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Abstract: Finely tuned cartilage mineralization, endochondral ossification, and normal bone forma-
tion are necessary for normal bone growth. Hypertrophic chondrocytes in the epiphyseal cartilage
secrete matrix vesicles, which are small extracellular vesicles initiating mineralization, into the inter-
columnar septa but not the transverse partitions of the cartilage columns. Bone-specific blood vessels
invade the unmineralized transverse septum, exposing the mineralized cartilage cores. Many os-
teoblast precursors migrate to the cartilage cores, where they synthesize abundant bone matrices, and
mineralize them in a process of matrix vesicle-mediated bone mineralization. Matrix vesicle-mediated
mineralization concentrates calcium (Ca) and inorganic phosphates (Pi), which are converted into
hydroxyapatite crystals. These crystals grow radially and are eventually get out of the vesicles to
form spherical mineralized nodules, leading to collagen mineralization. The influx of Ca and Pi into
the matrix vesicle is regulated by several enzymes and transporters such as TNAP, ENPP1, PiT1,
PHOSPHO1, annexins, and others. Such matrix vesicle-mediated mineralization is regulated by
osteoblastic activities, synchronizing the synthesis of organic bone material. However, osteocytes
reportedly regulate peripheral mineralization, e.g., osteocytic osteolysis. The interplay between
cartilage mineralization and vascular invasion during endochondral ossification, as well as that of
osteoblasts and osteocytes for normal mineralization, appears to be crucial for normal bone growth.
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1. Introduction

The growth of long bone depends on endochondral ossification, which can be sequen-
tially divided into cartilage matrix mineralization, vascular invasion into the epiphyseal
cartilage to expose the mineralized cartilage matrix, osteoblastic migration into the miner-
alized cartilage cores, and bone deposition to form the primary trabeculae. Hypertrophic
chondrocytes play a key role in normal cartilage mineralization, and subsequently in endo-
chondral ossification. These hypertrophic chondrocytes secrete matrix vesicles, extracellular
small vesicles that initiate mineralization, and also produce vascular endothelial growth
factor (VEGF) allowing the vascular endothelial cells to invade the epiphyseal cartilage. Car-
tilage mineralization is involved in the modeling of long bones and their changes of shape
and size, i.e., the development and growth of the metaphyseal trabeculae. Finely tuned
interplays among chondrocytes, vascular endothelial cells, osteoclasts (chondroclasts), and
osteoblasts is apparently necessary for adequate endochondral ossification [1].

Bone is a mineralized tissue composed of calcium phosphates and organic materials
such as collagen and proteoglycans. There are two phases of bone mineralization: primary
and secondary. Primary mineralization is achieved by osteoblasts. Osteoblasts also produce
a large amount of matrix vesicles, which mineralize in nodules (globular assemblies of
hydroxyapatite crystals) and then extend into the collagen fibrils secreted by the osteoblasts.
In contrast to primary mineralization, secondary mineralization is the process whereby the
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mineral density of bone increases after primary mineralization. It is postulated that sec-
ondary mineralization is regulated through physical crystal maturation, and by the cellular
activities of osteocytes embedded in the bone matrix. However, the exact mechanism of
secondary mineralization is not yet fully understood.

Histological processes of primary mineralization in the bones can be divided into two
phases: matrix vesicle-mediated mineralization and collagen mineralization. In matrix
vesicle-mediated mineralization, osteoblasts appear to regulate the secretion speed and
the amount of matrix vesicle according to the synthesis of bone matrix. The discovery of
matrix vesicles was a breakthrough in the field of bone mineralization [2–8], and many
membrane transporters and enzymes related to matrix vesicle-mediated mineralization
have recently been discovered. In addition to matrix vesicle-mediated mineralization,
recent reports have suggested that osteocytes putatively regulate the mineralization in the
periphery. As osteoblasts and osteocytes are directly connected to each other by means
of their cytoplasmic processes, bone mineralization may be regulated by the interplay
of osteoblasts and osteocytes. Updated knowledge of the matrix vesicles and osteocytic
network in bone mineralization may deepen the understanding of mineral metabolism
in bones.

In this review, we present the ultrastructural and histological aspects of endochondral
ossification, matrix vesicle-mediated mineralization, and osteocytic regulation of bone
mineralization.

2. Histological Aspects on Endochondral Ossification
2.1. Cartilage Mineralization by Hypertrophic Chondrocytes

Epiphyseal cartilage can be divided into three distinctive zones: resting, proliferating,
and hypertrophic zones. Chondrocytes form the longitudinal columns in the proliferative
and hypertrophic zones, but the proliferative chondrocytes synchronously enlarge in the
hypertrophic phenotype [1]. Parathyroid hormone (PTH)-related peptide (PTHrP) has been
reported to regulate hypertrophic differentiation of chondrocytes by mediating the Indian
hedgehog (IHH)/PTHrP negative feedback [9]. IHH expressed in the prehypertrophic zone
(the upper region of the hypertrophic zone) stimulates PTHrP expression in the early differ-
entiation stage of chondrocytes. PTHrP promotes the proliferation activity of chondrocytes
by binding to the common receptor of PTH and PTHrP (PTH/PTHrP receptor) in the prolif-
erative zone. PTHrP alternatively inhibits the hypertrophic phenotype of chondrocytes, and
IHH expression is then turned off. In addition to IHH/PTHrP negative feedback, another
important regulatory factor in chondrocyte proliferation is fibroblast growth factor receptor
3 (FGFR3). Point mutations in FGFR3 cause achondroplasia and thanatophoric dysplasia
by continuous activation of the transcription factor Stat1 [10,11]. FGFR3 signaling has also
been proposed to increase the pool of proliferating cells by stimulating chondrocytes in the
resting zone and promoting their transit to the proliferative zone [12,13]. Thus, the action
of IHH/PTHrP and FGFR3 may be essential for chondrocyte proliferation and differentia-
tion [14]. Hypertrophic chondrocytes have large and translucent cell bodies and produce
type I and X collagens, tissue nonspecific alkaline phosphatase (TNAP), proteoglycan, and
osteopontin [15–19]. Hypertrophic chondrocytes do not proliferate but acquire mineraliza-
tion ability in the cartilage matrix. Hypertrophic chondrocytes also reportedly secrete VEGF,
an angiogenic molecule that has been implicated in matrix metabolism enabling vascular
invasion of the epiphyseal cartilage [20]. Hypertrophic chondrocytes of the epiphyseal
cartilage secrete matrix vesicles, in which crystalline calcium phosphates appear, forming
hydroxyapatite crystals that grow and eventually break through the membrane to form
mineralized nodules in the cartilage matrix. Hypertrophic chondrocytes deposit matrix
vesicles in the intercolumnar septae but not in the transverse partitions, consequently form-
ing mineralized longitudinal septae and unmineralized transverse partitions. The regular
distribution of mineralized cartilage matrix in the longitudinal intercolumnar septum al-
lows the vertical invasion of vascular endothelial cells, which infiltrate into the cartilage by
penetrating the unmineralized transverse partitions. After the formation of these calcified
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cartilage cores exposed to bone tissues, many osteoblast precursors migrate and attach to
the mineralized cartilage cores to deposit abundant organic bone matrices including type I
collagen, osteocalcin, osteopontin, and so forth, thereby forming the primary trabeculae.
Thus, the process of endochondral ossification involves a well-defined series of events
which include the invasion of vascular endothelial cells, osteogenic cell migration, new
bone deposition onto the cartilage core, and the formation of primary trabeculae.

2.2. Vascular Invasion at the Chondro-Osseous Junction

Vascular endothelial cells can invade the epiphyseal cartilage by piercing the incom-
pletely calcified transverse partition of the columns. We demonstrated endomucin-reactive
blood vessels invading the chondrocyte lacunae at the chondro-osseous junction [21]. Trans-
mission electron microscopic (TEM) observation verified that the vascular endothelial cells,
present in blood vessels close to the cartilaginous matrix, extend their fine cytoplasmic
processes into the matrix. The tips of the extended cytoplasmic processes showed fine
finger-like structures facing the cartilaginous matrix, suggesting that the apical region of
the invading endothelial cells may be partially open. In some observations, cell debris was
present inside the blood vessels facing the cartilaginous columns at the chondro-osseous
junction, while erythrocytes were found outside the blood vessels. Since the apical region
of invading blood vessels might be open, blood vessels could presumably invade the
cartilaginous matrix and exclude unnecessary impeditive materials (mainly cellular debris)
to avoid accumulation at the junction (Figure 1).
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Figure 1. Vascular endothelial cells at the chondro-osseous junction. (a) Endomucin-immunoreactive
(brown color) blood vessels at the chondro-osseous junction under light microscope. (b–f) TEM
images of blood vessels at the chondro-osseous junction. Invading blood vessels are seen beneath
the chondrocytic lacunae. (c,d) When observed under higher magnification as shown in panel c,
fine cytoplasmic processes (arrows) are seen extending from the vascular endothelial cell, with
invaginations of the cell membranes in the superficial layer of the cartilaginous matrix. (e,f) Panel
e demonstrates cell debris, including erythrocytes from the blood vessels, and panel f reveals an
erythrocyte outside the vessel and cell debris in the vessels. (g) Schematic design of vascular invasion
at the chondro-osseous junction. HP: hypertrophic chondrocyte; BV: blood vessel, ob: osteoblast. Bar,
(a) 20 µm, (b) 10 µm, (c,e,f) 5 µm, (d) 1 µm.
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2.3. Osteoclasts’ Function at the Chondro-Osseous Junction

It is well known that osteoclasts, also referred to as chondroclasts, accumulate in the
chondro-osseous junction. Osteoclasts at the chondro-osseous junction show intense matrix
metalloproteinase (MMP)-9 immunoreactivity [22]. Additionally, MMP-9 immunoreactivity
is exhibited in the tips of the vascular endothelial cells facing the cartilaginous matrix,
unlike the other areas distant from the chondro-osseous junction [20]. Therefore, osteo-
clasts and vascular endothelial cells apparently synthesize MMP-9, which dissolves the
cartilaginous matrix [23,24]. Vascular invasion rather than osteoclastic resorption seems
essential during endochondral ossification. Studies have found that op/op mice, c-fos−/−

mice, and receptor activator of nuclear factor κβ ligand (Rankl)−/− mice preserve similar
lengths of long bones to those seen in their wild-type counterparts in murine models that
lack osteoclasts. However, without osteoclasts, the primary trabeculae form a disorganized
but highly connected meshwork in the long bones. As described by Marks and Odgren [25],
it seems likely that osteoclastic activity during endochondral ossification resorbs the ex-
cess mineralized cartilage matrices and scattered islets of mineralized cartilage in the
chondro-osseous junction, enabling the longitudinal arrangement of primary trabeculae.
Furthermore, another cell type, septoclasts, also referred to as perivascular cells, may also
be involved in vascular invasion during endochondral ossification [26–28]. Septoclasts
are positive for Dolichos biflorus agglutinin lectin histochemistry [26] and E-FABP [29,30],
featuring well-developed Golgi apparatus and several cytoplasmic lysosomes filled with
abundant cathepsin B [27]. We speculate that one major function of septoclasts is to remove
excess extracellular organic (non-mineralized) debris that would otherwise interrupt the
vascular invasion path into the cartilage, and it is unlikely that osteoclasts are designated
to resorb the excess mineralized matrices in the cartilage.

3. Ultrastructural Aspects of Matrix Vesicle-Mediated Mineralization in Bone
3.1. Formation of Crystalline Calcium Phosphates in Matrix Vesicles

The primary trabeculae resulting from endochondral ossification can be mineralized
by osteoblasts. Osteoblasts secrete matrix vesicles enveloped by a plasma membrane (rang-
ing 30–1000 nm in diameter) into the osteoid (incompletely mineralized areas beneath
the osteoblasts) [3]. Matrix vesicles are equipped with several enzymes and membrane
transporters on the plasma membrane and inside the vesicles, enabling calcium phosphate
nucleation and subsequent crystal growth. A crystalline calcium phosphate such as hydrox-
yapatite crystal [Ca10(PO4)6(OH)2] appears inside the matrix vesicles and grows radially,
eventually breaking out of the vesicle membrane to form mineralized nodules in a globular
assembly of radially oriented hydroxyapatite crystals with a small ribbon-like structure
approximately 25 nm wide, 10 nm high, and 50 nm long [31,32].

It seems likely that crystal nucleation begins on the inner leaflet of the vesicle mem-
brane, because the deposition of amorphous mineral crystals is initially observed on the
inner leaflet. Acidic phospholipids such as phosphatidylserine and phosphatidylinositol,
which have a high affinity for Ca2+, are abundantly present in the matrix vesicles and
consequently form a stable calcium phosphate–phospholipid complex associated with the
inner leaflet of the vesicle membrane [8]. Therefore, it is possible that such complexes may
play important roles in crystal nucleation in the matrix vesicles.

3.2. Mineralized Nodules Develop from Matrix Vesicles

After crystal formation, matrix vesicles develop mineralized nodules in a globular
assembly of needle-like hydroxyapatite crystals (Figure 2). The growth of mineralized
nodules appears to be regulated by a large amount of extracellular Ca/Pi and organic
materials in the osteoid. To allow the growth of mineralized nodules, many enzymes and
transporters on the vesicle membrane may participate in the accumulation of Ca and Pi on
the mineralized nodules. However, osteopontin and osteocalcin are suited to the function
of regulating mineralization, because they effectively inhibit calcium phosphate nucleation
and crystal growth [33,34]. Osteopontin is localized in the periphery of mineralized nodules,
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where it might block excessive mineralization [35]. Osteocalcin includes γ-carboxyglutamic
acid, which binds to mineral crystals [36–38]. When warfarin, an inhibitor of glutamine
residue γ-carboxylation, was administered in our previous study, numerous fragments of
needle-shaped mineral crystals were dispersed throughout the osteoid [39] (Figure 3), and
γ-carboxylase-deficient mice demonstrated similar abnormality, showing disassembled and
scattered crystal minerals in the bones [40]. It seems feasible that γ-carboxylated osteocalcin
may bind hydroxyapatite crystals to form and maintain the mineralized nodules.
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Figure 2. Matrix vesicle-mediated bone mineralization by osteoblasts. (a,b) TEM observation of os-
teoblasts, osteocytes, and matrix vesicles. (a) Mature osteoblasts located on the bone surface (osteoid)
connected to osteocytes with their cytoplasmic processes (black arrow). (b) At a higher magnification,
many matrix vesicles and mineralized nodules are observed. Note the lipid bilayer of the vesicles
(white arrowheads) and calcium phosphate crystals (white arrow) in the inset. (c) Schematic design
of matrix vesicle-mediated bone mineralization. Bar, (a) 3 mm, (b) 400 nm. Panel C is modified from
ref [41].
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under TEM. (c) Schematic design of forming mineralized nodules by osteocalcin. Bar, 2 mm. Panel C
is modified from ref [42].



Endocrines 2023, 4 71

3.3. Enzymes and Membrane Transporter Necessary for Matrix Vesicle-Mediated Mineralization
in Bone

Matrix vesicles enable the influx of Ca2+ and phosphate ions (PO4
3−) by a variety

of enzymes and membrane transporters such as tissue nonspecific alkaline phosphatase
(TNAP) [6,43–50], ectonucleotide pyrophosphatase/phosphodiesterase 1(ENPP1) [51–53],
ankylosis (ANK) [54,55], phosphoethanolamine/phosphocholine phosphatase 1 (PHOS-
PHO1) [54–61], and annexins [62]. TNAP, a glycosylphosphatidylinositol-anchored enzyme
on the cell membrane, is one of the most important enzymes to initiate mineralization. In
bones and cartilages, ENPP1 cleaves the extracellular ATPs into AMPs and pyrophosphate
(PPi), and then TNAP hydrolyzes PPi, a phosphorus oxyanion with two phosphorus atoms
in a P-O-P linkage, consequently producing PO4

3−. The resultant PO4
3− is transported

into the matrix vesicles through sodium/phosphate co-transporter type III, also referred to
as PiT1. Alternatively, Ca2+ can be delivered into the matrix vesicles by passage through
annexins. TNAP is expressed not only by mature osteoblasts but also by preosteoblasts
(osteoblast precursors), and therefore has been used as an osteoblastic lineage marker.

3.3.1. TNAP

TNAP is localized on the cell membranes of hypertrophic chondrocytes, mature
osteoblasts, and preosteoblasts, as well as on the plasma membranes of matrix vesi-
cles [43,44]. However, TNAP is not uniformly localized on the cell membranes of mature
bone-synthesizing osteoblasts that possess cell polarity with distinct basolateral and secre-
tory (osteoidal) domains. In one study, although Ca2+ transport ATPase was restricted to
the osteoidal domain of the osteoblasts, TNAP was predominantly seen on the basolateral
domain of the cell membranes [63]. Thus, the membranous domains in bone that feature
an abundant TNAP are not matched to the region where TNAP actively serves for matrix
vesicle-mediated mineralization. Tnap−/− mice have previously been generated [64,65] to
mimic severe hypophosphatasia, with the implication that TNAP is involved in mineraliza-
tion. Tnap−/− fetuses and neonatal mice have intact bones, but gradually show growth
retardation and skeletal deformities. TNAP deficiency not only gives rise to hypomineral-
ization in the skeleton, but also markedly disrupts the alignment of mineral crystals [66].
Thus, TNAP is necessary for normal mineralization and the ultrastructural arrangement of
crystalline calcium phosphates in bone. In 2015, the development of the drug asfotase alfa
(Strensiq) based on the long-lasting research on TNAP shed a ray of light on the treatment
of hypophosphatasia caused by a hereditary mutation of Tnap gene [67,68].

3.3.2. ENPP1

ENPP1 cleaves the phosphodiester and pyrophosphate bonds of nucleotides and nu-
cleotide sugars. Analysis of the crystalline structure of ENPP1 showed that nucleotides
were accommodated in a pocket formed in the catalytic domain of this molecule, verifying
that extracellular ATPs are a substrate for ENPP1 [69]. In bone and cartilage, the catalytic
activity of ENPP1 generates PPi, which strongly inhibits mineralization by binding to hy-
droxyapatite crystals and disrupting their extension [51–53]. However, TNAP cleaves PPi
into PO4

3−, which is a component of crystalline calcium phosphates in bone. Therefore, bal-
anced interplay between ENPP1 and TNAP seems necessary for bone mineralization [70].
Alternatively, the lack of ENPP1 was proven to be related to the spontaneous mineralization
of infantile arteries and periarticular regions [71,72]. In a normal state, therefore, PPi pro-
duced by ENPP1 may regulate the growth of hydroxyapatite crystals. In our observations,
TNAP was mainly seen in mature osteoblasts and overlying preosteoblasts, while ENPP1
was detected in mature osteoblasts and osteocytes [73]. Genetic ENPP1 dysfunction lead-
ing to arterial mineralization may suggest that PPi deficiency or insufficiency can induce
osteoblastic differentiation in vascular smooth muscle cells. Enpp1−/− mice, also known
as tiptoe walking (ttw) mice, undergo ossification of the posterior longitudinal ligament
of the spine (OPLL) including progressive ankylosing intervertebral and peripheral joint
hyperostosis, as well as articular cartilage mineralization [74–78]. Despite the ectopic min-
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eralization, Enpp1−/− mice show reduced serum concentrations of Ca2+ and PO4
3− as well

as significantly elevated serum levels of fibroblast growth factor 23 (FGF23) [78,79]. FGF23
is an osteocyte-derived molecule that inhibits phosphate reabsorption and 1α-hydroxylase
synthesis in the kidney [80–82]. Hence, in Enpp1−/− mice, the induction of Fgf23 mRNA
expression, which increases the concentration of serum FGF23, may lead to reductions in
the concentrations of Ca2+ and PO4

3−.

3.3.3. ANK

ENPP1 can be found not only on the cell surface but also in cytoplasmic regions, gener-
ating PPi in both locations. ANK reportedly transports intracellular PPi to the extracellular
milieu, i.e., serves as a transmembrane PPi-channeling protein [54,55]. Therefore, it is
feasible that ANK-mediated extracellular PPi levels may provide an equivalent balance by
disallowing excessive or ectopic mineralization or hypomineralization in various tissues.
In previous reports, infants with Ank gene mutations exhibited a three to five-fold decrease
in extracellular PPi [54], while calcium pyrophosphate (CPP) crystal deposition (CPPD)
was elevated in the synovial fluid by gain-of-function mutations in human ANK genes [83].
Thus, local PPi production naturally inhibits hydroxyapatite deposition, blocking undesir-
able mineralization in articular cartilage and other tissues. However, with the loss of ANK
activity, extracellular PPi levels attenuate, intracellular PPi levels rise, and unregulated
mineralization occurs.

3.3.4. PHOSPHO1

PHOSPHO1 is an enzyme abundantly present in bone-forming mature osteoblasts and
hypertrophic chondrocytes [56]. Roberts et al. documented that PHOSPHO1 is restricted to
the mineralizing regions of the bone and growth plate and plays a role in the initiation of
matrix vesicle-mediated mineralization [57]. PHOSPHO1 is reportedly present not only
in the cytoplasmic regions of bone-forming osteoblasts and hypertrophic chondrocytes
but also in the matrix vesicles. PHOSPHO1 inside the matrix vesicles cleaves PO4

3−

from phosphatidylcholine and phosphoethanolamine at the inner leaflet of the vesicles’
plasma membranes [56–58]. A recent report suggested that phospholipase A2 as well as
ENPP6 are also included in matrix vesicles, acting in sequence to produce phosphocholine,
which PHOSPHO1 subsequently hydrolyzes into PO4

3− [84]. Thus, PHOSPHO1 plays
a pivotal role in the increased concentration of PO4

3− by cooperating with the PO4
3−

supply by means of ENPP1/TNAP interplay. Neonatal Phospho1−/− mice demonstrated
incomplete mineralization of the bone, often with spontaneous greenstick fractures [59,60].
Millán’s team demonstrated that PHOSPHO1 controls TNAP expression in mineralizing
cells and is essential for mechanically competent mineralization [59,61]. Taken together, the
PO4

3− supplementation necessary for matrix vesicle-mediated mineralization appears to
be derived at least in part from TNAP/ENPP1 interaction outside the matrix vesicles as
well as PHOSPHO1 activity inside the vesicles.

3.3.5. Annexins

Annexins are a group of proteins that show high affinity for Ca2+ and lipids, serving as
ion channels for the transport of Ca2+ into the matrix vesicles. Three annexins, annexin A2,
A5, and A6, that are abundantly present in vascular endothelial cells, heart, and skeletal
muscles, have been discovered in matrix vesicles [62,85–87]. In the initial process of matrix
vesicle-mediated mineralization, amorphous calcium phosphates are formed associated
with the inner leaflet of the plasma membranes of the matrix vesicles. The annexin A5
might serve as a Ca2+ ion channel inside the matrix vesicles. Consequently, transported
Ca2+ showed strong binding to phosphatidylserine in the inner leaflet of the membrane
enclosing the matrix vesicle, which is enriched with anionic lipids [88,89]. Thus, it is
feasible that annexin A5 might play an important role in Ca2+ transport and subsequent
Ca2+-dependent phosphatidylserine binding in the matrix vesicles. It is a possibility that
the Pi transported through PiT1 present in the membrane could also bind to Ca2+ trapped
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on the inner leaflet, to form amorphous calcium phosphates. Unexpectedly, Annexin a5−/−

mice did not show skeletal deformity or reduced mineralization, suggesting that other
annexins could compensate for the functions of annexin A5. However, further examination
is necessary to clarify the precise role of annexins in bone mineralization.

4. Regulation of Bone Mineralization by Osteocyte
4.1. Erosion of Bone Minerals in the Vicinity of Osteocytes

Osteocytes are located in bone cavities known as osteocytic lacunae, and connect to
neighboring osteocytes and osteoblasts on the bone surfaces via fine cytoplasmic processes
that run through osteocytic canaliculi [90]. Osteocytes interconnect their cytoplasmic pro-
cesses via gap junctions, thereby building functional syncytia referred to as the osteocytic
lacunar canalicular system (OLCS) [41]. Mature well-mineralized bone develops an OLCS
with an orderly arrangement, while immature bone has an irregular and disorganized
OLCS [41]. The osteocytic network has been speculated to have roles in multiple pro-
cesses including mechanical sensing, molecular transport, and regulation of peripheral
mineralization [41].

Belanger proposed the concept of osteocytic osteolysis in the 1960s [91], suggesting
that osteocytes have the potential not only to erode the peripheral bone minerals but also
reversibly to remineralize the bone (Figure 4). This notion was not immediately accepted,
however, many researchers have since observed that osteocytes and their canaliculi are in-
volved in the mineral maintenance of the bone matrix [92–99]. The occurrence of osteocytic
osteolysis has been reported in cases of PTH administration, including hyperparathy-
roidism [100,101], during lactation [96,102], in vitamin D receptor deficiency [103], and
with sclerostin treatment [104]. During lactation, osteocytes reportedly erode the surround-
ing bone matrix by exhibiting a pattern of gene expression similar to that of osteoclasts
during bone resorption, e.g., an elevation in tartrate-resistant acid phosphatase, cathepsin K,
carbonic anhydrase, Na+/H+ exchanger, ATPase H+ transporting lysosomal subunits, and
matrix metalloproteinase [96]. Using synchrotron X-ray microscopy, Nango et al. analyzed
the degree of bone mineralization in mouse cortical bone around the lacunar canalicular
network and reported the dissolution of bone mineral along the osteocyte canaliculi [105].
However, one criticism of the osteocytic osteolysis concept might be that the proteolytic
enzymes and acids secreted from the bone-resorbing osteoclasts pass through the osteocytic
canaliculi to reach distant osteocytes. Recently, using Rankl−/− mice, we have obtained mi-
croscopic findings that support the idea of osteocytic osteolysis [106]; osteocytic osteolysis
is independent of osteoclastic activity and is discernible in mature cortical bone showing a
regular distribution of the osteocytic network (Figure 5).

However, several reports have cautioned that (1) large osteocytic lacunae do not
always represent the signs of osteocytic osteolysis [107], (2) the vitamin D receptor is not
associated with osteocytic osteolysis [108], and (3) despite considerable research, osteocytic
osteolysis has continued to be looked upon with skepticism [109]. Nevertheless, many
researchers have attempted to elucidate whether osteocytic osteolysis would affect the
mechanical properties of bone, and to extend the concept from including merely osteolysis
to encompass a remodeling of the osteocytic network’s peripheral bone matrix. Recently,
Kaya et al. reported that changes in bone mechanical properties induced by lactation
and recovery appear to depend predominantly on the volume of osteocytic lacunae and
canaliculi, suggesting that tissue-level mechanical properties of cortical bone are rapidly
and reversibly modulated by osteocytes in response to physiological challenges [110].
Emami et al. have consistently reported notable canalicular changes following fracture that
could affect mechanical properties of bone [111]. Vahidi et al. reported that femoral fracture
in mice induced morphological changes of the canalicular network in the contralateral
limb, suggesting decreased rates of bone formation and mineralization in the osteocytic
lacunar canaliculi. They proposed that changes in canalicular remodeling by osteocytes
involve utilization of the mineral from the bones for callus formation and bone repair after a
fracture, but this process may also lessen bone quality and systemically elevate the fracture
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risk [112]. Osteocytes are the most abundant cells in bone, and the total area of osteocytes
and their cytoplasmic processes is much larger than the areas of bone-forming osteoblasts
or bone-resorbing osteoclasts. Therefore, osteocytes might be involved in the regulation of
mineralization.
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Figure 4. Schematic representations of the two hypotheses: (a) osteocytic osteolysis and (b) regulation
of bone mineralization by PHEX/SIBLINGs. During PTH administration or lactation, osteocytes
secrete acids and proteolytic enzymes such as cathepsin K and MMPs to erode the surrounding bone.
However, osteocytic osteolysis is reversible, so once-eroded bone can be remineralized. In contrast,
SIBLINGs such as MEPE, DMP-1, and osteopontin are cleaved by cathepsin B to generate ASARM,
which is then phosphorylated to inhibit mineralization. Alternatively, PHEX blocks the inhibition
of mineralization.

4.2. Regulation of Mineralization by Mediating SIBLING Family

Osteocytes are known to produce many important extracellular molecules, including
fibroblast growth factor 23 (FGF23), small integrin-binding ligand N-linked glycoprotein
(SIBLING) family proteins, and phosphate-regulating gene with homologies to endopep-
tidases on the X chromosome (PHEX). Through these molecules, osteocytes can regulate
bone mineralization in two different manners: (1) systemic regulation of serum Pi by FGF23
in the kidney; and (2) local regulation of mineral crystal growth by PHEX/SIBLING family.

For systemic regulation of serum Pi, FGF23 secreted from osteocytes is circulated
to reach the kidneys, where it binds to the receptor complex of fibroblast growth fac-
tor receptor Ic (FGFR1c) and αklotho expressed in the proximal renal tubules, to inhibit
sodium/phosphate co-transporter type IIa/IIc (NaPi IIa/IIc). Since NaPi IIa/IIc reabsorb
phosphate ions in the proximal renal tubules, FGF23 reduces the serum Pi concentra-
tion [80–82]. Human X-linked hypophosphatemia (XLH), one of the FGF23-related causes
of hypophosphatemic rickets or osteomalacia in children and osteomalacia in adults, is
caused by loss-of-function mutations in PHEX resulting in the elevated circulation of FGF23
and markedly decreased bone mineralization. This may indicate that the osteocyte-derived
hormone FGF23, along with its function in the kidneys, may play a pivotal role in the
systemic regulation of bone mineralization.
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In contrast to systemic regulation of serum Pi and bone mineralization, osteocytes
appear to regulate mineralization in the periphery of the osteocytic lacunae. Dentin matrix
protein-1 (DMP-1), which is secreted by osteocytes, has high potential to bind Ca2+ and
is postulated to play a role in the mineralization of the peripheral bone matrix of osteo-
cytes [113]. The SIBLING family includes DMP-1, matrix extracellular phosphoglycoprotein
(MEPE), osteopontin, bone sialoprotein (BSP), and dentin sialophosphoprotein (DSPP),
which are encoded by a gene located on human chromosome 4q21 and mouse chromo-
some 5q21 [114,115]. We considered the possibility that the interaction between PHEX
and the SIBLING family might regulate mineralization in the periphery of the osteocytic
lacunae (Figure 4). For instance, MEPE secreted by osteocytes is cleaved by cathepsin B
to release the carboxy terminal region, a novel functional domain referred to as the acidic
serine-rich and aspirate-rich motif (ASARM) [116,117]. The resultant ASARM peptides
are then phosphorylated to inhibit bone mineralization [117]. However, MEPE also binds
to PHEX, forming the MEPE-PHEX complex. In this situation, cathepsin B is unable to
cleave the MEPE-PHEX complex, which therefore blocks the synthesis of ASARM, so no
phosphorylated ASARM inhibits mineralization, and normal mineralization is thereby
attained [118]. It has been reported that the phosphorylated ASARM peptide of osteopontin
inhibits mineralization in a phosphorylation-dependent manner, and PHEX disturbs the
inhibition of mineralization [119]. These findings implicate the possibility that osteocyte-
derived SIBLINGs may regulate peripheral bone mineralization by cooperating with PHEX.
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This idea is supported by the observation that the absence of DMP-1 results in rickets or
osteomalacia in mice [120] and autosomal recessive hypophosphatemic rickets or osteoma-
lacia (ARHR) in human patients [121]. However, PHEX/SIBLINGs are usually associated
with congenital deformities, rickets, and osteomalacia, and therefore it is necessary to
elucidate whether PHEX/SIBLINGs play an important role in the physiological regulation
of bone mineralization in a healthy state.

5. Conclusions

During endochondral ossification, hypertrophic chondrocytes secrete matrix vesicles
into the intercolumnar septa but not the transverse partitions of the cartilage columns; this
allows vascular invasion into the epiphyseal cartilage and subsequent osteoblastic bone for-
mation in the mineralized cartilage core. Thus, endochondral ossification is finely tuned by
the cellular interplay at the chondro-osseous junction. To achieve matrix vesicle-mediated
mineralization, many enzymes and membrane transporters including TNAP, ENPP1, PiT1,
PHOSPHO1, annexins, and others are involved in the influx of Ca2+/Pi and the regulation
of calcium phosphate crystal growth. In addition to their role in osteoblastic primary miner-
alization, osteocytes have recently been shown to regulate bone mineralization, presumably
by controlling the synthesis of PHEX/SIBLING, as well as osteocytic osteolysis. Thus,
normal mineralization is maintained by the orchestrated activities of bone cells.
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