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Abstract: The androgen receptor (AR) is expressed in many cell types, and its related signaling is
widely investigated in hormone-dependent cancers such as prostate and breast. The significance of
the AR, however, has been detected even in other cancers, including gastric, bladder, kidney, lung,
hepatic, and pancreatic, in which growth and spreading are not strictly or notoriously dependent on
sex steroid hormone action. The incidence and mortality of these cancers are, however, somewhat
related to gender and, specifically, are higher in men than in women, with the ratio reaching 3–4:1 for
bladder cancer. This direct correlation between cancer incidence, mortality, and gender makes sex
one of the most important risk factors for these cancers and has incited investigation about the role of
sex steroid receptors and their activating hormones in gender-related cancers. In these cancers, the
AR is often expressed and seems to play a pivotal role in different processes contributing to cancer
onset and progression such as growth, spreading, and epithelial to mesenchymal transition (EMT).
This manuscript will offer an overview of the role of the AR in many cancers of the respiratory and
gastrointestinal systems wherein its role has been at least partially analyzed. Understanding the role
of the AR in these tumors could help us to identify a new biomarker for early diagnostic guidance and
to develop better therapeutic approaches by directly targeting the AR or its downstream signaling in
individual cells of hormone-related cancers at different stages.

Keywords: androgen receptor; gender-related cancers; sex steroid hormones in cancers

1. Introduction

Cancer ranks among the most common causes of death worldwide, and its incidence
and mortality are expected to increase due to both the aging of the population and the
major diffusion and worsening of some of the risk factors responsible for its onset, such as
pollution or an unhealthy lifestyle. In addition to the classic environmental and genomic
risk factors, the incidence and mortality of a lot of cancers are also determined by sex or
gender. For this reason, an increasing number of scientists have been studying the role of
sex steroid hormones in many cancers in addition to reproductive cancers, in which the
hormone/hormone receptor action is absolutely the principal guide [1]. To date, different
cancers have shown gender disparities, not only in incidence but also in aggressiveness and
disease prognosis. Except for breast, thyroid, and other rare cancers located in specific sites
of the digestive system, a lot of cancers, such as lung, kidney, bladder, gastric, colorectal,
liver, and pancreatic, as well as hepatocarcinoma and many others, show a higher incidence
in males [2]. The mechanisms underlying this phenomenon are completely unknown,
but there are some clear leading points that can help to understand these cancer-related
gender disparities. Occupational risk factors, differences in levels of circulating hormones,
and the expressions of their receptors could represent starting points to explain gender
disparities in patients with cancers with a higher incidence in males [3]. Even if, between the
two sexes, there are no differences in the pivotal mutated genes participating in a cancer’s
development, as is the case with the BRAF gene in melanoma or K-RAS in pancreatic
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cancer, we must consider that there are whole groups of genes differentially expressed
in response to sex steroid hormones able to influence several processes in cancer. For
example, studies analyzing gene expression in clear cell renal carcinoma (ccRCC) have
shown that, among the analyzed genes, about 90% were activated in a gender-specific
way [3]. Accumulating evidence displays that gender differences also influence the immune
system, thereby contributing to the unequal disease outcomes and different efficiency in
immune response to therapies in men and women [4].

By reason of the higher incidence in the male gender of many cancers, it is suitable to
have a better understanding of the role of sex steroid receptors in gender-related cancers;
in particular, it could be advantageous to analyze the role of the androgen receptor (AR) in
these gender-related cancers.

AR action has been extensively studied in hormone-dependent cancers such as prostate
and breast.

In addition to the classical pathway, the AR can activate the non-classical, or rapid,
pathway by an alternative mechanism mediated by different signaling proteins [5,6].

In prostate cancer (PCa), the AR represents a key regulator of tumor development
and progression. Several studies in PCa patients treated with anti-androgen or androgen
ablation therapy have revealed how androgen/AR signaling mediates many physiological
and pathophysiological processes in various tissues/organs [7–10].

In AR-positive breast cancer, the role of the AR in cell proliferation, apoptosis, migra-
tion, and cell invasion is known [5]. Moreover, in triple-negative breast cancer (TNBC), a
growing number of studies has clarified the mechanisms used by this receptor to promote
cancer progression and aggressiveness [11,12].

In recent years, many researchers have devoted their attention to the actions of the AR
in all those cancers not “classically” hormone-dependent, but gender-related, such as lung,
kidney, bladder, liver, stomach, and pancreas.

In the group of “classically hormone-dependent cancers” are included all those cancers
in which growth and invasiveness are notoriously and directly controlled by sex steroid
hormones and their receptors, such as breast cancer in women and prostate cancer in men.
Other examples are testicular cancer in men, and uterine and ovarian cancers in women.
Except for breast cancer, occurring in both sexes with a clear predominance in women, all
these cancers are also sex specific.

Conversely to these, the “non-classically hormone-related cancers”, also known as
gender-related cancers, include all those cancers occurring in both sexes, for which it is
unknown if any dependence from sex steroid hormones and receptors exists, but there is
still an incidence imbalance between men and women. This gap could be explained by the
unequal concentrations of circulating hormones between men and women.

This review aims to collect and discuss data about the role of the AR in several
gender-related cancers whose incidence and mortality are higher in men than in women.
This receptor could be an attractive therapeutic target in tumors as well, and the use of
antagonists, agonists, and modulators could be an alternative pharmacological strategy.

2. Androgen Receptor (AR)

The androgen receptor belongs to the large family of type I nuclear receptors. As
such, it is a ligand-dependent transcription factor commonly activated by ligand binding.
The AR gene is located on the long arm of the X chromosome (Xq11-12) and consists
of eight exons that code for the three functional domains typical of steroid hormone
receptors: (1) an amino-terminal domain (N-terminal domain, NTD), also indicated as a
trans-activation domain (TAD, residues 1–555), (2) a DNA binding domain (DBD, residues
555–623), and (3) a carboxyl-terminal ligand binding domain (LBD, residues 665–919).
Finally, a hinge region (residues 623–665) connects the DBD and the LBD [13].

The NTD or TAD represents a variable domain, less conserved than the others. It
contains an activation region called AF-1 (ligand-independent transactivation domain)
whose absence results in a transcriptional impairment of the receptor’s functions. This
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region is structurally flexible and is critical in stabilizing the receptor by enhancing the
interactions with AR co-activators. The DBD is a highly conserved domain in nuclear
receptors; it contributes to androgen receptor dimerization as well as to the binding of
specific sequences in chromatin known as androgen response elements (AREs). The LBD
turns out to be important in the nuclear localization of the AR. In this domain, there is a
region termed AF-2, a ligand-dependent activation region, responsible for the complete
activation of the receptor [10].

AR has two isoforms: AR-A and AR-B (Figure 1).
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consists of 8 different exons encoding for three distinct functional regions: the TAD (transactivation
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the LBD are linked by a hinge region. Different cryptic exons (CE) are located between exons, i.e.,
between exons 2, 3, and 4.

The isoform B, also named AR full-length or isoform 1, is widely expressed in most
cell types, migrating with an apparent mass of 110 kDa. The transcription of the isoform A
starts from the methionine in position 188 (Met-188). The resulting protein migrates with
an apparent mass of 87 kDa, lacking 187aa in the N-terminal transactivation domain [14,15].
Both the isoforms are expressed in a sweeping variety of adult and fetal reproductive and
non-reproductive tissues [16]. The full-length AR-B represents the predominant AR species
in all tissues in which both isoforms have been detected, and, in male and female adult
reproductive tissues, AR-B is expressed at high concentrations, whereas AR-A comprises
20% or less of the total AR protein [16]. Furthermore, the ratio of AR-A to AR-B was not
shown to change widely in the tissues examined [16]. The two AR isoforms slightly differ in
their activity and similarly respond to a variety of androgen agonists and antagonists [17].
The unique differences were studied by Liegibel and colleagues [18]. They proved that AR
isoforms have distinct functions in human cells of mesenchymal origin such as osteoblastic
cells and genital skin fibroblasts. AR-B was responsible for the mitogenic stimulation of
mesenchymal cells, whereas, in AR-positive tissues, AR-A inhibited the mitogenic function
of androgen-activated AR-B. AR-A was unable to stimulate cell proliferation, probably due
to the reduced binding of AR co-activating protein to the truncated N-terminal TAD [18].

Both the isoforms are expressed in prostate cancer, wherein the AR-B level is still
higher than AR-A. Anyway, the AR A/B ratio increases in PCa, in parallel with the Gleason
score [15]. These results agree with those obtained in studies of colon cancer, wherein
the AR-B expression decreased, whereas the AR-A expression was maintained [19]. The
different results in AR-A and -B activity can be explained by considering that all the
measurements of their activity were performed using similar levels of the two isoforms,
but this does not replicate the normal conditions.
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In addition to the classical isoforms, ARs frequently undergo mutations or alternative
splicing that causes the formation of alternative splicing variants. Some of these different
forms of ARs, represented in Figure 2, can be expressed in normal and cancer tissues
and can trigger altered and uncontrolled responses, causing various pathologies or drug
resistance in cancer, such as for AR-V3, -V7, or AR-8 in PCa [20–22] or for AR-V45 in
BC [12]. According to the NCBI site (https://www.ncbi.nlm.nih.gov/gene/367#reference-
sequences, accessed on 10 May 2023), there are 5 AR isoforms, indicated as AR 1, 2, 3, 4
and 5 and corresponding to AR-B, AR-V45, AR-V7, AR-V1 and AR-8, respectively.
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Figure 2. AR variants. The figure illustrates some of the naturally occurring AR variants. Most of
them originate from AR alternative splicing.

The presence of the AR and/or its variants makes more complex the molecular scenario
of different types of cancers. Studies on the alteration of agonist/antagonist properties of
anti-androgens due to different AR mutations have stimulated the search for new drugs
that inhibit AR signal transduction [23,24]. It has been seen how mutations in the AR
gene and splicing variants can lead, in most cases, to increased cellular aggressiveness in
hormone-dependent cancers such as prostate, breast, and ovary [12,25–31]. All the AR
domains can undergo mutations. In particular, the selection pressure of drugs on the AR
pathway in PCa increases the number of mutations in the ligand binding domain (LBD),
thereby broadening its ligand specificity and sensitivity and reducing the clinical treatment
effects of PCa and the quality of patient survival. Although various AR mutations have
been reported in prostate cancer, specific hot spot mutations (L702H, W742L/C, H875Y,
F877L, and T878A/S) were frequently identified after the gain of drug resistance [32]. A
conspicuous group of AR splicing variants, such as AR-V1, 3, 7 and 9, lacks the LBD while
showing an intact NTD and DBD and, consequently, a constitutive activity [33–35]. Other
variants such as AR-V45 and AR-8 lack a DBD and do not work as transcription factors but
play different roles. AR-8 promotes cell survival via a non-genomic mechanism [36,37]. AR-
V45 is an NTD truncated form, unable to transactivate AR but able to work as a dominant
negative and suppress the AR FL functions [37]. The hormone-activated AR works through
a genomic or classical pathway and a non-genomic or rapid mechanism. In the genomic
mechanism, the AR dimerizes after the binding to its hormone and binds AREs in the
promoter region of target genes involved in cell proliferation, epithelial to mesenchymal
transitions (EMT), apoptosis, and metabolism [38]. On the other side, the activated AR is
also able to influence biological processes, triggering the activation of signaling pathways
in few seconds or minutes. These two modes of action are not unconnected, and they
work together in same target cells [39], thereby promoting the growth and development of
hormone-dependent tumors [40].

The role of the AR has been widely studied in prostate cancer. The AR controls cancer
progression and its action is inhibited by reducing androgen synthesis or using specific
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AR antagonists. However, resistance to these treatments often occurs within 2–3 years of
therapy, when patients develop castration-resistant prostate cancer (CRPC), in which active
ARs remain as key regulators. Some studies have focused on the functional domains of the
AR and its crucial role in this pathology. Deeper knowledge of the structures of the DBD
and LBD of the AR provides a framework for understanding the functions of this receptor
and can lead to the design of drugs for the treatment of prostate cancer [10].

A great deal of scientific evidence shows the involvement of the AR in female cancers
such as ovarian and breast.

Although the molecular mechanisms underlying the androgen receptor role in ovar-
ian cancer are still far from being fully understood, therapeutic approaches designed to
modulate androgen receptor activity induce a decrease in tumor progression [27].

In breast cancer (BC), the AR seems to play opposite roles, and this could be attributed
to its crosstalk with other signaling pathways. Anyway, whereas in estrogen receptor (ER)-
positive breast cancer, the AR appears to both inhibit and promote tumor progression [5,41],
in ER-negative BC, particularly in triple-negative breast cancer (TNBC), it mainly promotes
tumor progression and tumor growth [5].

It is of paramount importance to increase our understanding of whether the AR
signaling pathway also influences the oncogenesis, or the growth and spreading, of gender-
related tumors, in order to use targeted strategies to slow tumor progression.

3. AR in Lung Cancer

Lung cancer is the leading cause of cancer death in the world (http://globocan.iarc.fr/,
accessed on 10 February 2023). The high mortality is due to late diagnosis, because of the
paucity of symptoms in the early stages of this cancer.

Risk factors commonly associated with lung cancer are, above all, tobacco consump-
tion, but also include occupational exposure to cancer-causing agents such as asbestos,
radon, and air pollution [42].

Furthermore, the disease shows sex and gender differences, with a higher incidence
in men than women [43] and with sex ratios of men to women varying from 1.5 to 2.0 to
1 (http://globocan.iarc.fr, accessed on 10 February 2023). Females tend to be diagnosed
younger, at earlier stages and, mostly, with a better prognosis [44]. Worldwide lung cancer
mortality is around threefold higher in males, with a current downward trend for males
and upward trend for females [44,45]. This trend will slightly change in 2023 in the United
States, where the lung cancer incidence will be slightly higher in women than in men,
inversely to mortality, which will remain higher in men [45]. Additionally, female patients
show better survival rates than males at any stage of disease [46]. Overall, men tend to be
less vulnerable to tobacco carcinogens than women [47]. These differences may be due to
the increased expression of AR in lung cancer cells [16].

The scientific evidence shows that the adult lung is a target tissue for ARs and suggests
that the AR plays a role in lung cancer biology. Mikkonen and colleagues observed not only
that the AR is expressed in different human lung cancer types, but also that its expression
increases, after androgen treatment, in murine lungs, above all in type II pneumocytes and
the bronchial epithelium [48]. Furthermore, androgen treatment significantly alters the gene
expression profile in the murine lung and in A549-lung-cancer-derived cells by upregulating
transcripts involved in oxygen transport and downregulating those responsible for DNA
repair and recombination [48].

Some studies highlight how AR signaling in lung cancer influences tumor progression.
Recchia and colleagues demonstrated that in non-small cell lung cancer (NSCLC) cells,
specifically in A549 cells, AR and EGFR co-work to trigger cell growth. The molecular
mechanisms underlying the crosstalk between growth factors and steroid hormones have
been studied, mainly in androgen-sensitive PCa LNCaP cells expressing both ARs and
EGFRs [49]. The interaction between dihydrotestosterone (DHT) and ARs controls the
expression of AR-responsive genes, such as cyclin D1, at both the transcript and protein

http://globocan.iarc.fr/
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levels. In A549 cells, the cooperation between ARs and EGFRs activates p38, thereby
regulating the CD1-mTOR pathway and lung cancer proliferation and progression [50].

Similar results were obtained by Lu and co-workers, who reported the downregu-
lation of cyclin D1 and the suppression of cell proliferation and anchorage-independent
growth after AR-knockdown via AR-siRNA in A549 cells. In these cells, the AR-siRNA
reduced the expression level of another protein, OCT4, implicated in tumor progression
and metastasis [51].

In addition to cyclin D1 and OCT4, there is a multitude of proteins whose transcription
is AR-dependent. Angiopoietin-like 4 (ANGPTL4) is upregulated by androgens in murine
lung and is involved in the selective formation of lung metastases under transforming
growth factor (TGF) control [52]. TMPRSS2 gene results upregulated upon androgen
exposure [48]; it is a target of ARs in the prostate [53] and a locus for translocation of
erythroblast transformation specific (ETS) transcription factors in about 50% of prostate
cancers [54]. Currently, however, it is not known whether a similar translocation takes place
in a subset of lung cancers; indeed, the TMPRSS2–ERG fusion gene seems to be specific to
prostate cancer, which may be due to the strong induction of TMPRSS2 by androgen [55].
A series of more than 60,000 cancer cases was used to determine the frequency of the
TMPRSS2–ERG fusion, assayed by comprehensive genomic profiling (CGP). The fusion
gene was detected exclusively in tumor samples from male patients, 30% of which were
classified as prostatic cancers. Furthermore, the TMPRSS2–ERG gene was also identified
in four cases of lung cancer, four cases of bladder cancer, and two cases of pancreatic
cancer [56]. Unfortunately, this seems to be a lone study demonstrating the presence of
the TMPRSS2–ERG fusion gene in non-prostatic cancers. Further analysis might be done
to demonstrate if the presence of this AR-related gene can be used in other AR-positive
cancers. The studies so far presented highlight the role of the androgen receptor as a
negative prognostic factor in the onset of lung cancer; moreover, the AR could be used as
a molecular target in cancer subtypes that overexpress it, such as NSCLC. It is important,
therefore, to further investigate the involvement of this receptor in lung cancer.

Although lung cancer has long been a disease characterized by late-stage diagnosis
and no progress in treatment options, in the last decade, lung cancer screening in high-risk
populations has yielded encouraging results and substantial progress has been made with
personalized therapies chosen on the basis of cancer subtype and stage.

To bolster this new and effective approach to lung cancer therapy, it is mandatory to
discover new molecular targets, and the AR could represent a good candidate. Gockel
et al. have exploited the ubiquitin–proteasome system with proteolysis-targeted chimeras
(PROTACs) to degrade ARs in lung cancer cells [57]. The PROTACs, based on the use of
the anti-androgen enzalutamide, were able to robustly induce AR degradation in lung
cancer cells [57]. Considering that the reduction of AR levels represents, for many scientists,
a way to fight lung cancer [50,58], this technique could be an innovative and promising
therapeutic strategy. A similar approach is currently used in prostate cancer patients with
beneficial results [59–61].

These findings have stimulated research in investigating new drugs targeting the AR
in monotherapies or therapies combined with the currently available antiandrogens in the
management of lung cancer patients.

4. AR in Kidney Cancer

Kidney cancer, also named renal cancer, includes different histologically defined
subtypes. Renal cell carcinoma (RCC) accounts for 90–95% of all cases, and transitional
cell cancer (TCC) and Wilms’ tumor represent the remaining 5–10% of cases [62]. The
lack of premonitory symptoms and diverse clinical manifestations make RCC a neoplasia
difficult to diagnose and treat and, with 431,888 cases registered in 2020, this tumor is
the 14th most common cancer worldwide; the 9th most common cancer in men and the
14th in women (https://gco.iarc.fr/today/data/factsheets/cancers/29-Kidney-fact-sheet.
pdf, accessed on 15 February 2023). Worldwide incidence and mortality rates are steadily

https://gco.iarc.fr/today/data/factsheets/cancers/29-Kidney-fact-sheet.pdf
https://gco.iarc.fr/today/data/factsheets/cancers/29-Kidney-fact-sheet.pdf
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increasing at a percentage of approximately 2–3% per decade [63], and in 2023, in the United
States, there will be registered an increase of 5% and 3% of new cases in men and women,
respectively [45]. The RCC etiology is still largely unknown, although determinants such as
obesity, diabetes, hypertension, cigarette smoking, and diet have been reported as potential
risk factors [64,65].

RCC is not generally considered a sex-hormone-dependent cancer, but recent studies
have indicated that a gender difference exists, with a male to female incidence ratio of
1.6 to 1.0 [65]. This difference might suggest that sex hormones and/or their receptors
are involved in the development of RCC. However, there are few studies that relate sex
steroid receptors such as the AR to the initiation and progression of RCC, and the published
studies show conflicting results.

The AR influences proliferation, migration, and invasion in in vitro and in vivo models
of RCC by altering the hypoxia-inducible factor 2α (HIF-2α)/vascular endothelial growth
factor (VEGF) pathway at the mRNA and protein expression level. Treatment of human
AR-positive RCC cell lines with DHT increased their proliferation, migration, and invasion,
whereas the use of ASC-J9, an AR degrader, suppressed proliferation in vitro and reduced
xenograft growth in vivo [66].

Other studies exploring the role of the AR in the most frequent subtype of RCC, clear
cell RCC (ccRCC), correlate this receptor to a poor prognosis. Deleted in Breast Cancer 1
(DBC1) is related to poor prognosis in many cancers, despite its first identification as a tumor
suppressor. ARs were expressed in 163 of 200 human-derived RCC specimens, without
differences between male and female patients. AR expression positively correlated with p53,
histone deacetylase sirtuin 1, SIRT1, and DBC1 expression, and all those proteins resulted
in poor prognosis and survival markers. DBC1 positively modulated ARs, activating cell
signaling pathways and driving tumor progression. In sum, while SIRT1 and p53 can be
related to the pathogenesis of renal cancer, the DPC1-AR pathway could be involved in the
carcinogenesis and progression of this disease. [67].

In contrast with these studies, Protein Atlas considers AR, which is detected in renal
epithelial cells, a favorable prognostic marker in RCC. Statistical analyses show that AR
expression in cancer is positively related to a better cancer survival. Patients in this study,
however, were not analyzed for sex or age (The Human Protein Atlas. Available online:
https://www.proteinatlas.org, accessed on 17 February 2023)

Nonetheless, analyses conducted with the GENT2 database showed no differences
in AR expression between normal and tumor tissues (GENT2. Available online: http:
//gent2.appex.kr/gent2/, accessed on 17 February 2023).

Recently, Bialek and colleagues demonstrated differences in the AR and its splicing
variants’ (AR-V1, -V3, -V4 and -V7) expression between the two main types of RCC—ccRCC
(clear cell RCC) and pcRCC (papillary cell RCC)—and between the pathological pT stages
of ccRCC tumors [68]. In addition, a potential modulator of AR, relaxin (RLN2), was
evaluated. The AR and its splicing variants are more highly expressed in pcRCCs than in
ccRCCs, both in tumor and in normal paired tissues. Furthermore, this study highlighted
an inverse correlation between the expression of the AR and its variants and tumor stage
in ccRCC. In addition, RLN2 expression and tumor growth are negatively related, while
RLN2 and AR expression show a significantly positive correlation in male patients. These
data suggest the possibility of indirect or direct dependence between RLN2 and ARs in
renal carcinoma, especially in men with ccRCC, supporting a favorable role for the AR in
RCC [68].

Consistent with these findings, other studies have correlated AR expression to male
patients, early-stage and low-grade tumors (Fuhrman), moderate differentiation, and good
prognosis [69,70].

Nevertheless, the role of the AR in RCC is still controversial, likely because AR-
related signaling is a complex and multi-stage process that may influence other responses
such as inflammation, EMT, migration, or cell proliferation, which are crucial for tumor
development and metastasis.

https://www.proteinatlas.org
http://gent2.appex.kr/gent2/
http://gent2.appex.kr/gent2/
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Therefore, molecular analysis of RCC and a better understanding of the disease are
crucial to increase the potential for personalized treatment in these patients.

Although the development of new therapies targeting vascular endothelial growth
factor (VEGF) and tyrosine kinases open new doors for patients with advanced RCC, their
effect is still limited for patients with selective disease types [71,72]. Therefore, surgery
remains the only effective treatment for RCC, since metastatic disease is usually resistant
to radiotherapy and chemotherapy, and immunotherapy shows limited response rates
ranging from 15% to 20% [73]. The search for new and improved therapies for metastatic
RCC is still needed. Therefore, although controversial, the role of the AR should be studied
and research expanded to understand the signaling pathways that can be activated and
identify this protein as a diagnostic and therapeutic marker in renal carcinomas.

5. AR in Bladder Cancer

Bladder cancer (BCa) is the most common neoplasm of the urinary tract, and one of
the most common cancers in the world [74].

The main risk factors driving BCa are age, cigarette smoking, alcohol, obesity, and
excessive red meat use [75]. Recently, it has been shown that chemicals such as aromatic
amines and aniline dyes may also contribute to the occurrence of BCa [76].

The incidence of this cancer is 3–4 fold higher in men than in women [45] and, al-
though the etiology of this difference remains unknown, hormonal differences have been
considered as a potential explanation for this gender disparity [77]. Studies in animal
models have shown that the incidence of spontaneous and chemically induced bladder
tumors is significantly higher in male rats than in females. In addition, treatment with
androgen deprivation therapy has been shown to reduce the development of chemically
induced BCas [78,79]. These findings encourage further investigation of the role of andro-
gens and ARs in this cancer. The physiological functions of androgens and ARs in the
bladder are unclear, and only a few studies have shown that AR signaling contributes to the
regulation of urine storage and cholinergic as well noncholinergic nerve functions in the
urinary tract [80,81]. However, the role of the AR in bladder cancer development remains
unexplored, with scant information in the literature.

Few studies, with conflicting results, have analyzed the role of the AR in BCa, likely
because of the different investigation methods. Thus, the AR’s functions and molecular
mechanisms in this cancer still remain unclear.

Laor and colleagues reported that the expression of the AR is higher in bladder cancer
than in healthy bladder mucosa [82]. By contrast, high-grade tumors exhibit less ARs than
low-grade tumors [82]. In support of this evidence, more recent studies by Boorjian and
co-workers has shown that decreased AR expression is associated with increased pathologic
stage and that the loss of AR expression is associated with invasive bladder cancer [83].

These data make unclear the role of the AR in bladder cancer growth and seeding
but might explain the incidence disparity. AR expression could be essential during the
first stages of bladder cancerogenesis, and only the AR-positive cells could be exposed
to transformation.

As in many other cancers, DHT-activated ARs trigger a plethora of signaling pathways
by both genomic and non-genomic actions in BCa [84,85].

The high frequency of AR expression in bladder cancer cells might explain the preva-
lence of this tumor in men and suggest the use of AR as potential marker for this cancer. AR
expression is often correlated to the expression of p53 and c-erb-2, which are both related
to the invasiveness, stage, and histology of this neoplasia. These observations could make
AR a possible bladder tumor marker [86,87].

Activation of the AR-dependent pathway is due to several factors, including the
inflammatory cytokine IL-8. The latter is produced and released by B lymphocytes in the
tumor microenvironment of BCa. Experiments performed on three BCa-derived cell lines co-
cultured with B lymphocytes showed increased invasion and metastasis of tumor cells, and
this phenomenon might be due to the ability of IL8 to influence AR signaling. In particular,
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the presence of IL8-activated ARs in BCa cells has been linked to the ability of ARs to
control the transcription of different metastatic genes, including the metalloproteinases 1
and 13 [88], which likely increase cell migration and invasion.

Many studies demonstrate a strong correlation between androgen deprivation therapy
(ADT) and BCa incidence. ADT for prostate cancer was associated with a decreased risk of
bladder cancer and seems to be a promising therapy for lowering BCa recurrence [89–92].
Other studies failed to identify any impact of ADT on the risk of developing BCa [93,94],
but this could be due to several limitations in those observational analyses [94]. For this
reason, future methodologically rigorous studies addressing the limitations underlined by
Santella and colleagues are needed to evaluate the important potential association between
ADT and bladder cancer [94].

The commonly used therapy for BCa is chemotherapy; however, it has been seen
that a significant number of patients with urothelial cancer do not respond to systemic
cisplatin-based chemotherapy. The mechanisms underlying chemoresistance remain poorly
understood, although in vitro studies have recently suggested the relationship between AR
activity in urothelial cancer cells and chemoresistance to cisplatin [95] or gemcitabine [96].
In both cases, chemoresistance is associated with a higher AR expression in BCa cells,
leading to the hypothesis that the AR drives this process.

Thus, androgen deprivation therapy, which is widely used for prostate cancer treat-
ment, could be a possible alternative or, more likely, an adjuvant to chemotherapy in those
cancer cells that express the AR [97].

The presence of ARs in this kind of tumor appears contradictory. Some studies
point to a critical role of androgen-mediated AR signaling pathways in urothelial carci-
noma pathogenesis and metastasis progression, supporting the idea that it represents an
endocrine-related neoplasm. Other studies, however, have argued that the receptor is
unable to drive metastasis given its low expression in high-stage and metastatic BCa cells.

In sum, it seems important to continuously investigate the role of this receptor and its
dependent signaling pathways to fully understand its function and explore the opportunity
to use the receptor as a prognostic factor or molecular target for new therapies.

6. AR in Hepatocarcinoma

Hepatocarcinoma (HCC) is the fourth leading cause of cancer deaths worldwide
and the sixth most common cancer. HCC is a sexually dimorphic cancer, with a 2–7 fold
higher incidence rate in men than women [45,98]. For this reason, it appears interesting to
investigate the role of the AR in this cancer. Different studies with conflicting or undefined
results have pointed to ways to clarify the relationship between the AR and HCC prognoses.

A study from Acosta-Lopez and colleagues demonstrated that, while the AR expres-
sion is a favorable marker for HCC prognosis, its activity is associated with poor prognosis
in patients with HCC [99].

Wu et al. suggested that the AR plays a key role in hepatitis-B-virus-induced HCC
by promoting HBV transcription and therefore hepatocarcinogenesis [100]. This activation
cannot explain the gender difference of both viral and non-viral HCC but suggests that
targeting of AR might represent a new therapeutical strategy to prevent HBV-induced
hepatocarcinogenesis.

Zhang et al. focused their report on clarifying the role of mTOR in the induction
of AR expression in HCC [101,102]. It was already known that mTOR is overactive in
HCC and plays a key role in the promotion of the metabolic activity, proliferation, and
survival of tumors [103]. Studies by Ren and Zhang have shown a relationship between the
AKT/mTOR pathway and the AR in HCC [101,102]. In detail, the mTORC1 factor inhibits
AR degradation by the phosphorylation of a serine residue in position 96 and increases
its nuclear translocation. Once in the nucleus, the AR promotes the expression of FKBPS,
which interacts with PHLPP1, a phosphatase of AKT, to inhibit AKT phosphorylation and
extend the mTORC1 activity, thereby setting up a feedback mechanism [101,102]. These
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findings allow us to consider co-targeting the AR and mTOR as a potential therapeutic
strategy for HCC treatment.

In another report, Cheng and Colleagues presented a different relationship between the
AKT/mTOR pathway and the AR in HCC mediated by non-alcoholic hepatic steatosis, and
they discovered how AKT mediates the activation of AR by diacylglycerols (DAGs) [104].

On the other hand, additional reports have shown that the AR promotes the progres-
sion of HCC through the over-regulation of cell-cycle-related kinase (CCRK), resulting
in the upregulation of β-catenin and, consequently, of the AR, thus making a feedback
mechanism. Over-regulation of CCRK, β-catenin, and the AR is associated with a poor
prognosis in HCC patients [105]. Another feedback mechanism between the AR and CCRK
operating during HCC progression involves the engagement of the STAT3 protein. It
seems that CCRK not only promotes the interaction between STAT3 and ARs, but also
the localization of this complex on the ARE, located in the CCRK promoter itself, which
indirectly activates the mTOR pathway and elicits HCC progression [106].

At least, AR expression was positively correlated with the expression of TLR4, a factor
that promotes the proliferation of HCC and induces the production of pro-inflammatory
molecules related to HCC malignancy [107].

The use of AR antagonists in HCC as a possible therapeutic strategy has been also
tested, with disappointing results [108,109]. Jiang and colleagues reported about the
potential impact of ARs on the cancer microenvironment and immune surveillance in
HCC and demonstrated how the AR directly interacts with programmed death ligand-1
(PDL-1) by reducing its expression, altering the tumor microenvironment, and enhancing
the function and proliferation of activated CD8+ T cells. This scenario indicates that the
different expression of the AR in HCC cells may provoke shifts in the immune response,
thus opening the way for the development of new immunotherapeutic strategies for
HCC [110].

7. AR in Pancreatic Ductal Adenocarcinoma

Pancreatic cancer (PaC) is a rare lethal disease including two different subtypes:
exocrine and the neuroendocrine pancreatic cancer. Exocrine PaC represents 95% of all
PaCs, and the most represented subtype of this group is pancreatic ductal adenocarcinoma
(PDAC), a devastating disease with a median global survival time of 5 months and a less
than 5% five-year survival rate. PDAC has a male–female incidence ratio ranging from 1.25
to 1.75:1 [111] and approaches a 1:1 ratio with aging [112]. Similar ratios are projected to
occur in United States in 2023 [45].

The AR expression in PDAC was initially questioned, but subsequent studies con-
firmed that pancreatic cancer cell lines expressed variable levels of ARs [113,114]. Further
in vitro experiments have shown that PDAC tumor cells responded in a different way to
treatment with an AR agonist, showing a modest increase in cell proliferation [113,115]. In
light of this, the effect of flutamide, an AR antagonist used in prostate cancer treatment,
was tested on PDAC cell proliferation and it was observed that its effect on cell prolifera-
tion reduction did not correlate with AR expression [113]. Furthermore, treatment with
flutamide did not change the cellular response to the generic anticancer drug gemcitabine
either in vitro and in vivo [113]. Successive reports evaluated the effect induced by EZN, an
AR inhibitor with higher affinity and antagonistic activity, used in combination with classic
anticancer drugs as therapy in patients with metastatic pancreatic cancer. The combined
treatment of PDAC patients with gemcitabine, nab-paclitaxel, and enzalutamide was well
tolerated in a phase I trial, and it robustly reduced the level of the PaC marker, CA19-9.
Furthermore, the combo treatment prolonged the overall survival as well as the disease-free
survival [116]. ENZ, therefore, represents a promising adjuvant drug in patients with
metastatic pancreatic cancer.

Additional reports showed that AR activity is modulated by IL-6, an inflammatory
cytokine overexpressed in pancreatic carcinoma [117].
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IL-6 is, indeed, were involved in the trans-activation of AR through the STAT3 and
MAPK pathways [118], and previous findings from Ueda and colleagues demonstrated
a direct interaction between the N-terminal domain of the AR and STAT3 beyond IL-6
treatment in prostate cancer [119]. A similar mechanism might explain the AR activation
induced by IL-6 in pancreatic cancer cell lines. Furthermore, in the same report, Okitsu et al.
revealed that IL6 promoted pancreatic cancer cell migration in the presence of ARs [118],
making the receptor a putative therapeutic target in pancreatic cancer treatments.

8. AR in Gastric Cancer

Gastric cancer (GC) is the second most frequent cause of cancer deaths worldwide and
the fourth most diffuse cancer. About 90% of these tumors are adenocarcinomas derived
from epithelial cells of the gastric mucosa, difficult to diagnose at an early stage because of
the paucity of symptoms. The disease is detected in an advanced stage and tends to have a
poor prognosis. Unfortunately, there are no specific therapies for GC [120,121], and surgery
still remains the only chance to cure this tumor [122].

For these reasons, there is a need to investigate new prognostic markers as well as
more successful therapies for severe GC. Different reports have indicated that the incidence
of GC is significantly higher in men than in women, with a ratio of 2:1 [123], and this will
be similar in 2023 [45]. In the 1990s, Wu and colleagues demonstrated for the first time the
significant presence of ARs in GC [124], so later reports have since focused on studying the
prognostic and therapeutic role of this receptor in GC.

AR overexpression promoted cell migration and invasion in both in vivo and in vitro
models of GC. To understand the mechanisms behind these effects, several effectors were
analyzed, including metalloproteinase 9 (MMP9), which is transcriptionally upregulated
by AR as a consequence of a direct interaction with the gene promoter [125].

Tang and colleagues confirmed that AR activity promotes migration, invasiveness,
and EMT of cultured GC-derived cells through the upregulation of proteins directly re-
sponsible for these processes, such as β-catenin, snail, slug, and alpha smooth muscle actin
(α-SMA, [126]). Fard and his research team focused, instead, on the analysis of the effect of
AR inhibitors such ENZ on cell proliferation and the EMT in GC [123]. They found that the
AR is expressed at a higher level in GC with an advanced TNM stage and its expression
is positively correlated to β-catenin and negatively to E-cadherin, while they observed a
moderate positive correlation between AR and other EMT markers such as snail, twist1,
and STAT3. They found that ENZ affected the G2/M transition and caused apoptosis by
downregulating cyclin-B1 and Cdk1 and upregulating p21 and caspase-3 in GC cell lines.
Furthermore, ENZ inhibited cell migration and invasion by inhibiting the closure in wound
healing assays and reducing the MMP9 and MMP2 activities. EZN was also able to reduce
EMT, reducing the β-catenin, snail, twist1, and STAT3 levels and increasing the E-cadherin
level. In addition, the authors observed that the addition of ENZ to 5-fluorouracil (5-FU),
an effective chemotherapeutic drug used in GC therapy, increased the effectiveness and the
cytotoxicity of 5-FU [123].

Additionally, in a different report, the same investigators discovered that about 85%
of GC patients who overexpress AR also overexpress Aurora kinase A (AURKA), an
important mitotic kinase, which plays a key role in the regulation of the cell cycle and
several oncogenic pathways. This report suggests that the co-existence of both the proteins
AR and AURKA could be used as a prognostic factor in GCs [127].

In advanced stages of GC, ARs might promote chemoresistance to cisplatin by induc-
ing the activation of laminin subunit alpha 4 (LAMA4) through direct interaction with its
promoter [128]. LAMA4 is generally upregulated in cancer, and its high expression level is
related to gemcitabine, cisplatin, trastuzumab, Adriamycin, and vincristine resistance in
GC. The ability of the AR to promote chemoresistance by increasing LAMA4 expression
suggests that therapeutical strategies targeting the AR and LAMA4 itself could improve
the drug response of chemotherapy-resistant GCs.
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9. Discussion and Concluding Remarks

The data reported in this review and illustrated in Figure 3 have summarized the role
of the AR in the development and progression of tumors that are not classically considered
hormone-dependent, but show a gender-related incidence, which is much higher in males
than in females.
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In liver, lung, pancreatic, and gastric cancers, the AR supports tumor progression,
whereas in bladder and kidney cancers, its role is still controversial.

In particular, in hepatocarcinoma, characterized by a marked sexual dimorphism [98],
the AR induces cell proliferation through the upregulation of cyclin kinase CCRK [105,106]
and tumor progression through activation of the AKT/mTOR signaling pathway [101,102].

In PDAC, although the male-to-female ratio is 1.25/1.75:1, and thus lower [111], the
AR still plays an important role in promoting cell migration and invasion by activating the
AR/IL-6/STAT3/MAPK signaling pathway [118].

In lung cancer, which has a male–female incidence ratio of 1.9:1 (http://globocan.iarc.
fr/, accessed on 11 March 2023 ), the AR promotes cell proliferation through the activation
of both the transcription of cyclin D1 and the signaling controlled by the CD1-mTOR
pathway [50,51]. Furthermore, the AR promotes metastasis formation by upregulating
OCT4, ANGPTL4, and MPRSS2 [48,52].

In gastric cancer, whose incidence is twice higher in males than in females [123], the
AR upregulates the gene that codifies metalloprotease 9 (MMP 9), thus promoting cell
invasion [125]. Furthermore, by using the antagonist ENZ, it has been demonstrated how
the AR correlates with cell proliferation and survival [123].

More difficult is to draw conclusions about the role of the AR in kidney cancer, whose
male–female incidence ratio is 1.6:1 [65]. It has been found that the AR facilitates cell
proliferation, migration, and invasion through the factors HIF-2α, VEGF, and DBC1, on
one hand [66,67]. On the other hand, relaxin-related AR expression could be an important
positive prognostic factor [68].

Even in bladder cancer, which is characterized by a 3/4:1 male-to-female ratio [77], the
AR has a controversial role. This receptor is highly expressed in low-stage tumor tissues,
but its levels are reduced with advancing disease [82,83]. However, the AR has been found
to play an important role in the progression of this tumor, as it causes an increase in the
expression of the oncogenes p53 and c-erb-2 [86] and it is implicated in cell invasion and
metastasis formation through the activation of IL-8/AR signaling [88]. In sum, the collected
data highlight the role of the AR in gender-related cancer (Figure 4).

http://globocan.iarc.fr/
http://globocan.iarc.fr/
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Figure 4. Main actions of AR in gender-related cancers. Whereas in lung, liver, pancreas, and stomach
cancers AR contributes to tumor development and progression, in bladder and kidney cancers, the
receptor works in two opposite ways by both promoting and inhibiting cancer.

In the majority of the discussed cancers, the AR works as a promoter and supporter
in tumorigenesis and tumor progression, although further studies are necessary to under-
stand if it can be used as a marker in diagnosis and treatment. In other cases, mostly in
bladder and gastric cancers, the role of the AR is still controversial, and additional data
are indispensable to clarify its role in these cancers. Anyway, it would be interesting to
analyze both the expression and potential role of AR isoforms and splicing variants in
these gender-related cancers, especially when the functions of the AR are not completely
clear. AR variants might work in an antagonistic way, thus explaining the conflicting data
so far obtained on gender-related cancer [18,20,21] but, to date, there are scant options
for detecting and discerning between the AR and its modified versions. Furthermore, the
literature only describes the genomic action of the AR and never investigates any non-
genomic mechanism involved in the oncogenesis or progression of this group of cancers.
The study of these mechanisms together with the development of techniques capable of
accurately observing the expression of the AR and its variants might strongly increase
knowledge in the unexplored field of the androgens’ influence in gender-related cancers.
Depending on its specific role in gender-related cancers, new therapies can be developed
by using the AR as target. When the AR works as a tumor inhibitor, the use of selective
androgen receptor agonists (SARMs), activating the receptor with a high specificity and
affinity, could represent an effective therapeutic strategy, mostly related to the existence
of reduced side effects. Furthermore, these SARMs can be used alone or in combination
with other therapies, such as immunotherapy, to increase their efficiency, as was success-
fully demonstrated in AR-positive metastatic TNBC patients (NCT02971761; [129]) or in
AR/ER-positive BC (NCT03088527; [129]). On the other side, the use of AR antagonists
could be a therapy in all the gender-related cancers in which the AR promotes disease
progression. To this purpose, many data confirm the efficiency of Enzalutamide alone or in
combination with chemotherapeutic or immunotherapeutic agents in in vitro [96,130] and
in vivo experiments [131] and also in clinical trials on gender-related cancers. In addition
to antiandrogens, therapies with selective AR degraders (SARD) could represent a revolu-
tionary strategy to cure all the gender-related cancers controlled by AR isoforms resistant
to the classical antiandrogens [129].

Statins, too, could represent an acceptable therapy for gender-related cancers. Statins
reduce cholesterol levels, and this lipidic molecule is the sex steroid precursor. The effects of
this therapy should be evaluated for every single tumor or patient, considering that when
different steroid receptors are simultaneously expressed, they could work in opposition to
each other, as in ER-positive breast cancer expressing ARs [12]. Anyway, some data in the
literature demonstrate that statins, alone or in combination with other chemotherapeutics,
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can control the growth of different types of cancers such as breast, ovarian, pancreatic, and
lung cancers [132–140].

Understanding how androgens and their receptors influence gender-related cancer is
important not only for developing new therapeutic strategies, but also for identifying at-risk
subjects and organizing prevention campaigns for lowering cancer incidence. For example,
analyzing the incidence of these cancers in transgender individuals or in subjects with
altered androgen concentrations, such as women with polycystic ovary syndrome (PCOS),
might produce useful results. Currently, several studies have characterized the incidence
of cancers in transgender patients, but the main attention was paid to breast and prostate
cancers in transmen and transwomen, respectively [141–144]. An analysis conducted on
bladder cancer transgender patients observed a higher incidence in transgender individuals
compared with ciswomen, but not with cismen [141]. On the other hand, another study
demonstrated that ciswomen had a 5-year survival rate that was lower than cismen [145].
Furthermore, in animal studies, the observed sex difference in bladder cancer carcinogenesis
disappeared after male mice castration and testosterone administration to female mice [146].
These data confirm that sex hormones play a role in gender-related cancers and show that
testosterone promotes its carcinogenesis, whereas estrogens appear to inhibit carcinogenesis,
but promote tumor progression [147,148].

Recently, the relationship between PCOS and other cancers, such as PaC or RCC, was
analyzed and confirmed by many studies [149–152]. These results suggest that diagnosis
of PCOS may warrant increased education and clinical vigilance for PaC, but additional
studies are required.

All the results discussed in this review highlight the need to understand the role of
androgens and their receptor in gender-related cancers in order to reduce their incidence
and mortality by drawing up both preventive and therapeutic plans.
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