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Abstract: The hot-carrier effect and hot-carrier dynamics in GaAs solar cell device performance were
investigated. Hot-carrier solar cells based on the conventional operation principle were simulated
based on the detailed balance thermodynamic model and the hydrodynamic energy transportation
model. A quasi-equivalence between these two models was demonstrated for the first time. In
the simulation, a specially designed GaAs solar cell was used, and an increase in the open-circuit
voltage was observed by increasing the hot-carrier energy relaxation time. A detailed analysis
was presented regarding the spatial distribution of hot-carrier temperature and its interplay with
the electric field and three hot-carrier recombination processes: Auger, Shockley–Read–Hall, and
radiative recombinations.
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1. Introduction

Hot-carrier solar cells have drawn much attention due to their high theoretical effi-
ciency limit of more than 80% [1,2]. Conventionally, hot-carrier solar cells require (1) a
photoactive material where the transport to contacts must be much faster than the cooling;
(2) the selective extraction of electrons or holes through a narrow energy band [1]. However,
this model lacks the interlink to the semiconductor device because it is based on thermo-
dynamics. The realization of selective contact is especially extremely challenging due to
the poor understanding of the energy conservation principles from the device’s point of
view. However, some trial experiments regarding the selective contact implementation
have been reported [3,4]. One of the main targets of the current work is to address the
hot-carrier operation principle from the closed-form of a Boltzmann device transportation
model, especially a hydrodynamic energy transport model (HETM) model where the car-
rier temperature and lattice temperature are treated separately. The aim is to gain deeper
insight into the proposed thermal dynamic hot-carrier solar cell by studying the hot-carrier
effect on the conventional solar cell [5,6].

This paper is arranged as follows: first, the hot-carrier solar cell operation principle
was simulated based on the thermodynamic detail balance model containing a ‘cooling’
and ‘hot’ competing process. A detailed analysis regarding the constraint of particle
conservation and chemical potential was given in detail. Then, a hydrodynamic model,
including the carrier energy, ω (ω = 3/2kTH , where TH denotes the hot-carrier tempera-
ture, and k denotes the Boltzmann constant), was used to simulate a specially designed
GaAsn-emitter/AlGaAsbarrier/GaAsintrinsic/GaAsp-base solar cell. The results were compared
with the simulation results using the drift-diffusion model (DDM) by varying the internal
electric filed, hot-carrier relaxation time, τw, and the AlGaAs barrier thickness. At last, the
spatial distribution of the hot-carrier temperature and the effect of the electric field and
recombination rate was presented.
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2. Thermal Dynamical Model of Hot-Carrier Dynamics

This section will first present the simulation results of an ideal hot-carrier solar cell
based on the so-called Ross–Nozik model [2,7]. Then, we will provide further informa-
tion regarding the comparison with other models. Figure 1a shows the thermodynamic
mechanism involving an interplay between the ‘cool’ and the ‘hot’ carriers. Here, we have
assumed a self-equilibrium between the hot-carrier temperature TH and chemical potential
µH . It is known that a competing behavior exists between TH and µH , and the mechanism
is represented by the following equations:

µout = µH

(
Ta

TH

)
+ Ehot

(
1− Ta

TH

)
(1)

J = q
{

X fSN
(
Eg, ∞, Tsun, 0

)
− N

(
Eg, ∞, TH , µH

)
+ (1− X fS)N

(
Eg, ∞, Ta, 0

)}
(2)

J ∗ Ehot = q
{

X fSL
(
Eg, ∞, Tsun, 0

)
− L

(
Eg, ∞, TH , µH

)}
(3)

where J is the current density, Ta is the ambient temperature (≈ 300 K), Ehot is the energy
separation between the extracted electron and hole, and, in physics, it equals the kinetic
energy, ω, N(·) is the photon flux density, and L(·) is the energy flux density; X and fS
are the parameters related to light concentration. If the hot-carrier reaches the thermal
equilibrium with the surrounding temperature, e Ta, the hot-carrier solar cell performs as
the conventional solar cell, and the output potential equals µout = µH (the quasi-Fermi level
splitting). The current-voltage (J-V) relation can be derived by considering both the particle
conservation (the number of absorbed photons equals the number of emitted photons)
described in Equation (2) and the energy conservation in Equation (3). Figure 1b shows
the results of a hot-carrier solar cell with a bandgap of Eg = 1.5 eV, and the extraction
energy separation, Ehot, was set at 2.1 eV. It is seen here that the temperature of the carriers,
TH , and the chemical potential, µH , showed opposite trend versus the output voltage,
indicating their competing behavior. The output current decreased with the increase of
the output voltage, V. This reduction is mainly due to the increase of the photon emission
following Planck’s radiation law:

n(E) ∝ E2 exp
{
−
(

E− µH
k TH

)}
(4)

In order to separate the photon emission contribution due to the µH and TH , Planck’s
law of Equation (4) was rewritten as:

n(E) ∝ E2
{

exp
(

µH
kTa

)
+ exp

(
−E
kTH

)
+ C

}
(5)

where C equals exp(kTa ≈ 300k) and can be treated as a constant. Here, we can view
the photon emission controlled by the term in Equation (5) containing only µH as a ‘cool’
process, and the ones induced by temperature, TH , i.e., the second term in Equation (5), as
a ‘hot’ process. We named this process ‘cool’ so as to emphasize its similar operation to
the conventional solar cell, in which the chemical potential, µ, governs the photoemission
because TH , here, is usually treated as a constant temperature and as the environment
temperature, Ta. The word ‘cool’ here also reflects the fact that the value of µ is much less
than the chemical potential in the conventional solar cell. In extreme cases, the value of µ
could become zero or negative, especially when the applied voltage reaches the Voc. The
competition between the ‘cool’ and ‘hot’ processes is mainly due to the following fact: In a
hot-carrier solar cell, as shown in Equation (5), TH and µH are allowed to vary the number
of emitted photons, n(E), in order to reach the detailed balance with the absorbed photons.
When the output voltages, V, are within the regime of near Voc, the carrier temperature,
TH , increases dramatically, which will inevitably drive µH to zero, or even negative, due
to the stringent constraints rooted in the conservation of particles and energy. In other
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words, conventional solar cells at Voc can be viewed approximately as an ‘emitting diode’
at the ambient temperature, Ta, while the hot-carrier solar cell is exemplified as a ‘hot’
(high temperature TH) thermal engine, with µH being negative, as shown in Figure 1b.
It is noteworthy to mention here that the competing process involving the variation of
TH and µH are, in principle, due to the strong particle conservation constraints shown in
Equation (2).
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strained case where the 𝜇𝐻 < 0; (ii) hollow square with a solid line (full sun) and a solid square with 

dotted line (1sun) show the particle conservation constrained case where the 𝜇𝐻 = 0; (iii) solid line 

(full sun) and dotted line (1sun) show the relaxed particle conservation where 𝜇𝐻 = 0, which corre-

sponds to the impact ionization, indicating high levels of interaction between hot electrons and 

holes. 

Figure 1. (a) The schematic model of the cooling and ‘hot’ competing processes. (b) Simulation
results using the detailed balance principle and energy conservation constraints. Here, Eg = 1.5 eV
and Ehot = 2.1 eV, V=µout/q. TH was scaled down by 40 to fit on the same figure. (c) The limiting
efficiency of a hot-carrier cell under 1sun and full sun for various models: (i) hollow circle with a solid
line (full sun) and a solid circle with dotted line (1sun) show the particle conservation constrained
case where the µH < 0; (ii) hollow square with a solid line (full sun) and a solid square with dotted
line (1sun) show the particle conservation constrained case where the µH = 0; (iii) solid line (full sun)
and dotted line (1sun) show the relaxed particle conservation where µH = 0, which corresponds to
the impact ionization, indicating high levels of interaction between hot electrons and holes.

In contrast, in a model based on relaxed particle conservation, i.e., the so-called
impact ionization and the Auger recombination model proposed by References [1,8], the
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µH is set to zero. We undertook a comparison study by simulating the limiting efficiency
based on three different models: (1) the Reference [2] model (Ross–Nozik model) where
µH < 0, (2) the Reference [2] model (Ross–Nozik model) where µH = 0, and (3) the
Reference [1] model (Würfel model) where µH = 0, and the results are summarized in
Figure 1c. Model (2) was implemented by forcing the µH = 0 while still applying the
strong particle conservation constraints to the Ross–Nozik model. It can be seen from
Figure 1c that there exists a dramatic difference between the models, allowing the value
of µH to be negative and for µH = 0 under the 1sun or diffuse light condition. However,
the difference was almost negligible when performing the simulation under full sun or
direct light conditions. Meanwhile, it can also be found that the results obtained from
models (2) and (3) showed a negligible difference for both the 1sun condition and full sun
condition (note that models (1) and (2) were performed using numerical simulation, while
model (3) was derived based on the analytical form). The fact is that model (2), with the
constraint of particle conservation and the constraint of µH = 0, rendered the same results
as the impact ionization model, i.e., model (1); we, thus, we argue that model (2), i.e., the
Ross–Nozik model with particle conservation constraints, may present a more general
picture of the hot-carrier solar cell. However, we must note that there exists a different
perspective regarding this consistence, as reported in Reference [9].

3. Hot-Carrier Dynamics Simulation Based on HETM Model

In the previous section, we focused on the investigation of the competing dynamics
between the ‘cool’ and ‘hot’ carriers using the thermodynamic model. In this section, we
performed an extended exploration of the hot-carrier relaxation and extraction effect from
the point of view of the solar cell device’s performance. For this purpose, the conventional
drift-diffusion model was converted into the HETM model, where the hot-carrier energy,
ω = 3/2 kTH , was included. The HETM model was based on the hydrodynamic model,
including hot-carrier energy transportation using the software Crosslight APSYS®; the
drift-diffusion (DDM) model served as a reference and was implemented based on the
methods described by References [10–13]. The main equations used in the HETM model
are given as follows [14]:

∇·(εs∇ψ) = −q
(

p− n + N+
D − N−A

)
(6)

1
q
∇·Jn = −G + R (7)

1
q
∇·Jp = G− R (8)

Jn

q
= µnn∇εc + Dn∇n + Sn∇Tn,H (9)

Jp

q
= µp p∇εc − Dp∇p− Sp∇Tp,H (10)

∂

∂t
(nω) +∇·Q− Jn

q
·∇εc =

∂

∂t
(nω)

∣∣∣∣
c
−ω(R− G) (11)

Equations (6)–(10) are the familiar Poisson’s equation, current continuity equation, and
current density. Here, εs is the semiconductor permittivity; ψ is the electrostatic potential;
p, n, N+

D , N−A are the hole, electron, donor, and acceptor concentrations, respectively; G and
R denote the generation rate and recombination rate; µn and µp are the electron and hole
mobilities under the electric field; Sn and Sp are the electron and hole mobilities under the
temperature gradient; εc is the conduction band edge; Q is the energy flux. Note that in (9)
and (10), there is an additional contribution to the current density due to the hot-carrier
temperature gradient when compared to the standard drift-diffusion simulation (DDM).
Equations (6)–(10) physically correspond to the particle conservation of Equation (2) in
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the thermodynamic detailed balance model [15,16], and the concrete proof is given in
Appendix A.

A key feature of the HETM model is the energy balance in Equation (11). Based
on the following assumptions, this equation can be simplified to a form that is similar
to the energy conservation in Equation (3) shown in Figure 2. ∇εc here represents the
electric field, E. Meanwhile, if we assume an ideal thermodynamic device, there is no
position dependence, which leads to ∇·Q = 0. Meanwhile, if we assume there is no
scattering ( τω → ∞ ); thus, ∂

∂t (nω)
∣∣∣
c
= 0. Based on these assumptions and simplifications,

Equation (9) can be simplified as:

J·E = ωG−ωR (12)

On the other hand, we can reformulate Equation (3) so as to relate the photon currents
to energy currents via the introduction of the average energies of the absorbed 〈wabs〉 and
emitted 〈wemi〉 photons [9]. These average photon energies are given by the absorbed or
emitted energy currents, divided by the appropriate photon currents G and R. Equation (3)
finally took the following form:

J·Ehot = 〈ωabs〉G− 〈ωemi〉R (13)

As it can be seen from Figure 2, a quasi-equivalence is built between Equations (12) and (13).
As is known, Ehot is the most important and governing parameter in the thermodynamic
model of hot-carrier solar cells. By comparing Equations (12) and (13), it can be seen that
Ehot plays a similar role as the electric field, E, does in Equation (12). This quasi-equivalence
relation is conceptually illustrated in Figure 2.
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Figure 2. Sketch of the derivation of quasi-equivalence between the energy conservation in a detailed
balance model and energy conservation in a Boltzmann transportation model.

Based on the thermodynamic theoretical framework, we moved to further implement
the proposed device simulation concept. Figure 3a shows the device structure of a specially
designed GaAs solar cell. In order to enhance the electric field effect, the intrinsic layer
(i-GaAs) was set to 100 nm with a narrow n-type emitter. The hot-carrier dynamics were
tuned by varying the thickness of the AlGaAs barrier inserted between the i-GaAs and
n-GaAs. Since the focus of the current work was to study the hot-carrier dynamics effect on
a conventional solar cell rather than building a hot-carrier solar cell, the selective contact
for extracting energy, Ehot, was not considered. Figure 3b,c show the band diagrams at
the short-circuit condition and open-circuit voltage condition. The energy-dependent
relaxation time, τω, was varied from 1× 10−14 s to 1× 10−11 s to examine the hot-carrier
transportation dynamics. All of these results were compared with those calculated by the
conventional DDM model, where the hot-carrier effect was not considered.
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4.1. Hot-Carrier Temperature Distribution 

Figure 3. (a) Device structure and its corresponding band diagrams under the short−circuit condition
(b) and open−circuit condition (c); simulated results for (d) Jsc and (e) Voc; the solid curve represents
the simulation using the HETM model, while the dotted curve represents the simulation using the
DDM. In (d,e), the results under different barrier heights are also presented.

From Figure 3d, it can be found that the Jsc decreased with the increase of the relaxation
time, τw. The reduction of Jsc was attributed to a leak current of the hot electrons at the
back electrode, and we expect that an electron, back surface field-block layer could have
suppressed the current reduction. As shown in Figure 3e, contrary to the reduction of Jsc,
Voc, simulated under the HETM model, showed a much higher value than the Voc simulated
by DDM. We will give a more detailed analysis regarding the Voc variation with τw in in
the next section. Not shown in the figure, the fill factor (FF) was found to be improved in
the HETM model, from 83.5% at 1× 10−14 s to 84.8 at 1× 10−11 s. The FF increased with
the extended carrier relaxation time, indicating the enhanced carrier extraction under ‘hot’
states, which will be discussed in more detail in the next section.
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4. Results and Discussion
4.1. Hot-Carrier Temperature Distribution

Figure 4 shows the hot-carrier temperature distribution simulated using the HETM
model by varying τω under a forward bias of 0.2 V. The plot contains an x-y plot of the
temperature distribution together with the 1-D band diagram. We integrated the two plots
into one plot to directly compare the electric field and hot-carrier temperature.
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Figure 4. (a) Carrier temperature distribution under different relaxation times; (b) carrier temperature
dependence on the applied forward voltage; notice that the y-axis for Voc is shown on the right side;
(c) carrier temperature distribution together with the spatial distribution of the electric field, E,
and the product of Jn·E ; the applied external voltage is 0.2 V; (d) relation between the hot-carrier
temperature distribution and spatial distribution difference of the net generation (G− R) and electric
field, E, between the HETM and DDM; the applied external voltage is Voc; notice that the y-axis for
the electric field, E, is shown on the right side.

It can be seen from Figure 4a that the extension of the carrier relaxation time, τw,
caused a much higher carrier temperature and reached the highest value of more than
1200 K when the τω was set as 1× 10−11 s. We also found that the higher the hot-carrier
temperatures were, they mainly distributed around the junction area, and the gradient
gradually faded away from the neutral region. Meanwhile, as shown in Figure 4b, the
hot-carrier temperature strongly depended on the applied bias voltage, and the forward
bias voltage tended to diminish the temperature gradient. When the forward bias was
greater than 0.9 V, the temperature of the carrier at the neutral region was found to be even
below the lattice temperature (300 K), indicating a ‘cooling’ effect in the device.

A quantitative analysis was presented to gain deeper insight into the spatial distribu-
tion of the hot-carrier temperature. If we define ∇εc as the electric field, E, as we have so
far, the scattering term is ∂

∂t (nw)
∣∣∣
c
≈ − n

τω

( 3
2 kTH − 3

2 kTa
)
, where Ta, TH are the lattice and

electron temperature, respectively. Then, Equation (11) can be simplified as:

n
τω

(
1− Ta

TH

)
=

2
3kqTH

Jn·E− (G− R) (14)
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Here, we have also ignored the term ∇·Q. It can be seen that under this assumption,
there exists a direct link between the hot-carrier temperature and the product of the electron
current and electric field (Jn·E), as well as the net generation (G− R). Phenomenologically,
this can be understood as follows: While increasing the forward bias voltage, Jn and E both
decrease, so their contribution to Te decreases as well. On the other hand, with the increase
of the forward bias voltage, the recombination rate, R, increases, and the net generation rate
(G− R) decreases accordingly. Therefore, its contribution to the hot-carrier temperature
increases, especially when the device is under the Voc condition; thus, Jn = 0 and the
Equation (14) becomes:

n
τω

(
1− Ta

TH

)
= (G− R) (15)

We plotted both the spatial distribution of Jn·E and E together with the hot-carrier
temperature under the applied external bias, Vbias = 0.2 V, as shown in Figure 4c. It was
found that the hot-carrier temperature distribution was consistent with the electric field,
E, distribution while showing significant deviation from Jn·E. On the other hand, it was
found that the hot-carrier temperature distribution was strongly correlated with the net
generation rate (G− R) when the external bias was at Voc; these results are presented in
Figure 4d. We also found an increase in the hot-carrier temperature with an increase in
the relaxation time, i.e., a longer τω. All these results are consistent with Equation (15). It
is also important to mention that from Figure 4d, we speculate that it is the difference in
(G− R) between the HETM and DDM simulation at Voc that induced the increase of Voc in
the HETM simulation, as shown in Figure 3e.

4.2. Hot-Carrier Recombination Behavior

In the HETM simulation, we included the Auger, Shockley–Read–Hall (SRH), and ra-
diative recombinations into the simulation. We found that for the device structure studied,
an SRH recombination (∼10−8/cm3s) prevailed over the other two (Auger: ∼10−9/cm3s;
Radiative: ∼10−10/cm3s) for both the HETM and DDM simulations. Including the SRH
recombination was for practical purposes since realistic solar cells usually suffer energy
dissipation, and its effect is comparable to that of the radiative recombination or even
stronger [17]. Note that the recombination rate strongly depended on the applied bias
voltage. This means that the SRH was the dominating recombination and directly affected
the device’s performance, especially the fill factor. Detailed analysis results are given in
Figure 5a–d, where the calculated three recombination dependencies of the relaxation time
are given under the forward bias of 0.9 V. Meanwhile, in order to better understand the hot-
carrier effect, we plotted the difference between the HETM and DDM models. As shown
in Figure 5, the Auger, radiative, and SRH recombinations showed different tendencies
for the two models: the HETM showed a much higher value for the Auger and radiative
recombinations than the DDM but a lower value for the SRH recombination. It is also inter-
esting to note that extending the relaxation time enhanced the tendency, i.e., longer lifetime,
rendering a further higher value for the Auger and radiative recombinations and a further
lower value for the SRH recombination. The lower value of the SRH at 0.9 V contributed to
the higher fill factor obtained from the HETM simulation, as mentioned in the previous
section. It is worth noting that, unlike the electric field, the spatial distribution profile for
the three recombinations showed no consistency with the spatial distribution profile of
the hot-carrier temperature. This is indicated by the dotted line shown in Figure 5, which
shows that the SRH minimal position keeps constant for all four types of relaxation time.
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4.3. Increase of Voc in HETM Simulation

At last, we proceed further to disclose the reason for the increase of the Voc obtained
from the HETM model from three different points of view:

4.3.1. Simplification of Two-Temperature J-V Relation:

A straightforward strategy to simplify the J-V relation of the two-temperature HETM
is to take the analog of the conventional one-temperature J-V model with the temperature
dependence for the related parameters. The final form is described in Equation (16), and a
more detailed proof for this simplification is given in Appendix A.2.

Voc,HETM ≈ m(TH)kTa ln
{(

Jsc

J0(TH)

)
+ 1

}
(16)

Here, the m(TH) represents the temperature dependent ideality factor; J0(TH) is
the temperature-dependent recombination currents, such as SRH, Auger, and radiative
recombinations. As mentioned before, the J0, calculated by the HETM, was found much
higher than the ones calculated by the DDM. Meanwhile, the device temperature, TH , at the
condition of Voc was almost equal to Ta = 300 K; so, the only parameters which contributed
to the increase of Voc was the ideality factor m(TH). A simple relation between the fill factor
and ideality factor has been derived by Green [18], which states that the increase of the fill
factor would cause a decrease in the ideality factor. As mentioned in Section 3, an increase
of the FF is found by using the HETM model, thus, leading to a decrease of m(TH) and,
therefore, a decrease of Voc, which is contradictory to the simulation results. From the
analysis above, we found that Equation (16) failed to interpret the increase of Voc, calculated
by using the HETM. In other words, a simplified J-V diode model is not applicable for
analysing the HETM results. This is reasonable because the energy conservation part is not
included in the approximation, as shown in Appendix A.2.

4.3.2. Energy Conservation Analysis

In principle, the difference between the DDM and HETM is the applied energy conser-
vation law in the HETM model. The increase of Voc should be fully understood through
the closed-form of Equation (11). At Voc, the current Jn = 0 in Equation (11), which was
then reduced to Equation (15). This is an incredibly significant result for understanding
the HETM model. We found that (G− R) depended on the carrier temperature, TH , and
relaxation time, τw. Although further investigation is needed to gain deeper insight into
this issue, (G− R) remaining nonzero at Voc is considered to be the most decisive factor
which altered the Voc value in the HETM simulation.

4.3.3. Thermodynamic Analysis

We can also address the increase of Voc from an alternative thermodynamic point of
view. As described in Equation (1) and Figure 1b, when a hot-carrier solar cell approaches
its Voc, the carrier temperature, TH , will increase, which will inevitably cause the reduction
of µH . However, in our current simulation model, since we have not yet included the
carrier separation term, Ehot, as designed in Figure 1, the Voc represented here will only
be controlled by the first half of Equation (1): µH

(
Ta
TH

)
. If the TH is higher than the Ta, µH

must increase to compensate for the drop due to the increase of the carrier temperature.
This is the reason for the increased Voc observed here, which will decrease in a normally
operated hot-carrier solar cell, assuming the Ehot can be correctly incorporated into the
current hydrodynamic and energy transportation model. In addition, it is worthwhile to
mention that the increases in Voc can be converted to evaluate the hot-carrier temperature.

Our future investigation will be focused on the competing principle in Equation (15)
between the net generation rate (G − R) and the product of Jn·E. We will compare this
competing principle with the competing behavior between the ‘hot’ and ‘cool’ processes
explained in the thermodynamic detailed balance model section. Meanwhile, in the current
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work, we have ignored the analysis regarding the energy flux ∇·Q and will be given full
investigation regarding its effect on Voc.

5. Conclusions

Hot-carrier dynamics in GaAs-based solar cells were studied by using the HETM by
varying the hot-carrier relaxation time, and the results were compared to those simulated
by using the DDM. It was found that the Jsc tends to decrease with the increase of the
hot-carrier relaxation time and showed a lower value in the energy transport model than in
the DDM model. The Voc, on the contrary, showed a much higher value and was analyzed
based on the thermodynamic model and energy conservation in the HETM simulation.
A detailed analysis regarding the carrier temperature distribution and its relation to the
electric field and net generation rate (G− R) was presented. Lastly, the increase of Voc was
interpreted in different models and found that the net generation rate (G− R) is possibly
the key factor.
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Appendix A

Here, we gave a detailed derivation of the famous Shockley’s diode equation from
merely the thermal dynamic model with the particle conservation constraints model de-
scribed in Equation (2). The explicit form of Equation (2) is given as below:

J =
∫ ∞

0
qA(E)bearth(E) + qA(E)bsun(E)− qB(E) be(µ)dE (A1)

bearth(E) = g(X)
E2

exp
(

E
kTearth

)
− 1
≈ g(X) E2exp

−E
kTearth

(A2)

bsun(E) = g(X)E2 exp(
−E

kTsun
) (A3)

be(µ) = g(X)E2 exp(
−(E− µ)

kTH
) (A4)

Here, the Tearth is the same as the environmental temperature, Ta, and A(E) is the ab-
sorbance; B(E) is the emissivity; bearth(E) and bsun(E) are the photon flux density from the
earth and the sun, respectively. be(µ) is the photon flux emitted from the solar cell device.

Appendix A.1 Derivation with the Assumption of TH = Tearth

In order to show the equivalence to Shockley’s diode equation, we have assumed here
that the solar cell device is in thermal equilibrium with the environmental temperature,
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Tearth; thus, TH = Tearth. In other words, the hot-carrier effect is not considered for this
proof of concept. The g(X) is the coefficient depending only on the concentration ratio X.
By assuming the detailed balance principle, i.e., A(E) = B(E), Equation (A1) can be further
simplified as:

J =
∫ ∞

0
qA(E)bearth(E) + qA(E)bsun(E)− qA(E) bearth(µ)dE (A5)

J =
∫ ∞

0
qA(E)bsun(E)dE −

{∫ ∞

0
qA(E)bearth(µ)dE −

∫ ∞

0
qA(E) bearth(E)dE

}
(A6)

J =
∫ ∞

0
qA(E)bsun(E)dE − q

∫ ∞

0
A(E)[ bearth(µ)− bearth(E)]dE (A7)

Using the Equations (A2) and (A4), Equation (A7) can be further simplified as:

J =
∫ ∞

0
qA(E)bsun(E)dE − qg(X)

∫ ∞

Eg
A(E)E2exp

(
−E

kTearth

)
dE
{

exp
(

µ

kTearth

)
− 1
}

(A8)

J = Jsc − qg(X)
∫ ∞

Eg
A(E)E2exp

(
−E

kTearth

)
dE
{

exp
(

µ

kTearth

)
− 1
}

(A9)

Here, we have defined the photon flux density from the sun as the short-circuit current
density, Jsc.

So far, we have expanded and reformed Equation (2) under merely the thermal
dynamic framework. From now on, we will demonstrate how Equation (A9) is equivalent to
the current–voltage relation of the Shockley diode equation based on the normal DDM (drift-
diffusion model). At first, we assume a simple PN diode model, as shown in Figure A1.
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∞
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 {exp (
𝜇
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Figure A1. A simplified PN diode model for both drift-diffusion simulation and thermal
dynamic simulation.

Recall that the absorbance of A(E) is calculated as follows:

A(E) = 1− exp(−α(E) ∗ d) (A10)

Here, the α(E) is the absorption coefficient and d is the device thickness. A key
assumption is used here to approximate the device thickness. We adopted the diffusion
length for the electron and hole as le and lh and define the effective device thickness as
d ≈ le + lh. Using the effective device thickness, along with a first-order Taylor expansion,
Equation (A10) can be described as:

A(E) = 1− exp(−α(E) ∗ d) ≈ α(E) ∗ d = α(E) ∗ (le + lh) (A11)
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Inserting Equation (A11) into Equation (9), the following formula is obtained:

J = Jsc − (le + lh) qg(X)
∫ ∞

Eg
α(E) E2exp

(
−E

kTearth

)
dE
{

exp
(

µ

kTearth

)
− 1
}

(A12)

During most of the simulation, the absorption coefficient, α(E), can be treated as a
constant; thus, α(E) ≈ α; thus, Equation (A12) can also be written as:

J = Jsc − (le + lh) qg(X) α
∫ ∞

Eg
E2exp

(
−E

kTearth

)
dE
{

exp
(

µ

kTearth

)
− 1
}

(A13)

Here, we introduce the generation rate at the thermal equilibrium, G0
e−h, defined based

on the reference (p75, P. Würfel and U. Würfel, Physics of Solar Cells: From Basic Principles
to Advanced Concepts, 3rd edition):

G0
e−h = g(X) α

∫ ∞

Eg
E2exp

(
−E

kTearth

)
dE (A14)

Then, Equation (A12) is reformulated as:

J = Jsc − (le + lh) qG0
e−h

{
exp

(
µ

kTearth

)
− 1
}

(A15)

The G0
e−h can be further approximated by using the recombination rate, R0

e−h, at the
thermal equilibrium under the detailed balance principle:

G0
e−h = R0

e−h (A16)

Recall that the recombination rate, R0
e−h, is usually governed by the inverse of the

minority carrier lifetime and has the explicit form of:

R0
e−h =

nP
e

τe
=

nN
h

τh
, (A17)

where

nP
e =

n2
i

NA
, nN

h =
n2

i
ND

, τe =
l2
e

De
, τh =

l2
h

Dh
(A18)

In Equations (A17) and (A18), we have assumed the intrinsic carrier concentrate as
ni, the doner concentration as ND, and the acceptor concentration as NA; the minority
electron and hole lifetimes are τe and τh; the electron and hole diffusion coefficients are
De and Dh. nP

e , which stands for the electron concentration at the P-side of the PN diode,
and nN

h stands for the hole concentration at the N-side of the PN diode. We have also used
the Einstein relation to link the minority carrier lifetime with the diffusion length. Using
Equations (A17) and (A18), Equation (A15) can be rewritten as:

J = Jsc − q(le + lh)
nP

e
τe

{
exp

(
µ

kTearth

)
− 1
}

(A19)

J = Jsc − q
(

le
nP

e
τe

+ lh
nP

e
τe

) {
exp

(
µ

kTearth

)
− 1
}

(A20)

Using the relation described in Equation (A17), Equation (A20) is further described
as follows:

J = Jsc − qn2
i

(
De

le ∗ NA
+

Dh
lh ∗ ND

) {
exp

(
qV

kTearth

)
− 1
}

with µ = qV (A21)
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J = Jsc − J0

{
exp

(
qV

kTearth

)
− 1
}

with J0 = n2
i

(
De

le ∗ NA
+

Dh
lh ∗ ND

)
(A22)

Since the photon absorption from the earth is usually negligible, Equation (A22) can
be further simplified as:

J ≈ Jsc − J0 exp
(

qV
kTearth

)
(A23)

The second part of Equation (A21) is precisely Shockley’s diode equation. Schokley’s
diode equation can be derived based on the well-known DDM (drift-diffusion model),
and the detailed derivation can be easily found in most semiconductor physics textbooks.
Note that none of the drift-diffusion models have been used during the derivation of
(A21). Thus, we show that Equation (2), in the main text, does show an equivalence to the
Equations (7)–(10) under the assumption of TH = Tearth.

Appendix A.2 Derivation with the Assumption of TH 6= Tearth

Now, let us consider the solar cell temperature under the condition in which the solar
cell temperature is different from the environment. For the sake of simplicity, we omitted
the photon absorption from the earth; therefore, Equation (A1) can be simplified as:

J =
∫ ∞

0
qA(E)bsun(E)dE −

{∫ ∞

0
qB(E)be(µ)dE

}
(A24)

Again, we apply the detailed balance principle and write the explicit form of
Equation (A24) as:

J =
∫ ∞

0
qA(E)bsun(E)dE − qg(X)

∫ ∞

Eg
A(E)E2

{
exp
(
−(E− µ)

kTH

)}
dE (A25)

In order to make an easy comparison with the model in the previous section under
the condition of Appendix A.1, i.e., TH = Tearth,

J =
∫ ∞

0
qA(E)bsun(E)dE − qg(X)

∫ ∞

Eg
A(E)E2

{
exp
(
−(E− µ)

kTearth
· kTearth

kTH

)}
dE (A26)

Here, we introduce a temperature ratio, βH , between TH and Tearth

βH =
Tearth

TH

Thus, Equation (A26) can be written as:

J =
∫ ∞

0
qA(E)bsun(E)dE − qg(X)

∫ ∞

Eg
A(E)E2 exp

(
−E βH
kTearth

) {
exp
(

µβH
kTearth

)}
dE (A27)

If we assume the same effective device thickness as le + lh, Equation (A27) can be
further expanded as:

J =
∫ ∞

0
qA(E)bsun(E)dE − (le + lh) qg(X)

∫ ∞

Eg
α(E) E2 exp

(
−E βH
kTearth

)
dE exp

(
µβH

kTearth

)
(A28)

Since βH is not dependent energy, E, we introduce the following conversion variable
to simplify Equation (A28). We also assumed a constant absorption coefficient to simplify
the integration part of Equation (A28):

E βH = EβµβH = µβE =
1
β

Eβα(E) = α
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Under these conditions, Equation (A28) can be rewritten as:

J = Jsc −
(

1
β

)3

(le + lh) qg(X) α
∫ ∞

Eg,β

(
Eβ

)2 exp
( −Eβ

kTearth

)
dEβ exp

(
µβ

kTearth

)
(A29)

If we compare Equation (A13) with Equation (A29), we find that, except for some
additional constant terms related to the temperature scaling factor, β, these two formulas
are precisely the same if we treat the hot-carrier solar cell as operating under the energy
range scaled by the factor of 1

β . At last, we can approximately write Equation (A29) as the
form of the drift-diffusion model under the temperature scaling factor of β:

J = Jsc − q
(

1
β

)3
n2

i

(
De

le ∗ NA
+

Dh
lh ∗ ND

) {
exp

( qVβ

kTearth

)}
(A30)

J = Jsc − J0(β)

{
exp

( qVβ

kTearth

)}
(A31)

We also present its logarithmic form at the open-circuit voltage when J = 0, which is
used in Equation (16).

Voc,β = kTearth ln
{(

Jsc

J0(β)

) }
(A32)

Note, again, that we derived Equation (A31) without using the HETM model con-
taining Equations (7)–(10) listed in the main text. Even when we treat the hot-carrier cell
with the device temperature, other than the environment temperature, we can still derive
the results with a similar form to those based on the drift-diffusion model. Of course,
caution must be paid here because the results should be, in principle, compared to the
analytical form based on the HETM model, which is not available. We will tackle it in our
further investigation.
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