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Abstract: A This paper proposes a modified real-time transient modelling (MRTTM) framework
to address the critical challenge of leak detection and localization in pipeline transmission systems.
Pipelines are essential infrastructure for transporting liquids and gases, but they are susceptible to
leaks, with severe environmental and economic impacts. MRTTM tackles this challenge with a three-
stage operational process. First, “Data Collection” gathers sensor data from designated observation
points. Second, the “Detection” stage identifies leaks. Finally, “Decision-Making” utilizes MRTTM
to pinpoint the exact leak magnitude and location. This paper introduces an innovative method
designed to significantly enhance pipeline leak detection and localization through the application of
artificial intelligence and advanced signal processing techniques. The improved MRTTM framework
integrates AI for pattern recognition, state space modelling for leak segment identification, and
an extended Kalman filter (EKF) for precise leak location estimation, addressing the limitations of
traditional methods. This paper showcases the application of MRTTM through a case study using
the K-nearest neighbors (KNN) method on a water transmission pipeline for leak detection. KNN
aids in classifying leak patterns and identifying the most likely leak location. Additionally, MRTTM
incorporates the EKF, enabling real-time updates during transient events for faster leak identification.
Preprocessing sensor data before comparison with the leakage pattern bank (LPB) minimizes false
alarms and enhances detection reliability. Overall, the AI-powered MRTTM framework offers a
powerful solution for swift and precise leak detection and localization in pipeline systems. The
functionality of the framework is examined, and the results effectively approve the effectiveness of
this methodology. The experimental results validate the practical utility of the MRTTM framework in
real-world applications, demonstrating up to 90% detection accuracy and an F1 score of 0.92.

Keywords: pipeline leak detection; real-time transient modelling; extended Kalman filter; support
vector machine; K-nearest neighbors

1. Introduction
1.1. Motivation

Fluid distribution systems are critical components of various industries worldwide.
However, these pipelines are susceptible to leaks, which can cause environmental hazards
and significant damage to infrastructure. As such, it is essential to develop an effective
leak detection system (LDS). Pipeline LDSs are crucial for ensuring the safe and efficient
operation of pipelines. These systems are designed to detect leaks in pipelines quickly
and accurately, which is critical for preventing environmental damage, protecting public
safety, and minimizing the potential for costly repairs or downtime. Standards in terms of
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leak detection are published by the API (Washington, DC, USA) and TRFL (Germany) [1].
Pipeline leaks pose a significant threat to public safety, environmental well-being, and
economic stability. Regulatory agencies like the Pipeline and Hazardous Materials Safety
Administration (PHMSA) [2] enforce strict leak detection standards for pipelines [3]. How-
ever, existing leak detection methods often face limitations, particularly when dealing
with aging infrastructure or complex operating conditions [4,5]. This research is motivated
by the need for more robust and adaptable leak detection systems that can address these
limitations. The current focus on hardware-based approaches can be restrictive in situations
where infrastructure upgrades are impractical. This paper proposes a software-centric
solution that leverages the power of AI to enhance leak detection performance.

1.2. Literature Review

Various leak detection methods have been employed in recent years to keep track of a
pipeline’s integrity [6–8]. In accordance with the physical principles that influence LDS,
leak detection methods can be divided into different categories. As illustrated in Figure 1,
three categories of leak methods for detection are present: exterior/hardware methods, in-
terior/computational software methods, and visual/biological methods. Exterior methods
rely on sensors along the pipeline to detect changes in external parameters like pressure
and temperature, while interior methods use technical instrumentation outputs to track
internal pipeline variables and analyze algorithmic analysis instruments. Visual/Biological
methods involve physically inspecting the pipeline or using biological indicators to detect
leaks. The choice of method depends on the pipeline operator’s specific needs, as each type
of method has its advantages and limitations. Exterior methods are generally less expensive
and easy to install but less sensitive to small leaks. Interior methods are highly accurate
but require specialized equipment and expertise. Visual/biological methods are typically
used with other methods and can provide an additional layer of safety and protection. The
focus of this paper is on internal methods, and selected methods are further analyzed and
reviewed. Meanwhile, internal systems use technical instrumentation outputs that track
the internal pipeline variables, and algorithmic analysis instruments are also regarded as
computational pipeline monitoring (CPM) systems [9].
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Pipeline LDS uses mathematical models of the pipeline, along with measurements
of flow rates, pressures, temperatures, and additional variables in order to determine the
pipeline’s state (i.e., the parameters that describe the physical condition of the pipeline) at
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any given time. Pipeline LDSs using state estimators or observers are designed to monitor
pipelines and detect leaks immediately as they occur. The state estimators or observers
have been widely used for fault diagnosis of pipelines and estimating state variables
in real time. Fault diagnosis [7] is a practical technique based on observation, which
includes detecting, isolating, and identifying system failures. The observation system is
essential in deterministic model-based fault diagnostic approaches given that it maintains
updating determined models [13]. The analysis of residues representing faults is carried
out in an observer-based analytical approach by estimating process efficiency and using
residual estimation errors [14]. Different state estimators or observers, such as EKF [15],
unscented Kalman filter (UKF) [16], particle filter (Monte Carlo filter) [17], recursive least
squares (RLS) [18], moving horizon estimation (MHE) [9], Luenberger observer [19], and
event-triggered particle filter [20] can be utilized in pipeline LDS. These filters use a set of
equations to estimate the current state of the pipeline based on past measurements and the
current control inputs [21].

However, based on the previously mentioned requirements, there is an operational
method known as RTTM. Using mathematical algorithms, RTTM can instantly determine
the mass flow, pressure, density, and temperature at any location throughout the pipeline.
In order to create the local profiles, which comprise the pressure profile and transient be-
havior of the pipeline, temperature and pressure sensors are placed at the head stations [22].
RTMM has several advantages over other pipeline leak detection methods. First, it is
capable of detecting leaks of any size, including small leaks that may go undetected by
other methods. Second, it is not affected by changes in the pipeline’s operating conditions,
making it more reliable than other methods. Third, it can be used to identify the location of
a leak, allowing for more targeted repairs and minimizing downtime. However, there are
also some drawbacks to the RTTM method. One of the main limitations is the computa-
tional resources required to run the hydraulic models in real-time. This can be a significant
challenge, especially for large pipelines or those with complex geometries. Additionally,
RTTM requires an exceptional amount of capacity to develop and maintain the hydraulic
models. On the other hand, one of the most significant methods in the field of leak detec-
tion is the E-RTTM approach, which was created by the KROHNE company (PipePatrol,
Duisburg, Germany) and has been successfully utilized in this sector [23]. E-RTMM is an
advanced pipeline leak detection method that builds upon the principles of RTMM by
incorporating additional data sources and ML techniques to improve detection accuracy
and reduce false alarms. Furthermore, the industry is much improved by AI, and a variety
of ML-based AI algorithms have been applied to find anomalies in pipelines [24]. In a prior
study [25], for the purpose of identifying pipeline leaks, many ML models were put into use.
The one that follows analyzes different methods used in ML like linear regression, decision
trees, support vector machines (SVMs), naive Bayes, and KNN to find pipeline leaks using
simulated data from industrial processes. Following is a more detailed discussion of the
investigation and evaluation of classifier training methods, along with efforts to increase
the accuracy of leak location identification. The SVM is a statistical learning principal learn-
ing algorithm. The SVM has become the most widely had been using learning machine
for data classification and regression that utilizes a model of supervised learning. The
representation of the optimal hyperplane that functions as a boundary between the two
classes is the main objective of SVM in data classification [26]. SVMs used to be successfully
applied to a variety of high-dimensional and nonlinear learning issues. Meanwhile, for
classification and regression, KNN [27] is a supervised ML method. It is a non-parametric
approach that does not rely on any underlying assumptions about the distribution of the
data, even though it only contains data, even during the training process, without having
to perform any mathematical calculations upon that. This algorithm generates a model-
based framework that anticipates the proper class for the testing dataset by calculating the
distance between the testing data and the training data. The k-points closest to the testing
dataset are determined using the algorithm. The classification with the highest probability
is then chosen after computing the probability that the test data will be categorized into
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each participating class. The parameter k indicates the number of neighbors’ relatives who
might be allowed to vote. The difference between a point and its nearest neighbor can be
calculated using a variety of methods, which is mentioned in [28].

1.3. Research Gaps

The research gap in this field evidences a need to develop more accurate and reliable
methods for pipeline leak detection that can overcome the limitations of ERTTM. While
ERTTM is a widely used method, it still has several limitations that need to be addressed.
One of the issues with ERTTM is that it relies on precise modelling of the pipeline and its
surrounding environment. Even small variations in the pipeline’s geometry, soil properties,
or temperature can significantly affect the model’s accuracy. To address this problem,
researchers are exploring the use of advanced modelling techniques, such as ML algorithms,
that can adapt to changes in the pipeline’s operating conditions. Another problem is the
presence of noise in the measurement data. This can arise from various sources, such as
measurement errors, sensor drift, or interference from nearby equipment. Researchers
are looking into using sophisticated signal processing methods to solve this issue, such
as wavelet analysis or Kalman filtering, which can reduce unwanted noise in the data
and increase the accuracy of the LDS. From another point of view, a successful state
reconstruction requires certain inputs to obtain a sufficient outcome, and one practical
technique for developing real-time transient a reconstruction would be to construct an EKF.

1.4. Methodology

To address the research gaps identified earlier, this paper presents an effective method
for identifying leaks in pipelines when the size and location of the leaks are unknown.
The proposed method involves modelling the pipeline and simulating multiple dynamic
states using simulation software to obtain more precise estimates for leak detection and
localization. A comprehensive framework capable of analyzing and performing multiple
processes in parallel is essential for achieving an optimal solution.

The MRTTM framework is introduced as a solution that integrates these methods
to offer an efficient approach for identifying leaks in pipelines with unknown sizes and
locations. This framework is structured to enable parallel processing through a modular
design, where each module is responsible for specific tasks such as data preprocessing,
pattern recognition, state space modelling, and leak localization. The parallel execution
of these processes is coordinated by a control system that ensures synchronization and
seamless data flow between modules, thereby optimizing the performance and accuracy
of the MRTTM framework in real-time applications. Precision, recall, specificity, and F-
score are among the metrics employed to evaluate the performance of this framework,
alongside accuracy.

1.5. Contributions

This work proposes a novel framework MRTTM that leverages AI for pipeline leak
detection and location. The MRTTM framework offers several key contributions:

Development of a leak detection and location system: The framework utilizes an LPB
that stores and adapts to pipeline data under various operating conditions.

AI-powered leak detection with adaptability: Machine learning algorithms are em-
ployed to analyze data from the LPB and the RTTM method. The most accurate model is
selected for real-time leak detection, ensuring adaptability to changing conditions.

Comparative Analysis of machine learning algorithms: Two ML algorithms are compared
for both leak detection and LPB creation, offering valuable insights into their effectiveness.

Comprehensive evaluation methodology: The framework’s performance is evalu-
ated using metrics like F1 score, precision, recall, accuracy, and specificity, providing a
robust assessment.

Enhanced leak location accuracy: The EKF is integrated into the framework to improve
leak location estimation by filtering out background noise and flow-pressure signal changes.
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This significantly increases the accuracy of the leak detection and location algorithm
operating in a real-time environment.

1.6. Paper Organization

The remaining sections of this paper are arranged as follows: Section 2 includes a
description of the pipeline model as well as an assessment of problems for which solutions
have been investigated. Section 3 introduces the concept of the MRTTM method and
proposed methodology using a real-time framework leveraging AI for enhanced pipeline
leak detection and localization. Section 4 attempts to incorporate numerical simulations
into the experimentation and analysis to demonstrate the features of MRTTM and looks
into the final results of the offered model. Section 5 concludes this study by offering this
paper’s findings and conclusions.

2. Problem Formulation

There is always the possibility that a pipeline will leak. One of the hardest challenges in
this field is precisely locating and measuring leaks. In this paper, an additional issue that we
attempt to explore is a suggested modelling method for precisely imitating the performance
of a pipeline with leakage. The following is a description of the fluid dynamics consistency
and dynamic equations in a pipeline [29]: As seen in Figure 2, the complete pipeline model
along with the pump is placed [30], which is specified in using a dynamic real-time transient
model of pipeline values H (pressure) and Q (flow rate). The model that is suggested
separates the pipeline into n segments, with Q1-Qn and H1-Hn representing the flow and
pressure at the beginning and end of each segment. The head pressure at the beginning
Hin and the head pressure at the end Hout are also displayed. The measured difference
between real and simulated input and output are Rin and Rout. Thermal convection velocity
variations, fluid density, multi-dimensionality, and multi-pipe area are all held constant in
the proposed model.
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The environment’s wave velocity is significantly higher than the rate of fluid flow
notwithstanding these considerations. Additionally, the pipe’s length is adequate to keep
the pattern of lateral flow constant. This flow pattern is defined by a pair of nonlinear
hyperbolic partial differential equations (PDEs) that arise from the application of mass and
momentum constraints across a predefined control length distance [31].

In order to create a set of initial PDEs formed by momentum Equation (1) and conti-
nuity Equation (2), the mass and momentum conservation laws are applied to a control
volume that takes consideration of a pipeline.

∂q(z, t)
∂t

+ gA
∂h(z, t)

∂z
+

f (z, t)
2Ad

q(z, t)|q(z, t)| = 0 (1)

∂h(z, t)
∂t

+
c2

gA
∂q(z, t)

∂z
= 0 (2)

where h is the pipeline’s pressure head (m), q is the pipeline’s flow rate (m3/s), c is the
fluid’s wave speed (m/s), g is the pipeline’s gravitational acceleration (m/s2), A is the
pipe’s cross-sectional area (m2), d is the pipe’s diameter (m), f is the coefficient of friction,
and t and z, respectively, are the time (s) and space (m) coordinates. In addition, the general
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equation that defines the conduct of leakage in the pipeline is derived from the Bernoulli
equation.

qL = λ
√

hL (3)

where qL is the leakage stream, hL is the leakage pressure head, and parameter λ is the
leakage constant, which depends on the region of the leakage.

q1 = q2 + qL (4)

As seen in Equation (4), the sum of the leakage flow rate qL and the output flow rate
q2 from the pipe after the leakage equals the input flow rate q1 at the beginning of the
pipe [32].

Several prototype failure and leakage detection approaches regard coefficient f to
be consistent; however, it is frequently adjusted whenever a leak is found. Moreover,
the coefficient is affected mostly by the Reynolds number. In combination with the
Darcy–Weisbach formula, pipe wall friction is found to be an excellent contributor to
pipe pressure drop [33]. As well as precision in the calculation in accordance with the ele-
ments in the Moody chart, the Darcy–Weisbach friction factor against Reynolds number (Re)
for different amounts of relative roughness is a crucial factor in recognizing and diagnosing
leakage. For each observer iteration, the friction factor f is modified for both the q1 and q2
flow rates to compensate for flow system modifications due to leakage. Since it requires an
inner iteration to calculate f from the implicit Colebrook–White formula [34], with extra
mathematical effort, Swamee–Jain [35] clear approximation could be used instead. The
friction factor f can be calculated as follows:

f (q) = 0.25
(

log10

(
ε

3.7
+ 5.74

(
Av
qd

)))−2
(5)

The ODE system reflects the dynamic model of the pipeline:

.
q1 =

gA
zl

(h1 − h2)−
f (q1)

2Ad
q1|q1| (6)

.
h2 =

c2

gAzl

(
q1 − q2 − λ

√
|h2|

)
(7)

.
q2 =

gA
L − zl

(h2 − h3)−
f (q2)

2Ad
q2|q2| (8)

Hydraulic transient models are constructed in accordance with the rules governing
transient mass flow and dynamic preservation [36]. To attain precise leak detection and
localization in pipelines, it is imperative to employ model parameters that align with the
observed pipeline characteristics and utilize advanced techniques for leak identification.
ML models present a promising solution capable of accurately detecting leaks while mini-
mizing false positives, operating in real-time to furnish timely information regarding leak
locations. The integration of EKF into the leak detection process significantly enhances the
accuracy of location estimation. Regular validation of simulated leak estimates through
comparison with actual observed leaks is paramount.

RTTM, involving the analysis of pressure and flow measurements in the pipeline,
proves to be an effective method for leak detection. When combined with ML models and
EKF, RTTM further enhances accuracy in leak localization. The comprehensive discussion
of the methodologies mentioned earlier is expounded upon in the subsequent section.

3. Leak Detection and Accurate Leak Location

In this section, the author deliberates upon the proposed methodologies in connection
with the identified research gap. The initial segment delved into the overarching aspects
of the proposed plan, emphasizing the integration of the process within the framework
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of real-time operations. Subsequently, the second section expounded upon the intricacies
and functioning of the MRTTM method. Collectively, the envisaged methods are geared
towards augmenting the efficiency and effectiveness of the MRTTM approach through
seamless integration into a real-time framework empowered by AI.

3.1. AI-Empowered MRTTM Framework

Based on the outlined diagnostic procedures and the identified challenges, the pro-
posed solution encompasses a series of systematic steps for the detection and localization
of leaks in pipelines. Initial detection involves diagnostic testing, utilizing both the physical
and dynamic characteristics of the pipelines. Subsequently, the magnitude of the detected
leakage is assessed through the implementation of the RTTM method and the analysis
of data collected by the observer. Following this, pipeline segments are analyzed using
simulation software, and diverse leakage scenarios, encompassing large, medium, and
small leakages, are scrutinized for each segment. The outcomes of various tests under
anticipated conditions are systematically classified into distinct categories. The selection
is then juxtaposed with the optimal training algorithm, culminating in the formulation of
the LPB.

In the process of developing the MRTTM framework, multiple machine learning al-
gorithms were evaluated to identify the most suitable model for pipeline leak detection.
Among these, the KNN model was selected due to its simplicity, adaptability, and robust-
ness in handling noisy data, as well as its stable performance under varying conditions.
The KNN model consistently outperformed other models such as SVM and decision trees
in this specific context. While SVM demonstrated high accuracy in controlled environ-
ments, it struggled with noise and required substantial computational resources, limiting
its real-time applicability. Decision trees, despite their interpretability, exhibited overfitting
tendencies and inconsistent performance across different pipeline conditions. The KNN
model’s ability to generalize effectively, coupled with its resilience to noise, made it the
optimal choice for the MRTTM framework, balancing accuracy, computational efficiency,
and robustness for real-time leak detection. Ultimately, the MRTTM method is employed
to achieve the highest accuracy in detecting the location and magnitude of the leak under
varied dynamic states of the pipeline. Following leak detection and the determination of
the affected pipeline segment, the trained algorithm considers two hypothetical leakages
at the initiation and conclusion of the diagnostic pipe section. The actual location of the
leakage is then estimated utilizing an EKF observer, which discerns all pipeline parameter
rates (pressure and flow rate values) amidst process and measurement noise. Therefore,
the integration of all suggested processes is imperative, and a comprehensive depiction
of the proposed remedy is elucidated in Figure 3. The conceptual real-time framework
comprises three integral components: the virtual pipeline (data collection), leak detection
(detection), and MRTTM (decision-making). Within the virtual pipeline segment, an ob-
server analyzes sensor data in real time to glean information regarding the dynamic state
of the pipeline. The detection section employs diagnostic methods tailored to various
dynamic fluid conditions for leak detection. Upon detecting a leak, the decision-making
stage is initiated, utilizing the proposed MRTTM to estimate the leak’s location based on
the pipeline’s conditions. As illustrated in the figure, the MRTTM framework leverages
artificial intelligence by first transferring data from the LPB. These data are then used to
train machine learning models like KNN, SVM, and others, with the model exhibiting
the highest accuracy being selected after the initial training process. Subsequently, the
output data from these trained models are evaluated using test data that were previously
processed by the RTTM method. Finally, the EKF is employed to achieve the most accurate
estimation of the leak location.
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Furthermore, the proposed conceptual real-time framework represents an integrated
approach to enhancing pipeline safety, leveraging the synergy of horizontal and vertical
techniques. The horizontal component incorporates API 1130 procedures while strictly
adhering to guidance from TRFL and PHMSA. This alignment fortifies the system with
industry-supported best practices, augmenting reliability and effectiveness. The sophisti-
cated LPB and vertical fusion of AI methods and EKF for real-time updates during transient
events complement this horizontal integration. In broad terms, the proposed solution fur-
nishes a reliable and accurate method for real-time pipeline leak detection, ensuring the
safe and efficient operation of pipelines. This systematic approach combines diagnostic
methods, simulation software, and advanced algorithms to detect leaks and estimate their
location with high precision.

3.2. Modified Real-Time Transient Modelling (MRTTM) Method

The key distinction between RTTM [37] and other methodologies is its method for
modelling all dynamic fluid characteristic features, including flow, pressure, and temper-
ature, in addition to the general structure of physical pipeline details including length,
diameter, thickness, and product properties, such as density and viscosity. The pipeline
observer is at the core of the leak monitoring system [38]. It denotes the flow fundamentals
and thermodynamic parameters of the leak-free pipeline anywhere along the length. For
the entire purpose, pressures PI and PO are determined at the inlet and outlet. The temper-
atures of the fluid and density are also necessary. These principles are used to calculate the
mass flow

.
MI and

.
MO. These estimated values were compared to the measured values,

generating the residuals x ≡ MI −
.

MI and y ≡ MO −
.

MO. When there is a leak, deviations
take place wherein the leak location XLeak and the leak rate (speed, flow rates, or mass flow)

.
MLeak could be calculated [22]:

.
MLeak = x − y (9)

XLeak =
−y

x − y
L (10)
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However, the major idea is to build a smart real-time transient model using ML that
allows for the correlation between the pipeline model input and output data as a mathe-
matical function. Leak factors can be reconstructed by adding them in a new, enhanced
state space model as an existing state parameter. The EKF is required for estimating leak-
age variables and filtering out background noise and flow–pressure signal change in the
real-time transient model state as part of the diagnostic leakage feature. EKF is a straight-
forward installation approach that is especially useful for nonlinear systems with workable
applications. A state space definition of fluid flow dynamics with Hi and Qi as vector x
state variables, boundary conditions as known u-vector variables for input, and the typical
model makes it easy to obtain parameters in the form of y-vector output variables [39].
As a consequence, the problem of leak detection can be solved by developing a system
status observer based on the modified state matrix developed in [40]. Theoretically, the
Kalman filter is a state estimator based on the statistical definition of noise at the measured
output of the linear dynamic system for the optimal estimation of the undetermined state.

To accomplish this, the parameters zl and
[

y1
y2

]
=

[
1 0 0 0 0
0 0 1 0 0

]
x1

x2
x3
x4
x5

+

[
v1
v2

]
are

regarded as new state variables with dynamics,
.
zl = 0 and

.
λ = 0, that could be added to

the original state vector. As a result, the new augmented state vector would be as follows:

X =
[
q1 h2 q2 zl λ

]T
=

[
x1 x2 x3 x4 x5

]T (11)

As a result, the extended dynamic model is found as follows:

.
x1 =

gA
x4

(u1 − x2)−
f (x1)

2Ad
x1|x1| (12a)

.
x2 =

c2

gAx4

(
x1 − x3 − x5

√
|x2|

)
(12b)

.
x3 =

gA
L − x4

(x2 − u2)−
f (x3)

2Ad
x3|x3| (12c)

.
x4 = 0 (12d)
.
x5 = 0 (12e)

Implementing Heun’s approach improvement to this continuous-time model (
.

X =
ϕ(x, u)), which has the following form, allowed for Equations (12a) to (12e) to be trans-
formed into a discrete-time model that is specific to and appropriate for the EKF.

.
X = xk +

Ts

2
(ϕ(xk, uk) + ϕ(xk + Tsϕ(xk, uk), uk)) (13)

The observation that connects the state x to the measurement (y =
[
q1 q2

]
) completes

the requirement model to use the EKF [29]:

[
y1
y2

]
=

[
1 0 0 0 0
0 0 1 0 0

]
︸ ︷︷ ︸

C


x1

x2
x3
x4
x5

+

[
v1
v2

]
(14)

A discrete-time EKF can be used as just another nonlinear observer to generate an
observer for model Equation (14) and use the state of the extended system Equation (13).
Heun’s method is applied to accomplish this because it has been demonstrated to offer
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a fantastic trade-off between sample selection and accuracy. Model Equation (14) is dis-
cretized in order to achieve this. The following is the alternative for the initial value issue
using this method, in which Ts is the time step and k is the time varying index; eventually,
using Equation (16), usual mathematical expressions in Equation (14) are transformed into
a discrete time nonlinear model including the form:

Xk+1 = Φ(xk, uk, uk+1) (15)

Yk = CXK (16)

When considering this discrete depiction (details are provided in x), in reality of
course, all that is required would be to take into account a discrete-time EKF to others as a
state observer Equation (15) without utilizing the given formula in Equation (12), which
can be selected as follows:

Kk = P−
k CT(CP−

k CT + R)
−1

(17)

x̂k = x̂−k + Kk
(
yk − Cx̂−k

)
(18)

Pk = (I − KkC)P−
k (19)

K is Kalman’s gain; x̂k is the expected state in time; Pk is the estimation error covari-
ance matrix.

The update equations (or prediction) of the Kalman filter time are presented by
the following:

Ak =

[
δϕ

δx

]
x=x̂k

(20)

x̂k+1 = Φ(x̂k, uk) (21)

P−
k+1 = AkPk AT

k + Q (22)

where x̂k+1 denotes the predicted state and the P−
k+1 describes the covariance matrix for

error predicted. Kalman filter update equations (or corrections) are specified as outlined.
Eventually, R and Q can be selected as the noise measure and processing covariance
matrices. The pressure sensor, with xM, will be placed next to the downstream node. Even
by situation, a design of N leaks is taken into consideration for leak detection for multiple
leaks [41], and the leak coordinates are xLn , n = 1, . . ., N,

(
xL1

〈
· · ·

〈
xLN

〈
xM )

; the pipe
elevation at each leak is denoted by zLn ; QLn

0 and HLn
0 are the steady-state discharge and

head at each leak. The leak size is defined by the variable sLn = Cd ALn of the lumped
leak, where Cd is the leak discharge coefficient and ALn is the leak orifice flow area. A

leak’s steady-state discharge is correlated with QLn
0 = sLn

√
2g

(
HLn

0 − zLn

)
lumped leak

parameter, wherein g is the gravitational acceleration. The amounts at xM can be calculated
in a corresponding way, considering the discharge q

(
xU)

and head h
(
xU)

equations found
in [42].

The Kalman filter was utilized in this paper to detect leaks more accurately due to
its advantages. As a result of the RTTM method’s detection and the trained algorithm’s
detection of which section of the pipeline is located, two fictitious leaks are created at
known locations XL1 and XL2 (the location of the beginning and ending of the identified
pipeline segment) shown in Figure 4. Assuming steady-state conditions, the temporal
terms within Equations (1) and (2) disappear and the equations become as follows:

∂h
∂z

=
f q|q|

2gdA2 (23)

∂q
∂z

= 0 (24)
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Equation (24) indicates that the flow rate is constant at steady state. The magnitude of
the output flow rate from leakage, as a result, represents the total of the output flow rates
of hypothetical leaks:

qL = qL1 + qL2 (25)

The magnitude of the leakage can consequently be estimated using Equation (25), as
well as its location, provided by the following:

zL ≈ qL1zL1 + qL2zL2

qL
(26)

As a result, zL could be easily calculated because zL1 and zL2 are defined, qL1 and qL2
are estimated, and qL is the total magnitude of the leakages.

After the EKF calculates and estimates the quantity of leakage flow rate and the loca-
tion of the leakage, the results are compared to the RTTM. This comparative analysis serves
a dual purpose: enhancing leak detection accuracy and validating the efficacy of the RTTM
approach. In cases where discrepancies arise, ML techniques are employed to bolster the
certainty of correctness. To achieve this objective, simulation software is utilized to explore
various leakage scenarios under diverse conditions. The quantity and types of these leakage
scenarios are elucidated below. As illustrated in Figure 4, these requirements are imple-
mented by initially segmenting the pipeline into several fictitious segments, each hosting
a simulated leak independently. Subsequently, three distinct variations of low, medium,
and high leakage are generated for each simulated leak. All scenarios run under identical
conditions account for inlet and outlet pressure, inlet and outlet flow, and mass flow rate
from the leakage. The LPB serves as a comprehensive database housing hypothetical leak
scenarios for a given pipeline. This repository encapsulates the various simulated scenarios,
facilitating a robust framework for testing and validating the proposed methodologies.

The acquired data were trained with several classifier methods in order to select the
best and most ideal method for this issue. In essence, the operational procedure of the
MRTTM involves the initiation of leak detection, followed by employing RTTM to narrow
down the leak’s location. Additionally, a recursive method known as the EKF is utilized to
estimate the state of the system based on a sequence of measurements. This EKF process is
integral to identifying both the location and extent of a leak when employing MRTTM for
pipeline leak detection.

The EKF operates through three distinctive phases. The initialization phase is the
first, wherein the EKF is configured with initial values for critical pipeline parameters
like diameter, length, and roughness. During the monitoring phase, the second phase,



Modelling 2024, 5 1146

the EKF continually receives data from sensors strategically positioned throughout the
pipeline. These data encompass fluid flow rate, pressure, and temperature. Leveraging
these incoming data, the EKF calculates an estimation of the pipeline’s state, encompassing
the location and size of any leaks. The third phase, the estimation phase, involves utilizing
the computed state of the pipeline to determine the leak’s location. This is achieved by
comparing the estimated output flow rate with the actual output flow rate, and the disparity
between the two is leveraged to calculate both the location and size of the leak. An intrinsic
advantage of the EKF lies in its remarkable precision in estimating the location of leaks.
This capability is facilitated through the application of a technique known as the LPB. The
LPB encompasses hypothetical scenarios that detail the precise location and flow rate of
leaks both prior to and subsequent to their occurrence. Through a comparative analysis
of the estimated output flow rate with these hypothetical scenarios stored in the LPB, the
EKF adeptly computes the precise location of the leak. The elucidated methodology is
comprehensively implemented in the subsequent section.

The sensitivity of the MRTTM framework to assumptions made in pipeline modelling,
particularly concerning the consistency of the friction coefficient and varying environmental
conditions, is a critical aspect of ensuring its accuracy and reliability. A sensitivity analysis
was conducted to evaluate how changes in these parameters affect the framework’s perfor-
mance. The analysis revealed that while the MRTTM framework demonstrates robustness
to minor variations in the friction coefficient, significant deviations can degrade leak detec-
tion accuracy, especially in pipeline sections with abrupt changes in material or internal
surface conditions. To mitigate this, periodic recalibration of the model using real-time
data is recommended to maintain optimal accuracy. Additionally, varying environmental
conditions, such as changes in temperature and pressure, also influence the model’s perfor-
mance. The MRTTM framework adapts well to gradual environmental variations but may
require further calibration in extreme conditions.

The MRTTM framework has been designed to be versatile and adaptable, making it
suitable for a wide range of pipeline conditions, including oil, gas, and water transport
pipelines. Its adaptability is evident in its ability to handle diverse operational environments
and fluid types, effectively managing variations in pipeline configurations and operational
conditions through the integration of advanced signal processing and AI-driven pattern
recognition. This ensures the framework’s effectiveness and reliability across different
pipeline settings, enhancing its utility and robustness in real-world applications. Moreover,
the MRTTM framework is compatible with existing pipeline monitoring systems, enabling
real-time leak detection through its modular design. The integration of digital twin tech-
nology [43] within the MRTTM framework further enhances its capabilities by creating a
virtual replica of the physical pipeline system. This allows for more accurate simulations
and predictive analytics, improving leak detection and overall system reliability. However,
integrating the MRTTM framework and digital twin technology into existing systems may
present certain challenges. These include ensuring data compatibility, as existing systems
might use different data formats and protocols, requiring the development of interfaces
or adapters for seamless data exchange. Additionally, the real-time implementation of the
MRTTM framework and the continuous updating of the digital twin demand sufficient
computational resources, particularly for processing large datasets and running the EKF,
which may necessitate hardware upgrades or the use of cloud-based solutions. System
integration also poses potential difficulties due to differences in software architectures
and the need for synchronization, requiring careful planning and testing to avoid disrup-
tion of ongoing monitoring activities. Lastly, maintaining the scalability and robustness
of the MRTTM framework, including its digital twin component, as pipeline networks
expand is crucial, necessitating regular updates and ongoing collaboration with monitoring
system providers.
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4. Experiment and Analysis
4.1. Methodology and Simulation Setup

In this section, the operational details of the proposed MRTTM approach are eluci-
dated, addressing the challenges associated with leak location and detection. The primary
challenge involves determining the precise location and magnitude of the leak using the
RTTM approach. The most effective classifier in each scenario is identified and explained,
employing a segmented pipeline model from the LPB with boundary conditions for the
EKF method. This method is utilized to scrutinize the pipeline properties, incorporating
two hypothetical leaks. The most accurate estimate for the location and size of the leak is
subsequently determined in Figure 5 while the resulting estimations are compared.
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Figure 5. The RTTM method’s characteristics for compared true leak location and RTTM method
estimation (a,d,g), compared modelling and SCADA mass flow rate (b,e,h) and compared inlet and
out pressure (c,f,i) for three test leak location.

4.2. Accuracy Enhancement Techniques

To enhance the accuracy of leakage estimates along the entire pipeline, the extended
boundary approach technique expands the interior nodes. The application of this technique
necessitates four pressure measurements to ensure the feasibility of the EKF techniques.
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In the case, two internal pressure measurements, encompassing the pressures at the two
boundaries, were deemed essential for the implementation of the approach.

H2, H3 and Q2, Q3 samples have been taken from the boundaries of the plant in this
technique and H1 and H4 are estimated to be an actual pipeline. This section considers
simulation results for the case studies. Length of the pipe is 6816 m, D = 0.3 m is the
diameter, and two reservoirs and their heads are H1 = 150 m and H2 = 130 m. The pipe’s
Darcy–Weisbach friction factor is fDW = 0.012, and the wave speed is presumed to be
a = 1200 m/s. Three leaks with various sizes and locations are taken into consideration,
and their details are as follows: the specification of the first test leak location = 1400 m
and leak size = 6%, second test leak location = 2880 m and leak size = 3%, and third leak
location =4500 m and leak size = 15%. Additionally, Figure 5 shows the characteristics of
the RTTM approach for estimating mass flow, pressure, and leakage when the leak happens
after 400 s.

4.3. Classifier Performance and Scenario Analysis

The approaches for developing an LPB are studied in this section. The pipeline is
split into 24 equal sections in the first stage. There are three leaks for each segment, with
values of 3%, 6%, and 15% in regard to the transmission line’s diameter. Constant inlet
pressure, flow rate, and leakage are generated in all models that the Simcenter Flomaster
2020.2 software has simulated in 400 s and continues simulated results for all scenarios.
The current classifiers are trained by utilizing the simulated data and assigning them to the
classes established in each segment of the pipeline. There is a need to train classifiers after
obtaining and categorizing the data, which comprise inlet pressure, outlet pressure, inlet
mass flow rate, outlet mass flow rate, and leakage mass flow rate. In order to identify the
most effective method and training algorithm, different methods were tested with MATLAB
R2022b software in this paper. In Table 1, the results of this comparison are presented.

Table 1. Comparison of SVM and KNN classifiers.

Classifiers Accuracy (Validation) % Total Cost (Validation) Prediction Speed obs/s Training Time s

Fine KNN 99.9 10 40,000 8.6309
Weighted KNN 99.8 16 38,000 10.586

SVM kernel 99.2 78 590 293.11
Medium KNN 99.1 88 30,000 11.598

Cubic KNN 99.0 105 16,000 9.4564
Logistic regression kernel 98.4 167 490 233.76

Coarse KNN 98.3 171 17,000 10.928
Quadratic SVM 98.1 195 2800 401.28

Linear SVM 95.9 424 2300 102.53
Cosine KNN 94.7 553 4400 13.619

Fine Gaussian SVM 88.4 1205 1300 455.64
Medium Gaussian SVM 63.2 3805 750 541.64

Cubic SVM 58.9 4251 4500 1219.6
Coarse Gaussian SVM 38.3 6390 550 661.47

It is possible that, from an operational and practical standpoint, in some circum-
stances, the optimal measuring sensors cannot provide four input variables for training the
algorithm. In this instance, predefined scenarios are taken into consideration.

The first scenario, in which just pressure and flow rate are available at the pipeline’s
inlet and outlet (four variables).

The second scenario, which just has input and output flow rate (two variables).
The third scenario, which just has input and output pressure (two variables).
Table 2 compares the current scenarios with three of the best high-accuracy classifiers.
The results of the studies demonstrate that the KNN classifier is more accurate than

other methods. As a consequence, this paper’s testing and evaluation were conducted
using the KNN classifier. The characteristics of three leakage locations that were discussed
in the previous section are used in the following to evaluate the trained algorithm.
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Table 2. Compared three scenarios with the best high-accuracy classifiers.

Scenario Classifier Accuracy
(Validation) %

Total Cost
(Validation)

Prediction Speed
obs/s Training Time s

Scenario 1
Fine KNN 99.8 21 50,000 3.5869

Weighted KNN 99.8 25 41,000 6.861
SVM Kernel 97.4 267 1300 161.08

Scenario 2
Fine KNN 98.3 173 62,000 2.2025

Weighted KNN 98.4 164 51,000 5.2388
SVM Kernel 94 625 1600 136.06

Scenario 3
Fine KNN 98.3 173 80,000 2.7874

Weighted KNN 98.3 175 64,000 6.9076
SVM Kernel 35.7 6653 2400 88.053

4.4. Detailed Results and Comparison

Tables 3 and 4 in this section contain detail performance data for the proposed method
with different pipeline section numbers. It is discussed whether adding pipeline sections
impacts accuracy. Furthermore, the contribution of the Kalman filter to improving detection
accuracy is investigated. The information in Table 3 indicates that the estimated accuracy
decreases with a reduced sensor number; however, it should be noted that there may not
be a pressure or flow measurement sensor in real conditions or that the sensor may not
have the correct measurement precision. Ideally, scenarios 2 and 3 can be thought of as a
backup to be used in unusual circumstances. On the other hand, increasing the number of
tested sections can improve decision-making accuracy and robustness as well as machine
learning’s potential to train the algorithm. For instance, there were 24 pipeline sections
under the previous circumstances. Each segment is split into three segments in order to
optimize estimation, and three different leakage modes—large, medium, and small—are
taken into consideration for each segment.

Table 3. Scenario description and results of applying the proposed method for 24 pipeline sections
(24 classes).

Scenario Description Scenario 1 Scenario 2 Scenario 3

True positive 32 22.6 14.42
False positive 5.5 7.4 7
False negative 5.5 7.4 7
True negative 107 112.6 121.57

Precision 85% 75% 67%
Recall 82% 79% 62%

Specificity 95% 93% 94%
Accuracy 85% 75% 67%
F1 score 88% 79% 71%

Table 4. Scenario description and results of applying the proposed method for 24 pipeline sections
(72 classes).

Scenario Description Scenario 1 Scenario 2 Scenario 3

True positive 22 23.2 16
False positive 3 6.8 5
False negative 3 6.8 5
True negative 122 113.2 121.32

Precision 84% 76% 68%
Recall 82% 80% 63%

Specificity 97% 94% 93%
Accuracy 88% 77% 69%
F1 score 91% 82% 72%

The data presented in Table 4 clearly demonstrate that an increase in the number of
pipeline sections corresponds to an improvement in leak detection accuracy. The perfor-



Modelling 2024, 5 1150

mance of the trained algorithm exhibits enhanced accuracy with an augmented number
of measurement tests conducted on the pipeline. Consequently, the LPB acquires a more
dependable leakage pattern. In this context, the Kalman filter is employed for detection,
providing a higher estimate. As elucidated earlier, the Kalman filter is applied to achieve
more precise detection and subsequent comparison. After the RTTM method estimates
the location and magnitude, and the leak pattern bank determines the respective class,
the Kalman filter contributes to a refined and more accurate detection process. Figure 6
illustrates the layout of two hypothetical locations of fictitious leakage location at the be-
ginning and end of the leakage range determined by the classifier diagnostic method. The
simulation output data contains the inlet pressures and outlet pressures in each pipeline
segment (H1, H2, H3, and H4), flow and outlet flow in each pipeline segment (Q11, Q12,
Q21, Q22, Q31, and Q32), and the outlet flow from two fictitious leaks (QL1 and QL2).
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more precise detection and subsequent comparison. After the RTTM method estimates 
the location and magnitude, and the leak pattern bank determines the respective class, the 
Kalman filter contributes to a refined and more accurate detection process. Figure 6 illus-
trates the layout of two hypothetical locations of fictitious leakage location at the begin-
ning and end of the leakage range determined by the classifier diagnostic method. The 
simulation output data contains the inlet pressures and outlet pressures in each pipeline 
segment (𝐻ଵ, 𝐻ଶ, 𝐻ଷ, and 𝐻ସ), flow and outlet flow in each pipeline segment (𝑄ଵଵ, 𝑄ଵଶ, 𝑄ଶଵ, 𝑄ଶଶ, 𝑄ଷଵ, and 𝑄ଷଶ), and the outlet flow from two fictitious leaks (𝑄௅ଵ and 𝑄௅ଶ). 

Table 4. Scenario description and results of applying the proposed method for 24 pipeline sections 
(72 classes). 

Scenario Description Scenario 1 Scenario 2 Scenario 3 
True positive 22 23.2 16 
False positive 3 6.8 5 
False negative 3 6.8 5 
True negative 122 113.2 121.32 

Precision 84% 76% 68% 
Recall 82% 80% 63% 

Specificity 97% 94% 93% 
Accuracy 88% 77% 69% 
F1 score 91% 82% 72% 

 
Figure 6. Hydraulic pressure indicators and ow rates with leakage presentation along the transmis-
sion line. 

Figure 7 shows three pipelines with identical specifications and fictitious leaks con-
structed with Simcenter Flomaster 2020.2 software. The obtained leak is a real leak be-
tween two unrealistic leaks. As discussed in previous sections, the more accurate location 
of the leak is estimated in this approach using the EKF. 

Figure 6. Hydraulic pressure indicators and ow rates with leakage presentation along the transmis-
sion line.

Figure 7 shows three pipelines with identical specifications and fictitious leaks con-
structed with Simcenter Flomaster 2020.2 software. The obtained leak is a real leak between
two unrealistic leaks. As discussed in previous sections, the more accurate location of the
leak is estimated in this approach using the EKF.
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The flow and pressure diagrams are represented in Figures 8–10. The estimated model
using the Kalman method along with RTTM and the outcome of the observed training
classifier are included in the diagrams, as is the simulation using Simcenter Flomaster 2020.2.
Data from simulation and modelling methods were used to calculate different locations
and the magnitude of three leaks, which are covered in more detail in the preceding section.
On the other hand, the data represented by EKF were able to deliver an improved result by
lowering the unwanted noise.
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Figure 10. Comparison between model data and simulation data hydraulic pressures and flow rates
for leakage at 4500 m.

4.5. Evaluation of RTTM vs. MRTTM

A comparative analysis between RTTM and MRTTM methods was conducted, with
results shown in Table 5 and Figure 11. MRTTM’s superior performance in terms of
leak location accuracy is highlighted, demonstrating its effectiveness and reliability in
pipeline leak detection. Three leakage forms of varying sizes and locations were tested and
compared under the same conditions as the methods described in the preceding sections.
The RMSE, MAPE, and PDF methods were used for comparison.

Table 5. Comparison between the results of RTTM and MRTTM methods.

Methods

Leak Location (m) RTTM
RSME

RTTM
MAPE (%)

MRTTM
RSME

MRTTM
MAPE (%)

1400 m 14.68 1.03 3.68 0.22
2880 m 53.81 1.86 5.9 0.16
4500 m 22.96 0.51 3.45 0.07
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MRTTM significantly outperforms RTTM in leak location accuracy, as evidenced by
both Table 5 and Figure 11. Across all three leak scenarios (1400 m, 2880 m, and 4500 m),
MRTTM consistently exhibits lower RMSE and MAPE compared to RTTM. This translates
to substantially more precise leak location estimates. For example, at 2880 m, MRTTM’s
RMSE is a mere 5.9 m, representing a nearly 90% improvement over RTTM’s 53.81 m.
Similarly, MRTTM demonstrates a remarkable reduction in MAPE, decreasing from 0.51%
for RTTM to just 0.07% at the 4500 m leak, signifying a significant improvement in the
relative error of leak location estimation. This comparative analysis firmly establishes
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MRTTM as the superior method for LDS. Its consistent outperformance in both RMSE
and MAPE across diverse leak scenarios underscores its effectiveness in providing more
accurate and reliable leak location information. This makes MRTTM a highly promising
approach for enhancing the overall efficiency and effectiveness of pipeline leak detection
and management strategies.

5. Conclusions

This study presented the MRTTM framework, a novel approach that leverages AI and
advanced signal processing to significantly enhance pipeline leak detection and localization.
The MRTTM framework addresses the limitations of traditional methods by incorporating
AI for pattern recognition, state space modelling for leak segment identification, and the
EKF for precise leak location estimation. The comparative analysis clearly demonstrates
the superior performance of MRTTM compared to RTTM, with consistent and significant
reductions in both RMSE and MAPE across all leak locations, solidifying its effectiveness
as a more accurate and reliable technique. The MRTTM framework is applicable to various
types of pipelines, including oil pipelines, gas pipelines, and water transport pipelines. This
broad applicability highlights its versatility and robustness in different operational contexts.
Additionally, the framework’s adaptability to diverse pipeline conditions was briefly
discussed, ensuring that its scope of applicability is well-defined. The comprehensive
evaluation of all relevant factors prior to decision-making further minimizes the probability
of errors and enhances prediction efficiency. Ultimately, the proposed MRTTM framework
offers a more accurate, efficient, and reliable solution for pipeline leak detection and
localization, significantly reducing the environmental and economic risks associated with
pipeline failures. Future research could explore the application of MRTTM to a wider range
of pipeline configurations and fluid types, further consolidating its position as a robust and
dependable leak detection solution.
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Nomenclature

Variables Description
Hin/Hout Head pressure at the beginning/end of the pipeline
Rin /Rout The measured difference between real and simulated input/output
h Pipeline’s pressure head (m)
q The pipeline′s flow rate

(
m3/s )

c Fluid′s wave speed (m/s )
g The pipeline′s gravitational acceleration

(
m/s2 )

A Pipe’s cross-sectional area (m2)
d Pipe’s diameter (m)
f Coefficient of friction
t Time (s)
qL Leakage stream
hL Leakage pressure head
λ Leakage constant
qL Leakage flow rate
q1/q2 Input/output flow rate
Re Reynolds number
X Sensor data collected from the pipeline system
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XLPB Data transferred from the LPB
Mi The ith machine learning model
L̂ Estimated leak location
PI/PO Pressures measured at the inlet/outlet
.

MI/
.

MO Mass flow calculated at the inlet/outlet
MI/MO Mass flow measured at the inlet/outlet
.

MLeak Leakage rate calculated
XLeak Leak location
Ts Time step
K Kalman’s gain
x̂k x̂k Expected state
Pk Estimation error covariance matrix
x̂k+1 Predicted state
P−

k+1 The covariance matrix for predicted error
R Noise measure
Q Processing covariance matrices
xM Pressure sensor
Cd Leak discharge coefficient
ALn Leak orifice flow area
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