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Abstract

Graphite nodularity is a key indicator for evaluating the microstructure quality of ductile
iron and plays a crucial role in ensuring product quality and enhancing manufacturing
efficiency. Existing research often only focuses on a single type of feature and fails to utilize
multi-source information in a coordinated manner. Single-feature methods are difficult
to comprehensively capture microstructures, which limits the accuracy and robustness of
the model. This study proposes a hybrid estimation model for the graphite nodularity
of ductile cast iron based on multi-source feature extraction. A comprehensive feature
engineering pipeline was established, incorporating geometric, color, and texture features
extracted via Hue-Saturation-Value color space (HSV) histograms, gray level co-occurrence
matrix (GLCM), Local Binary Pattern (LBP), and multi-scale Gabor filters. Dimensionality
reduction was performed using Principal Component Analysis (PCA) to mitigate redun-
dancy. An improved watershed algorithm combined with intelligent filtering was used for
accurate particle segmentation. Several machine learning algorithms, including Support
Vector Regression (SVR), Multi-Layer Perceptron (MLP), Random Forest (RF), Gradient
Boosting Regressor (GBR), eXtreme Gradient Boosting (XGBoost) and Categorical Boosting
(CatBoost), are applied to estimate graphite nodularity based on geometric features (GFs)
and feature extraction. Experimental results demonstrate that the CatBoost model trained
on fused features achieves high estimation accuracy and stability for geometric parameters,
with R-squared (R2) exceeding 0.98. Furthermore, introducing geometric features into
the fusion set enhances model generalization and suppresses overfitting. This framework
offers an efficient and robust approach for intelligent analysis of metallographic images
and provides valuable support for automated quality assessment in casting production.

Keywords: ductile cast iron; graphite nodularity; feature extraction; CatBoost

1. Introduction
Ductile cast iron, a type of engineering material combining high strength, excellent ductil-

ity, and good castability, is widely applied in numerous industrial sectors such as automotive,
machinery, metallurgy, pipeline transport, rail transit, and energy equipment [1–3]. Studies
on ductile iron microstructures have demonstrated that changes in graphite form and
distribution can substantially alter fatigue and fracture performance, making graphite mor-
phology a decisive microstructural parameter for engineering applications [4,5]. According
to international and industrial standards (e.g., ISO/TR 945-2 [6], ASTM A247-16a [7],

Modelling 2025, 6, 126 https://doi.org/10.3390/modelling6040126

https://doi.org/10.3390/modelling6040126
https://doi.org/10.3390/modelling6040126
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/modelling
https://www.mdpi.com
https://orcid.org/0000-0003-1580-2340
https://orcid.org/0000-0003-0703-7095
https://doi.org/10.3390/modelling6040126
https://www.mdpi.com/article/10.3390/modelling6040126?type=check_update&version=1


Modelling 2025, 6, 126 2 of 15

GB/T 9441-2021 [8]), the importance of graphite form has been clearly established, further
emphasizing that graphite morphology and derived indices such as the graphite nodularity
serve as the principal descriptors used in quality control and acceptance criteria for cast
irons [9]. In line with these standards, a roundness value of 0.6 is commonly adopted as the
threshold to distinguish well-spheroidized graphite particles from irregular or vermicular
forms, since particles with roundness below this level exhibit non-ideal morphologies that
significantly degrade mechanical performance, whereas those above 0.6 contribute posi-
tively to ductility and toughness [10]. In contrast to the matrix phases, such as ferrite and
pearlite, whose volume fractions and mechanical properties can typically be adjusted after
solidification through alloying and heat treatment, the morphology of graphite is primarily
determined during solidification and is therefore much more difficult to correct once casting
is completed [11]. Moreover, the occurrence of vermicular or chunky graphite frequently
leads to crack initiation and results in a marked reduction in both fatigue strength and
toughness [5]. Therefore, the graphite nodularity, calculated as the proportion of spheroidal
graphite particles relative to the total number of graphite particles, is widely recognized as
a key parameter for evaluating the quality of ductile iron microstructures and correlating
them with mechanical properties [6–8]. This makes image-based quantitative analysis of
graphite nodularity essential for effective quality control [12].

Traditionally, graphite nodularity evaluation has primarily relied on visual inspection
and conventional metallographic techniques [13]. While straightforward and intuitive,
this method is highly subjective, with low efficiency and poor repeatability, making it
difficult to meet modern manufacturing demands for precision and automation [14,15].
In recent years, automated analysis of metallographic structures has become a growing
research focus. With the development of image processing technologies, machine learning,
and artificial intelligence, an increasing number of studies have begun to apply image
recognition methods for metallographic analysis [16–21]. Common approaches, such
as GLCM [22], LBP [23], and Gabor filters [24], have made significant progress in the
segmentation and identification of graphite morphology in ductile cast iron. At the same
time, deep learning methods have demonstrated outstanding performance in classification
and detection [25–27]. Durmaz et al. proposed and validated a deep learning-based
method for semantic segmentation and quality control of complex microstructures in
steel. By training the U-Net architecture, they achieved automated identification and
segmentation of lath martensite and bainite phases [28]. Thomas et al. applied GNNs to
microstructural representations for the estimation of material fatigue performance [29].
Johannes et al. employed Mask R-CNN to automatically segment the fracture surfaces of
ductile cast iron and measure initial crack sizes, thereby enabling the quantitative analysis
of fracture behavior [30]. Wilk-Kołodziejczyk et al. developed a defect detection model for
ductile cast iron based on CT images, enabling the identification of graphite precipitates
and casting defects [31]. Schmies et al. used deep neural networks for the automated and
quantitative analysis of fracture mechanisms in SEM images of various materials [32,33].
M. Bárcena et al. employed CNNs to classify ductile cast iron alloys, utilizing architectures
such as MobileNet to enhance classification accuracy [34]. However, their studies largely
rely on the large, well-annotated datasets, which are costly and time-consuming to obtain
in real-world industrial scenarios [35,36]. In addition, the interpretability of deep learning
models is often limited, and they are prone to overfitting, which reduces their robustness
and generalization capability when applied to microstructures with varying conditions [37].

Existing studies tend to focus on single types of features, such as geometric or texture
features alone, without leveraging multi-source information in a coordinated manner [38].
Given the complex morphological variations in graphite particles, which exhibit different
spatial and textural characteristics at different scales, single-feature approaches struggle
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to comprehensively capture the microstructure, limiting model accuracy and robustness.
Thus, the establishment of a multi-source feature representation framework combined with
an efficient machine learning model has emerged as a promising solution.

This study establishes a novel multi-source feature fusion framework based on the
CatBoost algorithm to accurately estimate the graphite nodularity of ductile cast iron. First,
a multi-source feature extraction framework is adopted, in which geometric, color, and
texture features are integrated to overcome the limitations of single-feature approaches.
Second, an improved watershed algorithm combined with an intelligent filtering strategy
is employed to achieve efficient particle segmentation and enhance the accuracy of image
recognition. Compared with conventional single-feature methods, the proposed approach
provides a more comprehensive characterization of graphite particle morphology, thereby
improving both the accuracy and robustness of the estimative model.

2. Materials and Methods
Our methodology is divided into three core stages. The first stage focuses on image

preprocessing and particle segmentation: grayscale conversion, Gaussian filtering for noise
reduction, and adaptive thresholding via Otsu’s method are applied to create a binarized
image. Morphological opening operations are used to remove minor noise artifacts, and a
watershed algorithm based on distance transformation addresses particle adhesion. An
intelligent filtering mechanism is also integrated to exclude edge-cut particles, effectively
accounting for the dense distribution commonly seen in ductile iron images. The second
stage involves feature extraction. Through contour analysis, nine types of GFs are extracted,
such as Feret diameter and particle count, with some computed via convex hull methods.
To deepen feature representation, HSV color space transformation is used to quantify
chromatic attributes of graphite particles. Additionally, GLCM is used to capture texture
uniformity, LBP to describe local contrast in micro-textures, and multi-scale Gabor filters
to extract orientation-sensitive frequency features. These features effectively represent
interfacial properties between graphite and the metallic matrix. To mitigate the high
dimensionality of the fused feature set, PCA is employed for dimensionality reduction. The
third stage entails model development and evaluation. The dimension-reduced feature
vectors are used as inputs to six regression models to learn nonlinear mappings to geometric
features. A 10-fold cross-validation strategy is applied during training, with the dataset split
into training and test sets. Estimation accuracy is assessed through quantitative metrics and
regression plots comparing estimated and actual values to validate model generalizability.
Ultimately, a structure estimation model based on multi-source feature fusion is established.
The overall architecture of the GFs fusion estimation model is illustrated in Figure 1.

All experiments were conducted using Python 3.9 as the main programming envi-
ronment. The OpenCV (version 4.8.1) library was employed for image preprocessing and
feature extraction, while NumPy (version 1.23.5), SciPy (version 1.10.1), and Matplotlib
(version 3.7.1) were used for numerical computation and data visualization. Machine
learning models were implemented with scikit-learn (version 1.4.2), and deep learning
frameworks such as TensorFlow 2.0 and Keras (version 3.4.1) were used for network train-
ing and evaluation. All computations were performed on a workstation running Windows
10 (64-bit), equipped with an Intel Core i5 CPU, 16 GB RAM, and an NVIDIA RTX 2080Ti
GPU, ensuring stable and reproducible performance.
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Figure 1. Schematic diagram of the overall architecture of the GFs fusion feature estimation model.

2.1. Image Pre-Processing

In this study, a total of 12 ductile iron samples from four different batches produced
by three manufacturers were used. The samples were ground, polished, and then etched
in 5% nital for 10 s prior to microscopic observation and image acquisition. The original
ductile iron images were obtained in PNG format with a resolution of 3840 × 2160 pixels.
After cropping, a total of 35,071 images were obtained. During data processing, data
augmentation techniques were applied, including random rotation and adjustments to
brightness, contrast, and color temperature for each image.

2.2. Graphite Particle Extraction

The original metallographic images were first converted to grayscale and smoothed
using a Gaussian filter to reduce imaging noise. Adaptive thresholding based on Otsu’s
method was then applied to obtain a binary image, followed by morphological opening to
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remove small noise and voids. Distance transform was performed on the binary image,
and local maxima were detected. Marker-based watershed segmentation was subsequently
applied to separate individual particles and extract their contours.

To avoid bias from particles truncated at image boundaries, a filtering method based
on contour–edge contact area was implemented. Let the image dimensions be W × H,
and the binary mask of the contour region be M(x, y) ∈ {0, 255}. After erosion, the mask
becomes Me, and the edge region mask is defined as:

Me = M ◦ E (1)

C(x, y) =

{
1, x ∈ {0, W − 1} or y ∈ {0, H − 1}
0, otherwise

}
(2)

The contact area A between the contour and the image boundary is calculated as:

A =
W−1

∑
x=0

H−1

∑
y=0

M(x, y)·C(x, y) (3)

To ensure adaptability to different resolutions or magnification levels, a dynamic
threshold is applied. Particles are excluded only if A > T. This adaptive design reduces the
need for manual tuning and ensures consistent filtering across varied imaging conditions.

T = 0.005 × 2(W + H) (4)

After particle segmentation and edge-contact filtering, each valid graphite particle
was represented by its contour, which served as the basis for geometric feature extraction.
All geometric features were derived using contour and ellipse operations implemented
in OpenCV, in combination with distance calculations performed in SciPy. For each valid
particle, the roundness was calculated, from which the overall graphite nodularity was
subsequently determined.

The roundness and graphite nodularity of graphite particles are calculated according
to Equations (5) and (6).

ρ =
4πA

P2 (5)

P =
Aρ≥0.6

Aall
(6)

2.3. Multi-Feature Extraction Methods

To comprehensively characterize the microstructural features of ductile cast iron images,
four categories of methods were employed: HSV color, GLCM, LBP, and Gabor features.

First, color information was incorporated by converting the original images from
the RGB space into the HSV space. Each RGB image is converted to HSV space, where
normalized R, G, and B values are used to compute H, S, and V components via standard
formulas. HSV histograms capture chromatic characteristics of graphite particles and are
used as six-dimensional features.

Second, GLCM were computed with quantization levels L = {32, 64, 128, 256}, pixel
distances d = {1, 2, 3, 4, 5}, and orientations θ = {0◦, 45◦, 90◦, 135◦}. From these config-
urations, six texture descriptors—contrast, dissimilarity, correlation, energy, homogeneity,
and entropy—were extracted, resulting in a 480-dimensional feature set. While these de-
scriptors provide a statistical quantification of spatial gray-level dependencies, their high
dimensionality may cause redundancy and overfitting. Therefore, PCA was employed to
retain the main informative components.
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Third, LBP operators with parameter configurations (R, P) = [(1, 8), (2, 16), (3, 24)]
were used to capture local micro-texture patterns. The corresponding histograms yielded
a 54-dimensional feature vector. Since such high-dimensional histograms can increase
computational complexity, dimensionality reduction was again performed to improve
efficiency and robustness.

Finally, Gabor filters were applied at four orientations θ = {0◦, 45◦, 90◦, 135◦} and
six scales to capture multi-scale spatial-frequency information. For each filter response,
five representative statistical descriptors—mean, variance, standard deviation, energy, and
entropy—were computed, producing a 120-dimensional feature set per image. PCA was
further employed to reduce redundancy and mitigate the risk of overfitting. As shown
in Figure 2, Gabor filters are illustrated at multiple orientations and scales to represent
different texture characteristics.

Figure 2. Gabor filters in different orientations and sizes.

2.4. CatBoost Model

CatBoost is a machine learning model based on gradient boosting decision trees [39].
This model can achieve high accuracy and generalization ability, efficiently and effectively
handling categorical features, gradient bias, and estimation shift problems, significantly
reducing the probability of overfitting [40]. The objective function of the CatBoost model at
each iteration is as follows:

ht = argminh∈HE
[

L
(

y, Ft−1(x) + h(x)
)]

(7)

where Ft−1(x) is the strong learner obtained from the previous iteration, L
(
y, Ft−1(x)

)
is

the loss function, and E denotes the expectation operator. h(x) is the weak learner, defined
as follows:

h(xi) =
J

∑
j=1

cjT{x∈Rj} (8)

Here, cj denotes the estimation value of the region, Rj represents the disconnected
part corresponding to the tree leaf, T is the indicator function, and J is the sample size.
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3. Results
3.1. Particles Division Results

The watershed algorithm effectively separates overlapping objects by simulating the
expansion of water flow. By applying a distance transform to a binary image, the background
and object regions are converted into a distance map, which facilitates the identification
of clearer watershed markers. Using these distances, local maxima are detected to extract
potential object centers, which serve as seed points for the watershed algorithm. This approach
ensures better handling of touching or overlapping object regions. Figure 3 illustrates the
visualization of each step involved in the image preprocessing process.

 

Figure 3. Visualization of each preprocessing step: (a) original image; (b) grayscale transformation;
(c) Gaussian blur; (d) Otsu thresholding; (e) morphological opening; (f) improved watershed algorithm.

In the Graphite Particle Extraction results, particles that are overall cut off by the
boundary are excluded, and the geometric information of the remaining valid particles is
extracted. Feature parameters for each particle are then calculated. After extracting the
particle features, particles are classified as qualified or not based on a roundness threshold
of 0.6. Particles meeting the criteria are included in the qualified particle pool, and the
average values of each feature are obtained for subsequent statistical analysis, such as
total particle count, qualified particle count, graphite nodularity, average area, average
Feret diameter, average roundness, average short-to-long axis ratio, average perimeter, and
average nearest centroid distance—nine feature parameters in total. The segmentation
results are shown in Figure 4, where the numbers represent the roundness of individual
particles. The description of the extracted geometric feature dataset is presented in Table 1.
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Figure 4. Analysis results of graphite particle roundness in ductile iron: particles with green contours
have a roundness greater than 0.6, while those with red contours have a roundness less than 0.6.

Table 1. Description of geometrical feature parameters.

Features Name Description Physical Meaning

total_particles Total number of valid graphite particles detected
in the image

Reflects the overall particle count available for
statistical analysis

qualified_particles Total number of graphite particles classified as
spheroidal (roundness > 0.6)

Indicates the number of particles contributing
positively to graphite nodularity

Graphite_nodularity Ratio of qualified particles to total particles Quantitative index of graphite nodularity degree
and microstructural quality

avg_roundness Mean roundness of all particles Reflects the average shape tendency of particles
relative to a perfect circle

avg_ratio Mean short-to-long axis ratio of fitted ellipses Describes the average elongation of particles;
values closer to 1 indicate better roundness

avg_feret
Mean Feret diameter, defined as the distance

between two parallel tangents on opposite sides
of a particle

Provides an orientation-independent measure of
particle size

angaria Mean projected area of all particles Represents the average size of graphite particles

avg_perimeter Mean perimeter length of all particles Indicates boundary complexity; larger values may
correspond to irregular shapes

avg_distance Mean nearest centroid distance between particles Reflects spatial distribution and dispersion of
particles in the microstructure

3.2. PCA Results

To optimize the comprehensiveness and robustness of feature representation, firstly,
the texture information based on GLCM, the microstructure information of LBP, and the
multi-scale directional responses of Gabor filters were each reduced to 18 dimensions
via PCA, eliminating redundant information while retaining over 95% of the feature con-
tribution. Subsequently, the three types of dimensionally reduced texture features were
concatenated horizontally with 6-dimensional statistical histogram features from the HSV
color space to construct a fused feature set with a total dimension of 60.

3.3. Comparative Analysis of GFs Estimation Results

The constructed fused feature set was used as input variables to estimate geometric
feature parameters using six different machine learning models: SVR, MLP, RF, GBR,
XGBoost, and CatBoost. The dataset was split into 70% training set and 30% test set, and
model training employed a 10-fold cross-validation strategy. Table 2 presents the estimation
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evaluation results of the nine geometric features by each model. The results show that
Random Forest, XGBoost, and CatBoost models all achieve determination coefficients of up
to 0.9 for the geometric features, indicating a strong correlation between the fused feature
set and these geometric features. Among them, CatBoost is the model with the highest
estimation accuracy and the smallest error.

Figure 5 shows the estimation accuracy of geometric features by various models.
In subplots (c)–(e), when estimating the three geometric features graphite_nodularity,
avg_roundness, and avg_ratio, slight overfitting is observed in the RF, XGBoost, and
CatBoost models. This indicates that the data distribution does not fully represent the real
scenario, and there are a small number of outliers in the training set.

Figure 5. R2 values of each feature under different models: (a) total_particles;
(b) qualified_particles; (c) graphite_nodularity; (d) avg_roundness; (e) avg_ratio; (f) avg_feret;
(g) avg_area; (h) avg_perimeter; (i) avg_distance.

Table 2. Estimation results of different geometric feature parameters under different models.

SVR MLP RF GBR XGBoost CatBoost

total_particles
MAE: 5.1930 3.8797 2.0946 6.3771 1.9682 1.8469
RMSE: 6.7529 4.9847 3.9970 8.2041 3.5164 3.3572

R2: 0.9308 0.9623 0.9758 0.8979 0.9812 0.9829

qualified
_particles

MAE: 5.3382 4.0057 2.0623 6.3698 2.0717 1.9598
RMSE: 6.9026 5.1884 3.8095 8.1798 3.5760 3.4389

R2: 0.9105 0.9494 0.9727 0.8743 0.9760 0.9778

graphite_nodularity
MAE: 0.0328 0.0396 0.0153 0.0434 0.0158 0.0147
RMSE: 0.0445 0.0505 0.0268 0.0548 0.0274 0.0258

R2: 0.7415 0.6680 0.9067 0.6078 0.9024 0.9131
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Table 2. Cont.

SVR MLP RF GBR XGBoost CatBoost

avg_roundness
MAE: 0.0096 0.0130 0.0048 0.0136 0.0049 0.0046
RMSE: 0.0121 0.0165 0.0087 0.0173 0.0086 0.0083

R2: 0.8709 0.7617 0.9333 0.7367 0.9354 0.9395

avg_ratio
MAE: 0.0099 0.0122 0.0046 0.0124 0.0047 0.0044
RMSE: 0.0124 0.0154 0.0081 0.0156 0.0080 0.0078

R2: 0.7562 0.6278 0.8969 0.6160 0.8981 0.9042

avg_feret
MAE: 0.4821 0.4723 0.2075 0.6265 0.2094 0.1956
RMSE: 0.6528 0.6132 0.3992 0.8254 0.3682 0.3543

R2: 0.9359 0.9434 0.9760 0.8975 0.9796 0.9811

avg_area
MAE: 15.1655 11.7210 5.1240 16.6422 5.1750 4.8583
RMSE: 20.9219 15.9116 9.8292 22.1228 9.2016 8.9570

R2: 0.9185 0.9529 0.9820 0.9089 0.9842 0.9851

avg_perimeter
MAE: 1.6143 1.4848 0.6786 2.0360 0.6677 0.6305
RMSE: 2.1658 1.9395 1.3183 2.6715 1.1948 1.1554

R2: 0.9291 0.9431 0.9737 0.8921 0.9784 0.9798

avg_distance
MAE: 1.0661 0.9509 0.4268 1.2218 0.4446 0.4142
RMSE: 1.4201 1.2371 0.7917 1.5800 0.7923 0.7559

R2: 0.8390 0.8778 0.9500 0.8007 0.9499 0.9544

3.4. Comparative Analysis of GFs Model Estimation Results

To comprehensively capture the complex relationship between geometric features
and the fused dataset of ductile iron images, geometric features were incorporated into
the fused feature dataset. Models trained on the dataset including geometric features are
denoted with the prefix “GFs-” and used to estimate the graphite nodularity. Figure 6
presents the estimation accuracy of graphite nodularity by six different machine learning
models—SVR, MLP, RF, GBR, XGBoost, and CatBoost—using the constructed GFs dataset.
The results indicate that the GFs-XGBoost and GFs-CatBoost models achieved nearly
identical R2 values of 0.98, with the GFs-CatBoost model performing the best. The GFs-SVR,
GFs-MLP, and GFs-GBR models performed slightly worse. Table 3 shows the estimation
results of graphite_nodularity for each model. Compared with the CatBoost model without
geometric features, the GFs-CatBoost model reduced the MAE by 0.9%, RMSE by 1.6%, and
increased R2 by 8.3%, effectively addressing the slight overfitting issue and improving the
model’s reliability.

Table 3. graphite_nodularity estimation results in different models.

Model Evaluation Metrics

MAE RMSE R2

GFs-SVR
Training set 0.0106 0.0136 0.9764

Test set 0.0133 0.0173 0.9613

GFs-MLP
Training set 0.0187 0.0238 0.9271

Test set 0.0192 0.0245 0.9223

GFs-RF
Training set 0.0030 0.0051 0.9966

Test set 0.0081 0.0137 0.9756

GFs-GBR
Training set 0.0257 0.0328 0.8622

Test set 0.0262 0.0334 0.8554

GFs-XGBoost
Training set 0.0019 0.0027 0.9991

Test set 0.0063 0.0104 0.9861

GFs-CatBoost
Training set 0.0015 0.0021 0.9995

Test set 0.0058 0.0098 0.9876

CatBoost
Training set 0.0038 0.0054 0.9963

Test set 0.0147 0.0258 0.9131
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Figure 6. Estimation results of graphite_nodularity on different models. (a) GFs-SVR; (b) GFs-MLP;
(c) GFs-RF; (d) GFs-GBR; (e) GFs-XGBoost; (f) GFs-CatBoost.

The final parameters of the CatBoost model obtained through grid search are shown
in Table 4.

Table 4. CatBoost parameter settings.

Parameter Name Value

n_estimators 2000
learning_rate 0.1
max_depth 9
l2_leaf_reg 3

early_stopping_rounds 30
loss_function RMSE

Figures 7 and 8 illustrate the residual distributions of various models. The es-
timation residuals of the GFs-CatBoost model are concentrated within the range
of [−0.05, 0.05]. Similarly, the residuals of the GFs-XGBoost model are also mainly dis-
tributed within [−0.05, 0.05], although there are individual residuals exceeding the thresh-
old of 0.06. The peak densities of the residual histograms for both GFs-XGBoost and
GFs-CatBoost models exceed 3500, indicating that the estimation errors for the vast ma-
jority of samples are minimal, with estimated values closely matching the true values.
The residual distributions exhibit a unimodal and symmetric shape without significant
skewness or outliers, suggesting that the errors follow a random noise pattern and the
models do not exhibit systematic overestimation or underestimation. Further observation
shows that the locally weighted regression curves almost coincide with the zero-residual
line (y = 0), indicating that residuals do not display increasing, decreasing, or fluctuating
trends with changes in estimated values, thereby validating the homoscedasticity and
global consistency of the models. This distribution characteristic demonstrates that the
models maintain stable fitting ability across the entire data domain, unaffected by noise or
nonlinear relationships in specific regions. Overall, the models possess high accuracy and
robustness, effectively supporting estimation tasks in practical scenarios.
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Figure 7. Residual analysis of GFs fusion feature datasets on different models. (a) GFs-SVR;
(b) GFs-MLP; (c) GFs-RF; (d) GFs-GBR; (e) GFs-XGBoost; (f) GFs-CatBoost.

Figure 8. Histograms of the estimated residual distribution of GFs fusion feature datasets on different
models. (a) GFs-SVR; (b) GFs-MLP; (c) GFs-RF; (d) GFs-GBR; (e) GFs-XGBoost; (f) GFs-CatBoost.
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4. Conclusions
This study proposes an innovative image processing and feature fusion framework

for the analysis of ductile iron microstructure images. The main conclusions are as follows:

(1) The improved watershed segmentation method effectively addresses the over-
segmentation issues of traditional algorithms when dealing with complex graphite
morphologies. Combined with GFs extracted by the intelligent screening algorithm, it
can accurately characterize the geometric parameters of graphite particles.

(2) The multimodal feature fusion strategy significantly enhances feature representa-
tion capability; however, the CatBoost model trained solely on the fused features
exhibits overfitting when estimating geometric features, resulting in considerable
errors between the training and test sets.

(3) By reintegrating the GFs back into the fused feature set, the model achieves a feature
self-enhancement mechanism: the geometric features serve as prior knowledge to
guide the model’s focus on intrinsic morphological patterns, completely eliminating
CatBoost’s overfitting problem and significantly improving both estimation accuracy
(R2 ≈ 0.98) and robustness.

The method proposed in this study provides an efficient and reliable technical path-
way for the quantitative analysis of material microstructures. The core innovations of this
study can be summarized in two aspects. First, a multi-source feature extraction frame-
work is proposed, which integrates geometric, color, and texture features to overcome the
limitations of single-feature approaches commonly employed in previous studies. Second,
an improved watershed algorithm is combined with an intelligent filtering strategy to
enable more accurate particle segmentation, particularly in cases involving overlapping or
irregular graphite morphologies. This framework demonstrates strong generalizability and
scalability, making it applicable to microstructural image analysis of other metallic materi-
als. It is expected to facilitate the intelligent upgrading of industrial quality inspection and
material development, providing robust theoretical support for related fields.

It should be noted that this study did not explicitly investigate the influence of the
cast iron matrix on the recognition of graphite spheres. Since different matrix phases
may alter the local contrast and texture of metallographic images, they could potentially
affect feature extraction and recognition accuracy. Future work will extend the proposed
framework to systematically evaluate the effect of matrix microstructure on graphite
nodularity quantification.
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