battery; Bayesian optimization; multi-objective optimization; cycling perfor-
mance simulation; fast charging; capacity fade; nickel rich cathode material

1. Introduction

Lithium-ion batteries (LIBs) with a high energy density, low-capacity fade, long life,
and high safety are crucial to increasing the acceptance rate of electric vehicles in the
market. Following an incredible amount of research and development on rechargeable
LIBs, they are in high demand for energy storage applications such as consumer electronics
(cellphones, laptops, medical devices, etc.), hybrid and electric vehicles (EV), and industrial
tools. LIBs are in high demand due to their high specific energy density, large specific
capacity, high efficiency, and longer cycle life. Furthermore, extensive research has been
carried out to meet and satisfy the target of travelling 300 miles with an EV on a single
charge. Current research is turning to a series of Ni-rich lithium metal oxides to provide
high energy density and capacity for such applications [1,2].

Nickel-rich cathodes provide a high theoretical capacity of up to 279 mAh/g [1].
However, there is a limit to the fraction of nickel that can be used. Some of the main
disadvantages of such cathodes are their capacity retention and thermal stability; the
capacity fade of Ni-rich electrodes is amplified in thicker configurations [1]. Some popular
lithium Ni-cathode materials include Li[NiMnCoO,], Li[NiMnO;], and Li[NiMnCoAlO,|
as they provide a high operating potential of 3.6 V vs. Li/Li+ [2].

The capacity fade of a battery can be described as the loss in discharge capacity demon-
strated by the cell over time. Commonly, the end of service life of a battery is considered
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at a loss of 80% of its initial capacity [2]. Spotnitz provides a review of technical literature
on the characteristics of capacity fade [2], and demonstrates that various commercial cell
types experience a capacity fade in the range of 12% to 25% after 500 cycles. Two important
parameters that rule the performance of a cell are the thickness and porosity of the active
material in the electrodes, e.g., it has been observed that cells with low porosity and thick
electrodes present high capacity fades [3]. Other factors that affect the performance of
LIBs include the ratio of the active materials to inactive components (conductive materials,
binders, separators, current collectors, and electrolytes) and the charge—discharge rates [3].

In the last decade, numerical simulation for degradation analysis of LIBs has gained
acceptance in the cell design community. Among the different cell models, the porous
electrode technique developed by Newman and Tiedemann [4] has been widely adopted to
simulate thermal effects in LIBs [4,5]. For example, Kumaresan, Sikha, and White used the
Newman electrochemical-thermal model to determine the solid-phase diffusion coefficient,
kinetic constants, and thermal conductivity of LIBs [6]. They found a satisfactory agreement
between the predictions of the model and their experiments. In addition to thermal effects,
the porous electrode model has been extended to capture the capacity fade of LIBs [2].
Current extensions can predict the capacity fade of large-format stacked prismatic batteries
and three-dimensional configurations [7].

With respect to the Newman electrochemical-thermal model, it is worth noting that
the estimated effective transport coefficients and interfacial reaction current density are
based on homogeneous approximations that do not consider all aspects of the electrode
microstructure, which can misrepresent the impact of the porosity and tortuosity on the
macro variables of the cell [8,9]. This challenge can be solved by running comprehensive 3D
simulations of the complete cell, but at a large computational cost. However, high fidelity
3D models possess limitations on design and optimization tasks where a large number of
simulations is needed.

This study employs the Simcenter Battery Design Studio® (BDS), which uses the
Newman model to perform numerical simulations of the cycling performance test of
18650 spirally wound cells. Here, charge-discharge rates used for the cycling perfor-
mance tests are derived from operational scenarios that an EV battery goes through. The
simulations are performed using LiNiggoCogo5Mng 5Alp 010z as the cathode material.
LiNiCoMnAIO, cathodes have a ordered rock salt-type structures that display layered
configurations and present high specific capacities [10]. The 3D model used in BDS is based
on the non-linear discretized partial differential equations developed by Fuller et al. [11],
modelled for galvanostatic performance of li-ion insertion cells. Sakti et al. [12] conclude
from their validation study that the 3D model used in BDS represents ionic diffusion and
performance during discharge simulations with sufficient accuracy.

Recently, Bayesian optimization has emerged as an efficient methodology to solve
optimization problems that require the evaluation of expensive black-box functions [13]. In
a black-box function problem, a closed-form expression of f(x) is not available; however,
f(x) can be evaluated at any location x of the design space employing numerical simulations
or physical experiments. One example of a black-box function is the simulations of the
cycling performance test in BDS. Here, a numerical method solves the partial differential
equations that govern the electro-chemical process in order to predict the performance f(x)
of a LIB cell for a given configuration x. The efficiency of Bayesian optimization lies on two
components: a probabilistic surrogate model of the black-box function and an acquisition
function that guides the optimization.

The surrogate model employs a probabilistic framework to encode prior knowledge
about the functional form of f(x). Once new data is observed, this probabilistic formula-
tion is updated following a Bayesian scheme [13,14]. Gaussian process-based models are
the most popular surrogate models in Bayesian optimization due to their flexibility and
mathematical tractability [15]. This study employs the Gaussian process (GP) regression
model [14] to predict the performance of LIB cells under different operational scenarios.
The GP regression model employs a mean and a covariance function to generate proba-
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bilistic predictions of black-box functions that might involve continuous, discrete, or even
categorical variables [14,16].

The acquisition function employs the probabilistic predictions of the surrogate model
to determine a sequence of design points that can solve the optimization problem [13,15].
This study employs the Euclidean-based expected improvement (EEI) function [17,18]
as the acquisition function that guides the solution of the multi-objective optimization
problem. The EEI function combines the probability that a new sample has to improve the
current Pareto front, i.e., the probability of improvement (PI), and the Euclidean distance
between the centroid of the PI and the nearest Pareto design. The PI promotes the selection
of designs that solve the multi-objective problem while the Euclidean distance promotes
the generation of a diverse and well-spread Pareto front.

Recently, Bayesian optimization has been utilized in the design of LIB technologies. Some
examples include the design of active materials [19-21], the design of solid-state [22-25] and
liquid-state electrolytes [26], the design of charging protocols [27,28], and the optimization
of battery pack performance [29]. In comparison to the mentioned research works, the
two main contributions of this study are (1) the solution of a multi-objective problem
that includes the electrode thickness and porosity as the design variables and specific
energy and capacity fade as the objective functions, and (2) optimization of the LIB cell for
six different operational scenarios, which shades light on the effect of the charge-discharge
rate on the performance of LIB cells.

As such, this work presents a design methodology that integrates the simulation
software Simcenter Battery Design Studio (BDS) and Bayesian optimization in the de-
sign optimization of LIB cells. In this study, 18650 spiral cells with active material
LiNip g9Cog,05Mng 05Alg 01 O2 that operate under different charge—discharge practical sce-
narios are optimized. The proposed methodology searches for the thickness and the
porosity of the coating of the cell electrodes to optimize two objectives: maximization of the
specific energy and minimization of the capacity fade. The results show that for the stated
optimization problem, Bayesian optimization performs similarly or better than design
approaches that uniformly distribute their samples through the design space. It is observed
that Bayesian optimization concentrates its samples in areas that potentially contain high-
performance designs. The data generated during the optimization can be also utilized
to analyze the effect of the electrode coating thickness, porosity, and charge-discharge
protocol in the performance of LIB cells. The methodology identifies a well-defined Pareto
front for every charge rate. This study shows how battery manufacturers can leverage
battery simulation software and optimization techniques to study the degradation of LIBs
and identify high-performance designs.

2. Methodology

The methodology presented in this study utilizes the following components: Gaussian
process regression, the EEI acquisition function, and simulations of the cycling performance
test in BDS.

2.1. Gaussian Process Regression

A stochastic process extends the application of probability distributions from finite-
dimensional random variables to functions [14]. A Gaussian process (GP) is a stochastic
process in which every finite collection of its random variables has a multivariate Gaussian
distribution, which facilitates the development of powerful models for regression and
classification tasks [13,14,30]. Two common names for the use of GPs as surrogate models
of black-box functions are GP regression and kriging metamodeling. A GP is defined as

Fx) ~ G2 (), k(x,x)), M

where j(x) and k(x, x") are the mean and the covariance functions of the GP. In GP regres-
sion, the black-box function f(x) is assumed to be generated by the GP defined by (x)
and k(x,x'). An intelligent selection of the mean and the covariance functions can lead to
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powerful regression models that capture prior knowledge about f(x) such as global trends
and smoothness. A common practice is to build GP regression models with a zero-mean
function p(x) = 0 due to the descriptive power of k(x,x') [31,32].

Valid covariance functions produce positive semi-definite matrices regardless of the
chosen pair of points (x,x) [15,31]. A popular example is the squared exponential (SE)
covariance function

d
k(x,x) = (Tf2 exp (—IZ% 2117(361' — Xi/)2>/ (2
where Ufz is the variance of the GP and /; is the characteristic length along the i-th input
dimension [14]. The variance O'f2 and the characteristic lengths [; are known as the hy-
perparameters of the GP model. Three popular techniques to find appropriate values of
the hyperparameters are maximum likelihood estimation (MLE), maximum a posteriori
(MAP), and the fully Bayesian approach [15]. This study employs the MLE approach.

Given a set of n samples X = { xt ..., x”} where x is a d-dimensional vector, with
observations f = {f1,..., f"}, the predictive equations of the GP regression model f, at
the predicting points X, is

£.X,y, X« ~N<;*,cov(f*)), ©))
where,
£, = K(X., X)K(X,X) "' (4)
and
cov(f,) = K(Xi, X)) — KXo, X)K(X, X) 'K(X, X,.). (5)

Here, £, is the predictive mean of the GP regression model. It predicts the response of
the black-box function at the predictive points X,. The diagonal of cov () is the predictive
variance of the GP regression model. It provides estimates of the uncertainty in the
predictions of the surrogate model. In these expressions, K(X, X) is the covariance matrix
of the observed data, K(X, X) is the covariance matrix between the observed data and the
predicted data, and K(X,, X,) is the covariance matrix of the predictions. The components
of the covariance matrices are generated by the evaluation of the covariance function
k(x, x’). Equations (4) and (5) correspond to a GP regression model with a zero-mean
function prior. These expressions can be extended to model non-zero mean function priors
and noisy data following the procedures in [14]. Figure 1 shows a GP regression model
for the capacity fade of a LIB cell type 18650. The regression model uses a constant mean
function and a SE covariance function.
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Figure 1. Gaussian process regression model—Specific energy of the 18650 LIB cell. The left

figure shows the predictive mean f, and the right figure shows the predictive standard devia-

tion, i.e., y/cov(fy), of the GP regression model. The blue dots are the samples used to train the
surrogate model.
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2.2. The Euclidean-Based Expected Improvement

Bayesian optimization has emerged as an efficient gradient-free alternative to solve
optimization problems that require the evaluation of expensive black-box functions. This
optimization methodology has two main components: a probabilistic surrogate model
of the black-box function and an acquisition function (AF) that guides the optimization.
The AF utilizes the probabilistic predictions of the surrogate model to quantify the gain
that can be attained by a specific design. Through the optimization, the AF is maximized
to determine a design that can improve the current sampling plan. Then, this design is
sampled. The process of maximization of the AF and sampling, i.e., black-box function
evaluation, is repeated until convergence.

This study employs the Euclidean-based expected improvement (EEI) [17,18] as the
AF that solves the multi-objective optimization problem. Considering an optimization
problem with two objective functions fi(x) and f»(x) to be minimized, the evaluation of
the two functions using a sampling plan X generates an initial Pareto front with m designs,

£, = {( 1*(1), 2*(1)>, " ( 1*<m)rf2*(m)>}' 6)

where f].*(i) = f] (x*(i)> and x*() is a member of the current Pareto set.
The EEI function is defined as
EEI(x) = PI(x) X d,in, (7)

where PI(x) is the probability of improving both functions f; (x) and f(x) if the design x
is sampled, and dp,jn = min(dy, ..., ds) is the minimum Euclidean distance between the
centroid of the probability of improvement and the current Pareto front (Figure 2).

I X
f2(%) GP mean predictions
[ ]

(A /)

(. f2)

(&), F(x))
PI centroid fi(x)

Figure 2. Euclidean-based expected improvement. The black dots denote the current Pareto front.
The design x has GP mean predictions f;(x) and f,(x) (red dot). The centroid of the probability
of improvement (F; (x), F(x)) is denoted by the blue dot, and the closest Pareto design (f{, f5) is
denoted by the orange dot.

The probability of improvement is
m—1
PI(x) = @(u}) + Y [@(ui™) —@(uf) [@(ub™) + [1— D(u]")]D(uy), 8)
()« 5 o) o )]0 t)

where 1} = ( fj*(i) - E(x)) /s; (x). Here, f;(x) is the mean prediction of the j-th objective
and s; (x) = y/cov(f.) is the corresponding standard deviation predicted by the GP model
at the location x.

The centroid of the probability of improvement (F;(x), F2(x)) is given by

Fi(x) =

, ©)

M71 . . .
zh + ) (zlf’l - zll)CD(ule) + 2D (ul)
i—1

1
PI(x)
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where z;: = f]-(x)cb(u’:) - sj(x)(p(u?). Here, ¢(-) and ®(-) are the probability density

] ]

function and the cumulative density function of a standard normal distribution. F;(x) is

defined similarly.

2.3. Numerical Model
BDS is used to simulate the cycling

performance of 18650 spirally wound cells with

cathode material LiNig goCop.05Mng 05Alp 91Oz (Figure 3). For these cells, the thickness of
the separator and current collectors remain constant. Table 1 contains the parameters used

to perform the cycling simulations.

(a) (b)
Positive terminal Exhaust gas hole 6
Anti explosive valve NCMA
Positive terminal lead [ R N ;
Separators > Graphite
o} 4
Negative o]
Negative terminal lead S 3
€2
Positive electrode 2
2
Ll \\-___
) ST meeeeeccccccccccce- -
Active Material/Binder/Conductivity Aid (weight %):90.8/4.2/5 0 02 04 06 08 1

Electrolyte: 1 mol/L of LiPF6 in EC/EMC 3:7
Separator: 2300 0.65 g/cm?®

Electrode State of Lithiation

Figure 3. (a) 18650 cell assembly; (b) Equilibrium voltage curves of the positive electrode
LiNig goCog.05Mng g5Alg 91Oz and the Graphite negative electrode materials.

Table 1. Parameters used to perform the BDS cycling simulations.

Parameters Values
Cell Type 18650 Spiral
Electrolyte 1.0 mol/L LiPF4 in EC/EMC 3:7
Separator Thickness (pm) 15
Separator Density (g/cm?) 0.65
Jellyroll Height (mm) 59.3
Voltage Range (V) 2.7-4.2
Electrode Parameters Cathode Anode
Active Material (AM) NCMA Graphite
Lithium Site Concentration
Before Formation (for 256.680 331.2
stoichiometry calc.)
AM Mass Fraction 0.908 0.930
Binder Mass Fraction 0.042 0.07
Conductive Aid Mass Fraction 0.05 -
Particle Size (ym) 5 10
Tortuosity (Bruggeman Exp.) 1.25 1.25
Elec. Conductivity (S5/m) 10 100
Collector Thickness (ym) 15 15
AM Density (g/cm?) 4.74 22

The motivation behind choosing the cycling rates of this study comes from utilizing
BDS and Bayesian optimization for practical EV battery scenarios. As such, this study uses
six charge—discharge scenarios: one baseline scenario and five practical EV scenarios.

The baseline charge—discharge scenario is 0.1 C charge-0.1 C discharge as it is com-
monly used when investigating new materials for LIBs. This low rate scenario is useful to
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explore the maximum specific energy and minimum capacity fade that can be obtained
from the LIB cells.

The current EV market offers a few charging options. A wall connector, which is
provided on purchasing an EV, charges from 0% to 100% SOC within 8 to 8.5 h giving
an approximate C rate of 0.12 C. Furthermore, today’s superchargers charge the battery
using variable C rates to protect the cells from damage. As per data available online,
Tesla superchargers, for example, charge batteries initially for a range of 200 miles within
15-20 min, giving us a 3 C-rate. However, if the user decides to charge the battery for
100% SOC, the supercharge rates drop from 3 C to 1.2 C to avoid damaging the battery. EVs
present discharge rates that depend on the vehicle speed. The speed limits on highways
in the United States of America on average are 70 mph. Popular EVs available in the
market have an average range of 300-320 miles. As such, discharge rates that an EV cell
undergoes during highway usage at 70 mph is approximately 0.23 C. As such, this study
uses five practical charge-discharge scenarios: 0.12 C charge-0.23 C discharge, 0.23 C
charge—0.23 C discharge, 0.7 C charge-0.23 C discharge, 1.2 C charge—0.23 C discharge, and
3 C charge-0.23 C discharge.

Furthermore, the weight for the calculation of the specific energy corresponds
to the summation of the weights of the cathode, anode, current collectors, separator,
and electrolyte.

2.4. Optimization Methodology

The Bayesian optimization methodology presented in this study has four main com-
ponents: design of experiments (DOE), GP regression models, BDS simulations of the
cycling performance of LIB cells, and the EEI acquisition function (Figure 4). The proposed
methodology is utilized in the design of LIB cells and the results are compared with a DOE
methodology that employs the same number of BDS simulations.

Initial Evaluate
sampling plan sampling plan
Evaluate design that maximizes the
Design of BDS P acquisition function
experiments simulations D No
v
Update Training N GPR 5| EElacquisition
training data data models function
Update surrogate Maximize Yes

models acquisition function

Stop

Pareto front

approximation

Figure 4. Bayesian optimization framework for the design of lithium-ion battery cells.

At the beginning of the optimization process, DOE generates a 30-sample sampling
plan X that represents cells with different electrode thickness and porosities. The DOE
technique employed in this study is Latin hypercube sampling. The capacity fade curves
of the cells are predicted using BDS. From the BDS simulations, the specific energy f;(x)
and the capacity fade f,(x) are extracted. Then, two GP regression models for the objective
functions f;(x) and f>(x) are trained. The GP models employ a constant mean regression
function and a squared exponential covariance function. In order to prevent biasing
the optimization towards the objective function with the highest magnitude, the data is
normalized to the range from 0 to 1. This normalization is also helpful to estimate the
accuracy of the GP regression models. After normalization, the EEI function is utilized to
identify designs that can improve the current Pareto front: cells with high energy density
and low-capacity fade. The design that produces the highest improvement is sampled,
i.e., execution of the BDS simulation, in order to update the GP regression models. The
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maximization of the EEI function and execution of the BDS simulation is repeated until
a convergence criterion is satisfied. For comparison purposes, 50 iterations of the Bayesian
methodology are executed. The Bayesian optimization results are compared with a Pareto
front generated by an 80-sample Latin hypercube sampling plan. The GP regression
models are trained independently using the ooDACE toolbox [33]. The genetic algorithm
implementation of MATLAB maximizes the EEI function.

3. Results and Discussion

This section employs Bayesian optimization to identify the electrode thickness
and porosities of spiral cells type 18650 that can produce high specific energy and
low-capacity fade.

The formulation of the optimization problem is

e Find x € R?

e Maximize  fj(x) : Specific energy
e Minimize  f(x) : Capacity fade
e Subject to : xE < x <xY,

(10)

where x = [x1  x3] T are the thickness and porosity of the coating of the electrodes of the
LIB cell. The upper and lower bounds of the design variables are included in Table 2.

Table 2. Lower and upper bounds of the porosity and single side electrode coating thickness of the
LIB electrodes.

Design Variable Lower Limit Upper Limit
x1 (% fraction) 0.22 0.54
Xy (pm) 20 240

The cyclic performance profiles of the 30-DOE samples for every charge—discharge
scenario are shown in Figure 5. Low charge rates do not produce substantial capacity fade
(Figure 5a—c),whereas high charge rates lead to a substantial detriment of the cell capacity
(Figure 5d,e). This phenomenon illustrates the importance of accounting for an appropriate
charge—discharge scenario when designing LIB cells.

Figure 6 shows the results of the responses of the initial 30-sample DOE (blue dots),
the initial Pareto front (orange dots), the designs that are sampled by Bayesian optimization
(gray dots), the Pareto front generated by Bayesian optimization (black dots), the responses
of an 80-sample sampling plan (yellow dots), and its corresponding Pareto front (red dots).
In the 0.1 C charge-0.1 C discharge case, the proposed methodology clearly outperforms
the 80-sample DOE approach as it finds several designs with high specific energy and low
capacity fade (Figure 6a). In the remaining scenarios, the initial sampling plan (30 samples)
produces a suitable approximation of the Pareto front. Therefore, Bayesian optimization
focuses its search towards designs that improve the diversity of the Pareto front. At the
end of the optimization, Bayesian optimization and the 80-sample DOE produce Pareto
fronts of similar characteristics.

Table 3 summarizes the outcomes of the optimization methodology. The table contains
the number of designs in the initial and final Pareto front, and the specific energy and
capacity fade of the designs located at the edges of the Pareto front. Bayesian optimization
greatly improves the initial Pareto front for the 0.1 C charge and 0.1 C discharge scenario.
The other scenarios do not present extreme variations of the edges of the Pareto front;
however, Bayesian optimization finds several designs that improve the diversity of the
Pareto front. For high charging scenarios, the difference in lowest and highest capacity fade
is drastic, which also affects the discharged specific energy. For such scenarios, the decision
can be based of on trade-off, i.e., whether capacity fade should be given more priority over
specific energy. In Figure 6a, the difference between minimum and maximum capacity fade
is just 3.7% but the difference between specific energies is high, i.e., 73.3 mWhr/g. As such,
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cell designs that lie in the top right corner of the plot can be considered as optimal designs.
This holds true for scenarios (b) and (c). For scenarios (d), (e), and (f) the decision is not
straight-forward as there are substantial differences between the maximum and minimum
values of specific energy and capacity fade. The designer needs additional information to
guide the selection of a design from the Pareto front. Since an EV battery undergoes varied
charge-discharge rates during its lifespan, it becomes important to have such data on the
performance of cells to devise proper battery management protocols.
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Optimization results for different charge rates:

Specific energy (mWhr/g)

Bayesian optimization samples
® 80-DOE Pareto front

(@) 0.1 C charge-0.1 C discharge;

(b) 0.12 C charge-0.23 C discharge; (c) 0.23 C charge-0.23 C discharge; (d) 0.7 C charge-0.23 C discharge;
(e) 1.2 C charge—0.23 C discharge; (f) 3 C charge—0.23 C discharge. The figure shows the responses of
the 30-sample DOE, the 50 Bayesian optimization samples, and the 80-sample DOE. The dotted lines
represent the Pareto fronts of the initial sampling plan, Bayesian optimization, and the 80-sample DOE.
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Table 3. Comparison between initial and final Pareto designs.
o X e
Number of Lowest ?e.xp. Fade (%) Highest Specific Energy
Pareto Desiens (Specific Energy (mWhr/g)
C-Rates & (mWhr/g)) (Cap. Fade (%))
Initial Final Initial Final Initial Final
0.1C-0.1C 15 19 4.21(147.5) 2.15(188.5) 260.5 (5.84) 261.8 (5.82)
0.12C-0.23C 10 23 3.13(189.3) 2.33(163.3) 248.3(7.57) 250.4 (7.13)
0.23C-0.23C 12 26 8.52(118.3) 8.52(118.3) 238 (9.68) 240 (9.66)
0.70C-0.23C 14 23 15.88 (128)  15.37 (132) 215 (26.68) 216.1 (26.64)
1.2C-0.23C 16 28 20.52 (91.4) 20.52(91.4) 199 (41.72) 200.6 (41.40)
3C-023C 17 35 28.38 (69) 25.8 (58) 180 (59.03) 180 (59.01)

Figure 7a shows the effect of the charge rate in the degradation of the cell and its ability
to store energy. The capacity fade presents large variations with respect to the charge rate.
Figure 7b shows the distribution of the optimal designs in the design space. Here, the size
of the markers is linked to the specific energy of the cell, i.e., large circles correspond to
high specific energies. Figure 7b suggests that optimal configurations are characterized by
(1) high electrode thicknesses and low porosities, (2) intermediate electrode thicknesses and
intermediate porosities, and (3) low electrode thicknesses and high porosities. Non-optimal
configurations correspond to cells with low porosities and low electrode thicknesses, and
with high porosities and high electrode thicknesses.
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Figure 7. Summary of optimization results. (a) Distribution of the initial sampling plan and Bayesian
optimization samples in the objective space for the charge—discharge scenarios 0.12 C charge-0.23 C
discharge, 0.23 C charge-0.23 C discharge, 0.7 C charge-0.23 C discharge, 1.2 C charge-0.23 C
discharge, and 3 C charge—0.23 C discharge. (b) Distribution of the optimal designs in the design
space. The size of the markers vary according to the specific energy of the design, e.g., large circles
correspond to cells with high specific energy and vice versa.

The contour plots in Figures 8 and 9 are the GP mean predictions of the specific energy
and capacity fade. The specific energy and capacity fade present different sensitivity with
respect to the charge-discharge protocol. The shape of the specific energy does not present
a substantial shift as the charge rate grows. On the other hand, the capacity fade is greatly
affected. Slow charge—discharge scenarios present a reduced capacity fade. As charging
speed increases, the capacity fade decays substantially. For scenario (a), optimal designs
are characterized by thick and porous electrodes. For scenarios (b) and (c), results favor
the intermediate option where a range of thickness for 100 microns to 200 microns with
porosities in the range of 0.24 to 0.33 is preferable. For the fast-charging scenarios, the
distribution of the optimal designs is more complicated.
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Figure 8. Gaussian process predictions of the specific energy and capacity fade for charge—
discharge scenarios: (a) 0.1 C charge-0.1 C discharge; (b) 0.12 C charge-0.23 C discharge;
(c) 0.23 C charge-0.23 C discharge. The blue dots are the initial 30 DOE samples, the black dots
are the 50 Bayesian optimization samples, the red dots are the 80 DOE samples. The designs enclosed
in white and green squares are the optimal designs from Bayesian optimization and the 80-sample
DOE, respectively.
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Figure 9. Gaussian process predictions of the specific energy and capacity fade for charge—discharge
scenarios: (a) 0.7 C charge-0.23 C discharge; (b) 1.2 C charge-0.23 C discharge; (c) 3 C charge-0.23 C
discharge. The blue dots are the initial 30 DOE samples, the black dots are the 50 Bayesian optimiza-
tion samples, the red dots are the 80 DOE samples. The designs enclosed in white and green squares
are the optimal designs from Bayesian optimization and the 80-sample DOE, respectively.

Figures 8 and 9 are also useful to compare the performance of Bayesian optimization
and exhaustive DOE. Bayesian optimization concentrates its samples along zones that
potentially contain Pareto designs, while DOE generates a sampling plan with space-filling
properties in order to capture the shape of the functions under analysis. For these reasons,
Bayesian optimization outperforms the 80-sample DOE approach in the 0.1 C charge-0.1 C
discharge scenario since most of the optimal designs are located along the top-left zone
of the design space. In the other scenarios, the optimal designs have a more complex
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distribution, i.e., they are located in different zones of the design space, which favors
the performance of the 80-sample DOE approach. In these cases, a satisfactory initial
design of experiments will find a suitable approximation of the Pareto front, and Bayesian
optimization can be used to refine such an approximation.

In order to assess the performance of the GP regression models, two indices are
evaluated: (1) the residuals of the GP regression models when performing leave-one-out
cross-validation on the initial training data [17] and (2) the residuals of the GP regression
models when using the 80-sample DOE as test data. As stated before, the specific energy and
capacity fade are normalized in the range from 0 to 1 to prevent biasing the optimization
towards the objective with the highest magnitude. This transformation facilitates the
evaluation of the performance of the surrogate models.

Figure 10a shows the box plots of the residuals generated by the two GP regression
models when performing leave-one-out cross validation using the initial training data
(30-sample DOE). The figure shows a mean deviation of the models close to zero. The GP
model of the specific energy present satisfactory predictions; 68% of the residuals present
errors lower than 10%. In the case of the capacity fade, two of the charging scenarios
present errors larger than 10% but lower than 25%. Figure 10a also displays the presence
of a few outliers where the model does not provide a suitable prediction of the function.
Figure 10b shows the residuals of the GP regression model when using the 30-sample
DOE as the training data and the 80-sample DOE as the test data. In here, the residuals
concentrate around zero and present deviations lower than 15%. As there is a large number
of testing points, the presence of outliers also increases. These values suggest an overall
satisfactory performance of the GP regression models.
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Figure 10. Performance of the GP regression models of the specific energy and capacity fade.
(a) Box-plots of the residuals of the GP models from leave-one-out cross-validation. (b) Box-plots of
the residuals of the GP models using the 80-sample DOE as test data.
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4. Conclusions

This study employs Battery Design Studio and Bayesian optimization to design spiral
LIB cells type 18650 with cathode active material LiNig ggCog05Mng 05Alp.01O2. The cells
are designed for maximum specific energy and minimum capacity fade under six charge—
discharge scenarios. The design variables of the optimization problem are the thickness and
porosity of the LIB electrodes. The cells are optimized holding the porosity and thickness
of the anode and cathode to a 1:1 ratio and keeping constant the thickness and porosity of
the separator, and the electrolyte concentration.

The optimization methodology finds several designs for every scenario that have high
energy density and low-capacity fade. The results show that a design that performs well in
one charge—discharge scenario may not be optimal in another scenario. In the case of low
charge rates, it is observed that optimal configurations are characterized by high electrode
thicknesses and low porosities, or intermediate electrode thicknesses and intermediate
porosities. In the case of fast charge scenarios, the distribution of the optimal designs is
more complicated. The results also suggest that cell configurations with low porosities and
low electrode thicknesses, and high porosities and high electrode thicknesses, can present
poor performance.

The results of the proposed methodology are obtained with an initial sampling plan
of 30 samples and 50 iterations of the Bayesian optimization algorithm. These results are
compared with an 80-sample Latin hypercube sampling plan. This process was repeated
for every charge and discharge scenario, giving us a total of 960 simulations. It is observed
that Bayesian optimization performs similarly or better than the 80-sample DOE approach.
Bayesian optimization concentrates its samples in areas that potentially contain high-
performance designs whereas the DOE approach samples the design space uniformly.

Further extension of this study involves the inclusion of microstructural properties
in the optimization process by using 3D microstructural models. These microstructural
models will enable the definition of three additional design variables: particle size, particle
distribution, and tortuosity. This strategy can be useful to understand the factors that limit
the performance of LIB cells and the effect of charge and discharge scenarios.
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