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Abstract: Metabolic reprogramming is an emerging hallmark of cancer, involving the overexpression
of metabolism-related proteins, such as glucose and monocarboxylate transporters and intracellular
glycolytic enzymes. The biology of testicular germ cell tumors (TGCTs) is very complex, and
although their metabolic profile has been scantily explored, some authors have recently reported that
the metabolic rewiring of cancer cells resulted in an association with aggressive clinicopathological
characteristics. In this study we have investigated, by immunohistochemical analysis, the expression
of key proteins sustaining the hyperglycolytic phenotype in pure seminoma (SE, nr. 35), pure
embryonal carcinoma (EC, nr. 17) tissues samples, and normal testes (nr. 5). GLUT1, CD44, PFK-1,
MCT1, MCT4, LDH-A, and PDH resulted in more expression in EC cells compared to SE cells. TOM20
was more expressed in SE than in EC. GLUT1, MCT1, and MCT4 expression showed a statistically
significant association with SE histology, while for EC, the association resulted in being significant
only for GLUT1 and MCT4. Finally, we observed that EC resulted as negative for p53, suggesting that
the GLUT1 and MTC overexpression observed in EC could be also attributed to p53 downregulation.
In conclusion, our findings evidenced that EC exhibits a higher expression of markers of active
aerobic glycolysis compared to SE, suggesting that the aggressive phenotype is associated with a
higher glycolytic rate. These data corroborate the emerging evidence on the involvement of metabolic
reprogramming in testicular malignancies as well, highlighting that the metabolic players should be
explored in the future as promising therapeutic targets.
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1. Introduction

Testicular germ cell tumors (TGCTs) are a rare group of neoplasms and the most
common solid malignancy found in young male patients, with an increasing incidence rate
in the last 4 decades [1–4]. TGCTs include two major histologic types: seminoma (SE) and
non-seminomatous germ cell tumors; the latter, comprising embryonal carcinomas (EC),
choriocarcinoma yolk sac tumors, and teratomas, can contain a mix of both seminomatous
and non-seminomatous components. The histogenesis of TGCTs is very complex and has
not yet been completely elucidated. Many authors have postulated that TGCTs develop
from a premalignant intratubular germ cell neoplasia, also known as germ cell neoplasia in
situ (GCNIS), arising from the failure of the gonocytes’ normal maturation during fetal or
postnatal development [5]. Although most patients affected by TGCTs have good responses
to platinum-based chemotherapy, about 10–20% of them are resistant to treatment and
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present unfavorable clinical outcomes [6,7]. Aneuploidies and recurrent mutations exert
a crucial role in the pathogenesis of TGCTs [8]. Furthermore, the molecular mechanisms
underlying the complex heterogeneity of TGCTs are poorly understood; therefore, the
identification of new oncogenic events is essential to optimizing treatments and the man-
agement of TGCTs, mainly for poorly responding patients. In this respect, in recent years,
researchers pointed out that the deregulation of cellular energetics, a consistent hallmark of
cancer, could represent a possibly relevant biological mechanism [9]. Cancer cells tend to
develop a process of metabolic reprogramming in which, even in the presence of oxygen,
the production of energy through glycolysis is preferred, a phenomenon called the “War-
burg effect”. This metabolic phenotype leads to the greater consumption of glucose and
lactate production than are found in the normal metabolic profile, depending mostly on
oxidative phosphorylation [9–11]. Although glycolysis is not an energy-efficient pathway,
in cancer cells, it represents a faster way for anabolic reactions, enhancing the aggressive
phenotype [12]. To preserve this phenotype, cancer cells upregulate some metabolism-
related key proteins, such as glucose and monocarboxylate transporters, pH regulators, and
intracellular glycolytic enzymes [12–14]. Therefore, the overexpression of these metabolic
players could represent new prognostic factors, as well as promising therapeutic targets.
Recently, two studies reported that the cellular metabolism of TGCTs switches toward a
high rate of aerobic glycolysis and an acid-resistant phenotype, a result which is associated
with a worse prognosis [15,16].

Therefore, starting from these emerging findings, we have investigated, by immuno-
histochemistry, the expression profile of some proteins involved in the metabolic repro-
gramming of pure human SE and EC tissues and their eventual involvement in glucose
uptake and lactate shuttle.

2. Materials and Methods
2.1. Antibodies

The following primary antibodies were used: anti-MCT1 (sc-365501), anti-MCT4
(sc-376140), anti-GLUT1 (sc-377228), anti-LDHA (sc-137243), anti-PFK1 (sc-377346), anti-
PDH (sc-37709), anti-PDK1 (sc-293160), anti-TOM20 (sc-17764), anti-3pGSK3 (sc-373800),
anti-pAKT (sc-271966), and anti-p53 (sc-126; Santa Cruz Biotechnology, Santa Cruz, CA,
USA); anti-CD44 (MA5-13890; Thermo Fisher Scientific, Meridian Rockford, IL, USA);
and Vectastain Universal Elite ABC Kit and diaminobenzidine chromogen (DAB; Vector
Laboratories, Burlingame, CA, USA).

2.2. Human Tissues

The investigation was performed on formalin-fixed and paraffin-embedded testicular
tissues obtained from 5 Caucasian patients (aged 31–44 years) with sarcoidosis-like granulo-
matous lesions (controls) and 52 Caucasian patients with testicular germ cells cancer (aged
25–59 years; 35 SEs and 17 ECs undergoing therapeutic orchidectomy). Only primary tu-
mors before chemotherapy were selected. Tumor samples were provided from the archives
of the Division of Pathology, Hospital A. Pugliese, Catanzaro, Italy. The clinicopathological
data included age, date of diagnosis, histological type, tumor grade (when applicable), and
the presence of vascular invasion, according to Italian testicular cancer guidelines [17]. All
patients gave their informed consent to use the remaining portions of their tissue specimens
for research purposes after their primary use for routine histologic staining. Therefore, for
this study, no formal ethical approval was required for processing archival testicular tissue.

2.3. Histopathological Analysis

Morphological analysis of the controls and tumor samples was performed by
Hematoxylin–Eosin staining. The histology slides were examined by three independent
pathologists who were blinded to the clinical diagnosis and the observations made by
the other pathologists. A careful description of tissue structural features and cellular
components was performed on each sample analyzed.
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2.4. Immunohistochemistry

The immunohistochemical experiments were carried out on paraffin-embedded sec-
tions from all samples. Sections that were 5 µm thick, after heat-mediated antigen retrieval,
were obtained. Immunodetection was performed at 4 ◦C overnight, using the following
specific primary antibodies: anti-MCT1 (1:100), anti-MCT4 (1:100), anti-GLUT1 (1:100),
anti-CD44 (1:250), anti-PFK1(1:200), anti-LDHA (1:100), anti-PDH (1:100), anti-PDK1(1:200),
anti-TOM20 (1:200), anti-pGSK3(1:200), anti-pAKT (1:250), and anti-p53 (1:200). Then,
biotinylated IgG (1:600) was applied for 1 h at room temperature, followed by avidin-
biotin complex (ABC)/horseradish peroxidase (HRP). Immunoreactivity was visualized
by using diaminobenzidine chromogen (DAB). Sections were also counterstained with
hematoxylin. The specificity of the Abs (antibodies) was verified by using normal rabbit
serum and normal mouse serum, respectively, instead of the primary Abs. After immuno-
histochemical analysis, slides of the tumor samples were visualized using an Olympus
BX41 microscope, and the images were taken with CSV1.14 software using a CAM XC-30
for image acquisition.

2.5. Scoring System

Immunoreactivity for the neoplastic tissues was scored as negative (0), weakly positive
(1), moderately positive (2), positive (3), or strongly positive (4). For each sample, the most
frequent score among the three independent observers was chosen. A minimum of 100 cells
were evaluated in each slide. Seven serial sections were scored for each sample.

2.6. Statistical Analysis

The intensity score is presented as the median (IQR) of the sample groups (control, SE,
and EC). The groups’ scores were compared using the Kruskal–Wallis test and the Wilcoxon
test as the post hoc test. The frequency of protein expression, calculated as the proportion
of positive cancerous cells in the total count of cancerous cells, as well as the comparison
with clinicopathological data, were analyzed using one-way ANOVA and the Wilcoxon test
as the post hoc test. The area under the ROC curve (AUC) was calculated to measure the
ability of the markers to discriminate between SE and EC. A p-value < 0.05 was considered
significant. All analyses were conducted with R (4.2.1).

3. Results
3.1. Morphological Analysis

The morphological analysis of the control testes showed normal seminiferous tubules
with germ, Sertoli, and Leydig cells in the interstitial tissue. The same analysis in the
SE samples showed large cells with clear cytoplasm and hyperchromatic nuclei with
prominent nucleoli. The SE cells were arranged in small clusters separated by connective
tissue, frequently presenting lymphocytic infiltrate. The tumor samples of EC showed
the distinctive sheets, papillary, and glands structures of primitive epithelial cells with
crowded pleomorphic nuclei. The EC cells were arranged in several architectural patterns,
and multiple foci of necrosis were observed. Lymphocytic infiltrates and granulomatous
reactions were rare (Figure 1).
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Figure 1. Hematoxylin and Eosin (HE) staining in control testis, Seminoma (SE), and Embryonal 
Carcinoma (EC). Scale bars: 25 μm. 

3.2. Immunohistochemical Localization Markers of Aerobic Glycolysis in Control Testis and 
TGCTs 

The immunoreactivity of the aerobic glycolysis markers showed an increased expres-
sion in the tumor samples, particularly in EC. GLUT1 appeared to be strongly expressed 
in the cytoplasmic membranes of the embryonic carcinoma cells, less expressed in the 
seminomatous cells, and completely absent in the control sections. The CD44 expression 
showed the same expression pattern as GLUT1 versus control although the localization 
was confined to the stromal cells. An increased expression of PFK-1 was evident in the EC 
samples versus both the control and SE samples (Figure 2; Table 1). 

 
Figure 2. Expression markers of aerobic glycolysis in control testis and TGCTs. Scale bars: 25 μm. 
Glucose transporter 1 (GLUT1); Type 1 transmembrane glycoprotein (CD44); Phosphofructoki-
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Figure 1. Hematoxylin and Eosin (HE) staining in control testis, Seminoma (SE), and Embryonal
Carcinoma (EC). Scale bars: 25 µm.

3.2. Immunohistochemical Localization Markers of Aerobic Glycolysis in Control Testis and TGCTs

The immunoreactivity of the aerobic glycolysis markers showed an increased expres-
sion in the tumor samples, particularly in EC. GLUT1 appeared to be strongly expressed
in the cytoplasmic membranes of the embryonic carcinoma cells, less expressed in the
seminomatous cells, and completely absent in the control sections. The CD44 expression
showed the same expression pattern as GLUT1 versus control although the localization
was confined to the stromal cells. An increased expression of PFK-1 was evident in the EC
samples versus both the control and SE samples (Figure 2; Table 1).
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Table 1. Immunoreactivity of aerobic glycolysis markers in control and TGCTs.

Control SE EC

GLUT1 0 (0–0) 2 (1–3) * 4 (3–4) *†

CD44 0 (0–0) 2 (1.5–2) * 4 (3–4) *†

PFK-1 1 (1–1) 1 (1–1) 2 (2–2) *†

*: p < 0.05 vs. control; †: p < 0.05 vs. SE. SE: seminoma; EC: embryonal carcinoma.

3.3. Monocarboxylate Transporters 1 (MCT1),4 (MCT4) and p53 Expression in TGCTs

Figure 3 summarizes the MCT1 and MCT4 expressions in the normal, SE, and EC
samples. A significant increase in both the MCT1 and MCT4 expression was observed in
the EC tissues compared to the SE and control samples. In the control samples, MCT1 was
strongly expressed in the Sertoli cell membranes, while in both SE and EC, the localization
was restricted to tumoral cell membranes at different intensities. As for MCT4, weak
staining was evident in the controls, while in the SE sections, the localization was confined
to the connective compartment around the tumor cells. Conversely, EC showed a very
strong localization in tumoral cells. Regarding p53 expression, our results showed the
absence in the EC samples compared to the SE and control tissues. (Figure 3; Table 2).
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Table 2. Monocarboxylate transporters 1, 4, and p53 immunoreactivity in control and TGCTs.

Control SE EC

MCT1 2 (2–3) 1 (0–2) 4 (3–4) †

MCT4 1 (0–1) 2 (0–3) 4 (3–4) *†

P53 1 (1–1) 3 (2–3) * 0 (0–0) *†

*: p < 0.05 vs. control; †: p < 0.05 vs. SE. SE: seminoma; EC: embryonal carcinoma.

3.4. LDH-A Pattern Expression in TGCTs

The conversion of pyruvate to lactate increased the LDH-A expression mainly in EC.
This high expression could be influenced by the intracellular signaling necessary for cell
proliferation. Our immunohistochemical results showed an increased expression of pAKT
and pGSK3β in EC compared to SE and the control, highlighting the involvement of the
PI3K pathway activation in the hyperglycolytic phenotype of this cancer (Figure 4; Table 3).
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Table 3. LDH-A and PI3K pathways in control and TGCTs.

Control SE EC

LDH-A 2 (2–2) 3 (2–3) * 4 (3–4) *†

pAKT 1 (1–1) 1 (1–1) 2 (2–2) *†

pGSK3β 0 (0–0) 1 (0–1) 2 (2–2) *†

*: p < 0.05 vs. Control; †: p < 0.05 vs. SE. SE: seminoma; EC: embryonal carcinoma.

3.5. Oxidative Mitochondrial Protein Expression

Figure 5 showed the overexpression of pyruvate dehydrogenase (PDH) in EC com-
pared to the control and SE samples, occurring concomitantly with the downregulation
of its inhibitor, PDK1. Furthermore, TOM20 resulted in expression in both SE and EC
although in the latter, the expression was lower (Figure 5; Table 4).
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Table 4. Oxidative mitochondrial protein expression in control and TGCTs.

Control SE EC

TOM20 2 (2–2) 3 (2.5–3) * 0 (0–1) *†

PDH 0 (0–0) 1 (1–1) * 3 (3–3) *†

PDK1 2 (2–2) 0 (0–0) * 1 (1–1) *†
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3.6. Clinicopathological Significance of GLUT1 and MCTs

Compared to the control samples (Figure 6), both SE and EC significantly overex-
pressed GLUT1 and MCT4 (p < 0.05). MCT1 expression was significantly increased in the
EC samples compared to the SE and the controls (p < 0.05).
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Table 5 shows the associations between GLUT1, MCT1, and MCT4 expression and the
patients’ clinicopathological parameters. All of the metabolism-related proteins showed
a statistically significant association with SE histology; for EC, the association resulted in
being significant only for GLUT1 and MCT4. Finally, our analysis revealed that the glucose
and MTC transporters showed higher expressions regardless of tumor T stage, even if the
number of samples of T3/4 samples was insufficient to draw meaningful conclusions.

Table 5. Association of GLUT1, MCT1, and MCT4 expression with clinico-pathological parameters.

Number
GLUT1 MCT1 MCT4

Positive (%) Positive (%) Positive (%)

Histology
SE 35 24 (68.6) * 16 (45.7) * 25 (71.4) *
EC 17 17 (100.0) * 15 (88.2) 17 (100.0) *

T stage
T1 31 27 (87.0) * 24 (77.4) * 25 (80.6) *
T2 12 11 (91.7) * 8 (66.6) * 10 (83.3) *
T3 6 5 (83.3) * 4 (66.6) * 5 (83.3) *
T4 3 2 (66.6) * 1 (33.3) * 2 (66.6) *

Vascular invasion
No 48 42 (87.5) * 28 (79.0) * 40 (83.3) *
Yes 4 0 (0.0) 0 (0.0) 0 (0.0) *

*: p < 0.05 vs. control. SE: seminoma; EC: embryonal carcinoma.
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Figure 7 shows the ROC curve analysis of GLUT1, MCT1, and MCT4 on tumor samples
for the discrimination of SE from EC. All of the markers showed an AUC > 0.85. The best
score threshold defined by the ROC curves was 3 for GLUT1 and 2 for both MCTs.
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4. Discussion

In this study, we have shown the different expression patterns of key proteins involved
in the metabolic reprogramming between pure seminoma and pure embryonal carcinoma,
highlighting that EC exhibits a higher expression of markers of active aerobic glycolysis
compared to SE, suggesting that the aggressive phenotype is associated with a higher
glycolytic rate.

It is well-known that, in cancer cells, the Warburg effect leads to an overproduction of
lactate that can be used by cells as fuel and potent signaling molecules, leading to cancer
metastasis [9,18–20]. The significance of the overexpression of glucose and monocarboxy-
lase transporters in glycolytic tumors has been extensively studied, demonstrating that it is
associated with tumor aggressiveness and poor prognosis [21–26].

Few authors have investigated the expression levels of key markers involved in the
metabolic reprogramming in TGCTs, and the currently available immunohistochemical
studies have shown an increased expression of GLUT1, CD44, MTC1, and MCT4, resulting
in an association with characteristics of worse prognoses and shorter survival rates [15,16].
Our results are in agreement with these findings, and they highlight that, compared to SE,
in EC, the overexpression of the different proteins regulating metabolic reprogramming,
working together, strongly favors the Warburg effect. In particular, we observed that,
compared to SE, EC overexpressed GLUT1, CD44, MCT1, and MCT4. However, conversely
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to SE [27], EC resulted as negative for p53. The latter finding is relevant because, in addition
to promoting apoptosis, p53 can suppress GLUT1 and MCT1 transcription [28], suggesting
that p53 down-regulation could favor the increased glycolytic rate observed in the more
aggressive histotype. Furthermore, EC showed overexpression of PFK-1, the key regulator
and rate-limiter of glycolysis steps, promoting the use of glucose in aerobic glycolysis,
resulting in overexpression in many types of cancer, and correlating with shorter overall
survival rates and the increased frequency of metastases [29]. Concomitantly, compared
to SE, in EC we found a marked expression of the isozyme LDH-A, which exerts a critical
contribution to aerobic glycolysis in testicular cancer cells [30], and the overexpression
of which, in many cancer cells, results in an association with an increased rate of tumor
invasion [31–34]. Furthermore, in tumor cells, the transcription of the LDHA gene, as well
as that of glucose transporters, can be increased by PI3K signaling activation, occurring
via pAKT-induced GSK3-β inhibition [12,35]. Interestingly, EC tissues overexpressed both
pAKT and the inactive form of GSK3β, pGSK3βser9. Conversely, pGSK3βser9 was absent
in normal tissue and poorly expressed in SE. These findings could have an important
relevance in EC, as, apart from the role of GSK3β in metabolic reprogramming, some
studies have demonstrated that active GSK3β can act as a tumor suppressor, and that the
overexpression of inactive pGSK3βser9 could have a role in tumorigenesis and tumor pro-
gression [36–38]. Different studies have reported that, to fulfill the high energy requirement
for anabolism [39], the mitochondrial function in cancer cells can be preserved [40–42].
Therefore, we investigated the expression of markers sustaining the mitochondrial mass
and metabolic activity [43], including TOM20 which resulted in being overexpressed in
different cancers [40–42]. In EC, we found an overexpression of PDH concomitantly with
the downregulation of PDK1, indicating that pyruvate enters the oxidative phosphorylation
pathway and is used by cancer cells. However, in EC we found lower TOM20 staining
compared to that in SE, suggesting that in EC, the lower mitochondrial function and the
high glycolytic behavior could represent a further marker of tumor aggressiveness.

Although our findings are in agreement with what has been reported by the Human
Protein Atlas (https://www.proteinatlas.org/humanproteome/pathology/testis+cancer,
accessed on 15 June 2022), we are aware that our study has some limitations. First of all,
the sample size of the EC group is too small although it should be considered that TGCTs
are rare tumors and that we have included only pure EC and SE. Therefore, the results
emerging from the analysis of the clinicopathological significance of GLUT1, MCT1, and
MCT4, mainly in EC, need confirmation via further research. That applies particularly
to the findings showing that the glucose and MTC transporters have a higher expression
regardless of tumor T stage because the number of T3/4 samples is insufficient to draw
meaningful conclusions.

5. Conclusions

Collectively, our immunohistochemical evaluation could support the emerging role
of metabolic rewiring in TGCTs’ pathogenesis and progression, even if we cannot pro-
vide a mechanistic explanation for our findings that may apply to the clinical context at
present. However, mainly because of the low prevalence of TGCTs, multicentric studies are
warranted to achieve a better understanding of the clinico-pathological significance of the
expression of the metabolic-reprogramming proteins in both seminoma and non-seminoma,
providing new evidence for future therapeutic strategies.
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