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Abstract: NiO and Cr2O3 are transition metal oxides with a partially filled d electron band that
supports p-type conduction. Both are transparent to the visible light due to optical absorption
beginning at wavelengths below 0.4 µm and the creation of holes by metal vacancy defects. The
defect and strain effects on the electronic characteristics of these materials need to be established. For
this purpose, NiO and Cr2O3 thin films were deposited on unheated glass substrates by reactive DC
sputtering from metallic targets. Their structural, morphological, optical and electrical properties
were analyzed comparatively in the as-grown conditions (25 ◦C) and after heating in air at 300 ◦C or
500 ◦C. The cubic NiO structure was identified with some tensile strain in the as-grown conditions
and compressive strain after heating. Otherwise, the chromium oxide layers were amorphous as
grown at 25 ◦C and crystallized into hexagonal Cr2O3 at 300 ◦C or above also with compressive
strain after heating. Both materials achieved the highest visible transmittance (72%) and analogous
electrical conductivity (~10−4 S/cm) by annealing at 500 ◦C. The as-grown NiO films showed a
higher conductivity (2.5 × 10−2 S/cm) but lower transmittance (34%), which were related to more
defects causing tensile strain in these samples.
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1. Introduction

Transparent conducting oxides (TCOs) are critical to numerous technological appli-
cations, ranging from flat panel displays or light emitting diodes to smart windows and
photovoltaic cells [1,2]. The performances of p-type TCOs are behind the n-type counter-
parts, which limit potential applications in the field of transparent electronics [3]. This
discrepancy stems from the localized nature of the O 2p-derived valence band (VB) in
contrast with a spatially spread conduction band (CB) composed of metal s orbitals, which
results in a much higher effective mass for holes than electrons [4] in addition to easy
n-type dopability by oxygen vacancy defects [5]. A design strategy for p-type TCOs is
based on the concept of chemical modulation of the VB through the hybridization of O
2p orbitals with metal d or s orbitals, which is advantageous for the mobility of holes [6].
Another approximation is to utilize the electron correlation to promote VB modifications
that favor p-type conduction [7]. In this sense, many transition metal oxides with a par-
tially filled d electron band are described by extended Hubbard models [8,9] where the
Coulomb interaction between the electrons (U) splits the d band into an upper Hubbard
band (UHB) and a lower Hubbard band (LHB) with a separation of U [10]. Consequently,
these compounds can support p-type conduction when the VB is composed of O 2p orbitals
and metal d orbitals (LHB) driven by the electron correlation.

Transition metal monoxides crystallize in the rock-salt structure and sesquioxides in
the corundum structure, showing a similar trend of electronic properties: the values of U
gradually decrease with the decrease of the 3d occupation number of the transition metal
ion [11]. The electrical conductivity can be improved by decreasing U while maintaining the
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consequence of the VB modification due to the electron correlation for p-type conduction.
Although with differences in their electronic structure, NiO (Ni2+ 3d8) and Cr2O3 (Cr3+ 3d3)
are equally suitable for acting as p-TCOs [6]. Both are transparent to the visible light due to
optical absorption beginning at wavelengths below 0.4 µm and they allow the creation of
holes by metal vacancy defects (VNi or VCr) [12,13].

Due to its lower 3d occupation number, a lower U and higher electrical conductivity
are expected for Cr2O3 than NiO. Nevertheless, the respective electronic characteristics can
be altered as previous studies have revealed that compressive strain can increase the band
gap energy and U values in both Cr2O3 [13] and NiO [14]. In addition, the metal vacancy
defects play an important role in changing the lattice arrangement and introducing charge
transition levels that modify the electronic bands [15,16]. The defect and strain effects on
the electronic characteristics of these p-type TCOs need to be established in relation to the
specific preparation procedure. For this purpose, NiO and Cr2O3 thin films were deposited
on unheated glass substrates by reactive DC sputtering from metallic targets. This is a
good technique for the preparation of metal oxide layers with a low cost due to simple
equipment and easy extrapolation to large areas [17] and it is used here for the synthesis
of compounds that are practically nontoxic [18] although source metals and potential by-
products (such as Cr6+ species) are problematic. The structural, morphological, optical and
electrical properties of the sputtered films were comparatively analyzed in the as-grown
conditions (25 ◦C) and after heating in air at 300 ◦C or 500 ◦C, thus studying the evolution
of their characteristics with temperature. The main objective was to elucidate the structural
effects on the transparency and conductivity of NiO and Cr2O3 thin films prepared under
analogous conditions by a low cost and easily scalable deposition technique.

2. Materials and Methods

Nickel oxide and chromium oxide thin films were prepared on unheated soda-lime
glass substrates (2 mm thick) by reactive DC magnetron sputtering from Ni and Cr targets,
respectively. After the evacuation of the chamber to a base pressure of 4 × 10−4 Pa,
the reactive and working gases (O2 and Ar) were introduced by independent mass flow
controllers. The O2 to Ar partial pressure ratio was selected to obtain near stoichiometric
NiO and Cr2O3 layers according to previous studies [12,19,20] while the power density was
adjusted to get a deposition rate of 20 nm/min for the various films, as detailed in Table 1.
For the analogous nickel oxide layers, a previous work showed the evolution of the cation
coordination number (Nc) with the oxygen partial pressure being the stoichiometric value
(Nc = 6) achieved at P(O2)/P(O2 + Ar) = 0.2 [12]. For the chromium oxide samples, several
oxygen pressures were also tested and the set value corresponded with the intermediate
range between the metallic mode (opaque films) at P(O2)/P(O2 + Ar) ≤ 0.3 and the
oxidative mode (with the poisoning of the target [19]) at P(O2)/P(O2 + Ar) ≥ 0.5.

Table 1. Experimental conditions of sputtering deposition.

Target (Ø 15 cm) Pbase (Pa) P(O2) (Pa) P(O2 + Ar) (Pa) Power (W/cm2)

Ni disk 4 × 10–4 0.10 0.50 2
Cr disk 4 × 10–4 0.20 0.50 12

The thickness of each layer was measured after deposition with a Dektak 3030 pro-
filometer (Veeco Instruments GmbH, Mannheim, Germany). This value and the corre-
sponding deposition time were used to calculate the growth rate and adjust the power
density accordingly. Once the rate of 20 nm/min was reached, the deposition time was
set at 5 min to obtain layers with a same thickness of 100 nm. In order to improve the
crystallinity of the sputtered samples, post-deposition heat treatments were performed in
air at temperatures ranging from 300 ◦C to 500 ◦C for 30 min.

The crystallographic properties were examined by X-ray diffraction (XRD) with ra-
diation Cu Kα1 (λ = 1.54056 Å) in an X’Pert instrument (PANalytical, Malvern, UK) with
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a Bragg–Brentano θ–2θ configuration. The crystalline phases were identified by the files
given by the Joint Committee of Powder Diffraction Standards (JCPDS) and the mean
crystallite size was calculated from the full width at half the maximum of the main diffrac-
tion peak according to the Scherrer formula. The microstructure of the films was also
analyzed with a system composed of a BAC151B microscope and an i-Raman spectrometer
(B&W Tek, Newark, NJ, USA) using a green laser of 532 nm as the excitation source. The
topography was examined by atomic force microscopy (AFM) with a Park XE-100 (Park
Systems, Suwon, Korea) in contact mode, acquiring digital images to quantify the surface
roughness. For the optical characterization, transmittance (T) and reflectance (R) measure-
ments were done with a double beam spectrophotometer Lambda 9 (PerkinElmer Inc.,
Waltham, MA, USA) in the wavelength range λ = 0.3–1.9 µm taking the air as the reference.
The transmittance was then corrected for reflection losses as Tc(%) = 100 T(%)/(100 − R(%)).
This was directly related to the optical absorption coefficient α = −(1/t) ln(Tc/100) [21]
being Tc ≈ 100% below the band gap energy Eg where α ≈ 0. Thus, the Eg value could be
determined as the maximum of the differential dα/dE or dTc/dE versus the light energy
E [22]. The electrical conductivity together with carrier concentration and mobility were
determined with an HMS3000 Hall Measurement System (ECOPIA, Gyeonggi-do, Korea)
using the Van der Pauw configuration and a magnetic field of 0.5 T. Silver paste contacts
with a 1 mm diameter size were placed at the four corners of the sample (1 cm × 1 cm) and
four measurements (with the bias applied in different diagonal directions and reversing
the field) were taken of each layer. The sheet resistance (Rs) was also obtained with a
four-point probe VEECO FPP5000 (Veeco Instruments Inc., Plainview, NY, USA) showing a
complete agreement with the equation Rs = (σ·t)−1 where σ was the Hall conductivity and
t was the film thickness.

3. Results and Discussion

An XRD analysis conducted on the various samples is illustrated in Figure 1. All of
the nickel oxide layers showed diffraction peaks corresponding with the cubic rock-salt
structure of NiO (JCPDS No. 4-835). A mean crystallite size of 40 nm was obtained for the
as-grown films with a lattice constant a = 0.420 nm that was higher than expected from
the standard powder file (0.418 nm) [12]. Such enlargement in the lattice was related to
the presence of nickel vacancies (VNi)2− and the concurrent formation of some Ni3+ to
preserve electrical neutrality. The coexistence of Ni2+ and Ni3+ produced a local spinel
arrangement (as in a mixed valence Ni3O4 [23]) dispersed in the NiO matrix, which altered
the cubic rock-salt structure and increased the lattice parameter [24]. During heating
in air at 300 ◦C or 500 ◦C, NiO crystallites enlarged slightly to 45 nm while the lattice
constant decreased to a = 0.416 nm. Otherwise, no diffraction peaks were observed for the
as-grown chromium oxide samples, indicating that they were amorphous as reported for
analogous layers prepared at room temperature [25,26]. After heating at 300 ◦C or above,
diffraction peaks evidenced hexagonal Cr2O3 (JCPDS 72-3533) with a mean crystallite
size of 55 nm and lattice parameters a = 0.492 nm and c = 1.359 nm. These gave a unit
cell volume lower than expected from the standard powder file (0.495 nm and 1.358 nm
cell parameters) [27] without significant changes with the annealing temperature. At
300 ◦C, some Cr2O5 (JCPDS 28-0370) also appeared that was related to the coexistence
of Cr3+ and Cr6+ by the combination of CrO8 octahedra and CrO4 tetrahedra [28]. This
is a metastable compound favored by the presence of chromium (III) vacancies (VCr)3−

together with Cr6+ species but Cr2O5 decomposes into Cr2O3 around 400 ◦C [29,30]. In fact,
pure Cr2O3 is typically synthetized at temperatures above 450 ◦C [19,29]. The presence of
Cr2O5 in the 300 ◦C heated sample produced some screening of the (012) Cr2O3 diffraction,
which was located between two peaks corresponding with Cr2O5. It should be noted
that a similar evolution has been observed by increasing the heating temperature during
sputter deposition [31,32]. However, the film growth rate tends to decrease as the substrate
temperature increases [31]. Sputtering on unheated substrates allows the minimisation of
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the power required for the stated deposition rate and the film thickness remains unchanged
after post-deposition heating.
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Figure 1. XRD patterns corresponding with the nickel oxide and chromium oxide samples as grown
at room temperature and after heating in air at 300 ◦C or 500 ◦C. The symbol * marks the peaks
attributed to Cr2O5.

Raman spectroscopy is known to be very sensitive to chemical structures and bonding
and it was used to complement the XRD data. The results obtained for the various samples are
shown in Figure 2. Nickel oxide layers evidenced molecular vibrations corresponding with
pure NiO in the first-order transverse optical (1TO) and longitudinal optical (1LO) phonon
modes, the second-order 2TO mode and the TO+LO mode [33,34]. The films obtained at a
relatively low temperature (as-grown or 300 ◦C heated) exhibited a hybridized band of 1TO
and 1LO phonons, which is typical of a distorted NiO lattice [35]. A decrease of the 1LO
phonon energy was related to VNi defects [36] in agreement with the tensile lattice distortion
detected by XRD in the as-grown NiO films. For the chromium oxide layers, Raman shifts
were assigned to the A1g and Eg modes of Cr2O3 [37]. The signal increment observed at
~650 cm−1 for the as-grown sample could be attributed to the forbidden Raman modes of
Cr2O3 activated in amorphous materials [26,38], which was in accordance with the absence of
diffraction peaks in the corresponding XRD pattern (Figure 1). Otherwise, the Raman band
that appeared at ~850 cm−1 after heating was related to the Cr(VI) states in CrO3 [39] or
Cr2O5 [40] forms. For the 300 ◦C heated sample, the small signal increment around 850 cm−1

was related to the Cr2O5 phase detected by XRD, which decomposed into Cr2O3 and CrO3
during annealing at 500 ◦C.

The morphology of the various NiO and Cr2O3 layers is illustrated in Figure 3, which
includes representative AFM images taken on 2 µm × 2 µm areas together with the
respective root-mean-square roughness (r). The images showed smooth and homogeneous
films being the surface roughness minimum for the as-grown samples (r < 1 nm) and
increased gradually after heating at 300 ◦C (r ≈ 2 nm) and 500 ◦C (r ≈ 3 nm). These values
were in the same order than those reported for analogous NiO [41–43] and Cr2O3 [32,38,44]
thin films. The increment of the roughness with the annealing temperature was related to
the recrystallization process [32,43] and the consequent enlargement of the mean crystallite
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size, as confirmed by the XRD data. Such crystalline enhancement goes together with the
agglomeration of grains and the formation of clusters that increase in size as the annealing
temperature increases. In addition, undulations appeared on the surface of the layers
heated at the highest temperature, as observed in other works [41]. The roughness of the
film was related to its crystallinity but could also affect its optical properties because greater
roughness could lead to more scattering at the surface and degrade its transparency by
increasing the absorption [32]. In any case, all samples had a root-mean-square roughness
well below their mean crystallite size indicating that they were flat and compact layers.
Therefore, these low values of film roughness are desirable for optoelectronic applications.
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Figure 2. Raman spectra corresponding with the nickel oxide and chromium oxide samples as grown
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The optical transmission spectra of the various samples are given in Figure 4. This
included the standard photopic vision V(λ), which described the spectral sensitivity of
the human eye centered at λV = 0.55 µm to better asses the transparency of the films. The
visible transmittance (that is, the value TV taken at λV) showed the same evolution for
the NiO and Cr2O3 layers, increasing from TV = 36 ± 2% for the as-grown films to 54%
after heating at 300 ◦C and higher, to 72%, when the temperature increased to 500 ◦C. An
increment in the visible transmittance with an increasing annealing temperature has been
reported for analogous coatings [45–47] with a maximum value around 70% at a 0.55 µm
wavelength [46,47]. In general, the optical transmission is expected to depend on various
film properties such as impurity centers, surface roughness and level of crystallinity. For
these smooth layers, structural defects and interstitial O atoms existing in the as-deposited
samples acted as impurities and led to scattering and/or the absorption of incident light. As
a result of annealing, the mean crystallite size increased and the interstitial O atoms could
diffuse out [45] leading to a decrease in the impurity level and the subsequent increment
of the film transmittance with the heating temperature. Furthermore, the coexistence of
metal ions in different valence states (Ni2+/Ni3+ or Cr3+/Cr6+), which share oxygen anion
ligands, allows facile charge transfer processes involving optical absorption in the visible
range [23]. The structural data indicated that such coexistence was favored in the as-grown
samples but subsequent heating produced an evolution to the most stable valence state.
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Both the crystallite size increase and the interstitial O out-diffusion led to the removal of
impurity levels and charge transfer processes (that absorbed visible light) after heating,
which had a greater effect than roughness on the film transmittance.
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Figure 5 represents the first derivative of the optical transmittance as a function of the
radiation energy for the same spectra shown in Figure 4. The optical gap energy given by
the first derivative maximum [22] was clearly identified by prominent peaks in the heated
samples, which were in agreement with those expected for the respective material; that
is, Eg = 3.70 eV for the NiO films [22,24,46] and Eg = 3.20 eV for the Cr2O3 layers [27,47].
The chromium oxide layer heated at 500 ◦C showed an additional maximum at 2.50 eV,
which corresponded with the band gap energy of CrO3 [48] according to the CrO3 signal
also detected in the Raman spectrum of this sample (in Figure 2). Otherwise, the first
derivative maximum appeared less pronounced and shifted towards lower energies in
the as-grown layers. The same behavior was observed for other amorphous or poorly
crystalline films, which showed a dependence of the band gap energy with the crystallite
size and/or with the structural strain. A decrease in the optical gap was noted when the
NiO lattice parameter increased and the film turned into tensile strain [14] taking into
account that the mean crystallite size decreases with tensile strain as observed here for
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the as-deposited NiO. Theoretical calculations indicated that tensile strain would also
reduce the gap of Cr2O3 [13]. Furthermore, Eg < 3.2 eV has been reported for NiO coatings
with mean crystallite sizes below 20 nm [49] and Eg < 2.7 eV for Cr2O3 crystallites below
28 nm [50]. Thus, it can be assumed that the fundamental gap of the crystalline phase
and the amorphous phase would be different [31]. Indeed, the near-edge spectrum of
amorphous Cr2O3 was a slightly broadened version of the single crystal spectrum with a
shift of the peaks of ~0.4 eV to lower energies [51]. The origin of the band gap narrowing
was then related to structural imperfections (bond angle and distance distortions in relation
to defects such as vacancies or interstitials) in the NiO and Cr2O3 films obtained at room
temperature. For these samples, the decrease in the optical gap energy led to a decrease in
visible transmittance.
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The electrical data of the sputtered coatings are plotted in Figure 6 as a function of the
heating temperature. In all cases, the p-type conductivity was dominated by the concentration
of free holes, both being maximum (σ = 2.5 × 10−2 S/cm and N = 2.7 × 1016 cm−3) for the
unheated NiO film grown at 25 ◦C. The NiO conductivity decreased to 3.1 × 10−3 S/cm at
300 ◦C and 8.9 × 10−4 S/cm at 500 ◦C due to the decrease in the carrier concentration to the
1015–1014 cm−3 range. The same behavior was observed for other sputtered NiO layers [45,52]
when the O-rich plasma induced the incorporation of Ni3+ in the lattice and correlatively the
formation of nickel vacancies as the previous structural analysis evidenced for the present
samples. These nickel vacancies acted as acceptors (VNi)2− that generated holes to fulfill the
lattice charge neutrality resulting in the highest conductivity. Nevertheless, the as-grown NiO
was thermodynamically unstable and it was easy to release excess oxygen atoms by heat
treatment at 300 ◦C or 500 ◦C, which produced the out-diffusion of the interstitial oxygen
atoms bonded weakly in the sputtered NiO films [52]. Otherwise, the electrical characteristics
of Cr2O3 remained stable at σ = (4.5 ± 0.1) × 10−4 S/cm and N = (1.5 ± 0.2) × 1014 cm−3

over the entire temperature range. In this case, the incorporation of Cr6+ led to the forma-
tion of Cr2O5 and CrO3 phases (detected by XRD and Raman spectroscopy) but was less
effective in creating chromium vacancy defects that acted as acceptors. The crystallization
and disappearance of the disorder-induced Raman mode (at ~ 650 cm–1) did not correlate
here with a change in conduction. With regard to the carrier mobility, it is represented in the
Figure 6 inset as a function of the respective carrier concentration. It was observed as practi-
cally constant at µ = 18 ± 4 cm2/Vs for the various layers with N ≤ 1015 cm−3 and decreased
to µ = 6 cm2/Vs for the as-grown NiO with N = 2.7 × 1016 cm−3. These mobility values
were within the highest reported for NiO [14,35] and Cr2O3 [53] thin films. Depending on
the localization length of the holes (Lh) in relation to the lattice constant (a), the conductivity
could proceed by hopping (when Lh < a) or by a band-like transport (when Lh > a) [54]. In
the first case, the mobility was expected to be extremely low (µ < 0.1 cm2/Vs [54]) while the
high mobilities observed in the present samples indicated a band-like transport. The lower
mobility in the as-grown NiO was due to its higher proportion of defects, which scattered the
movement of holes [14]. These sputtered NiO samples exhibited better electrical conduction
than Cr2O3 for analogous visible transmittance, which is desirable for TCOs. After heating at
500 ◦C, the NiO films had a sheet resistance Rs = 1.1 × 105 kΩ comparable with that achieved
by other p-type conductors with a visible transmittance above 70% [6].
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4. Conclusions

NiO and Cr2O3 thin films were deposited by reactive DC sputtering on unheated
glass substrates and subsequently annealed in air at 300 ◦C or 500 ◦C. Beyond their
different electronic structure, the optical and electrical characteristics were dominated by
the respective structural defects, which could be changed by the heating temperature.

All of the nickel oxide samples showed a cubic NiO structure with some tensile strain in
the as-grown conditions and compressive strain after heating. The tensile strain was related
to the presence of Ni3+ and nickel vacancy defects, which acted as optical absorption centers
and charge acceptors (VNi)2−. This resulted in a low visible transmittance (34%) and high
p-type conductivity (2.5 × 10−2 S/cm) for the as-grown NiO. Nickel vacancy defects, the
concentration of holes and conductivity decreased after heating (down to 8.9 × 10−4 S/cm at
500 ◦C) while the visible transmittance increased (up to 72% at 500 ◦C).

Otherwise, the chromium oxide layers were amorphous as grown at 25 ◦C and crystal-
lized into hexagonal Cr2O3 at 300 ◦C or above also with compressive strain after heating. The
presence of some Cr6+ led to the formation of Cr2O5 (at 300 ◦C) and CrO3 (at 500 ◦C) but
was less effective in creating chromium vacancy defects that acted as acceptors. Thus, the
electrical conductivity remained stable at ~4.5 × 10−4 S/cm over the entire temperature range
although the visible transmittance increased with heating in the same way as for NiO.
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