
Citation: Zhu, X.; Tian, W.; Tian, C.

Generalized Fiducial Inference for the

Generalized Rayleigh Distribution.

Modelling 2023, 4, 611–627. https://

doi.org/10.3390/modelling4040035

Academic Editor: Jürgen Pilz

Received: 16 October 2023

Revised: 11 November 2023

Accepted: 14 November 2023

Published: 17 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Generalized Fiducial Inference for the Generalized
Rayleigh Distribution
Xuan Zhu 1, Weizhong Tian 2,* and Chengliang Tian 3

1 Department of Mathematics, Xi’an University of Technology, Xi’an 710054, China; zx_6105@163.com
2 College of Big Data and Internet, Shenzhen Technology University, Shenzhen 518118, China
3 College of Computer Science and Technology, Qingdao University, Qingdao 266071, China;

tianchengliang@qdu.edu.cn
* Correspondence: tianweizhong@sztu.edu.cn

Abstract: This article focuses on the interval estimation of the generalized Rayleigh distribution with
scale and shape parameters. The generalized fiducial method is used to construct the fiducial point
estimators as well as the fiducial confidence intervals, and then their performance is compared with
other methods such as the maximum likelihood estimation, Bayesian estimation and parametric
bootstrap method. Monte Carlo simulation studies are carried out to examine the efficiency of the
methods in terms of the mean square error, coverage probability and average length. Finally, two real
data sets are presented to demonstrate the applicability of the proposed method.
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1. Introduction

In parametric models, the Rayleigh distribution plays a crucial role in the field of
reliability theory and life analysis. As a result, statisticians have been interested in defining
novel classes of univariate distributions by adding one or more shape parameters to
provide greater flexibility in modeling real data in more application fields. Surles and
Padgett [1] introduced the two-parameter Burr Type X distribution and officially named it
the generalized Rayleigh (GR) distribution. A random variable X is distributed as the GR
distribution if its probability density function (PDF) is

f (x; β, λ) = 2βλ2xe−(λx)2
(

1− e−(λx)2
)β−1

, x > 0, (1)

and the responding cumulative distribution function (CDF) is

F(x; β, λ) =
(

1− e−(λx)2
)β

, x > 0, (2)

and denoted as GR(β, λ), where β > 0, λ > 0 are the shape and scale parameters, respectively.
Moreover, the survival function and the hazard function of x ∼ GR(β, λ) are

S(x; β, λ) = 1−
(

1− e−(λx)2
)β

, x > 0, (3)

h(x; β, λ) =
2βλ2xe−(λx)2

(
1− e−(λx)2

)β−1

1−
(

1− e−(λx)2
)β

, x > 0, (4)

respectively. It is observed that for β ≤ 0.5, the PDF of the GR distribution is a decreasing
function, and it is a right-skewed unimodal function for β > 0.5. The GR distribution can
be used quite effectively in modeling both strength data and general lifetime data. In many
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cases, it can be used effectively as an alternative to the gamma or Weibull distribution. It is
worth nothing that the two-parameter GR distribution is a specific case within the expo-
nentiated Weibull distribution, which belongs to the exponentiated Weibull distribution
proposed by Mudholkar and Srivastava [2]. It is one of the canonical life models in the
software industry, bearings and other industrial equipment, vacuum electronic components
and numerous others. The field has a wide range of applications.

Many authors handled the GR distribution in terms of statistical inference. For instance,
Kundu and Raqabb [3] proposed several estimation programs to estimate the unknown
parameters. Abd-Elfattah [4] studied goodness-of-fit tests for the GR distribution with
unknown parameters. Raqab [5] studied the inference for the GR distribution based on
progressively censored data. Naqash et al. [6] studied the Bayesian estimation of the GR
distribution under different prior conditions when λ is known. It is found that the Bayesian
estimator with double prior gamma-exponential distribution has less posterior standard
error value. Zhang [7] studied the parameter estimation of reliability of the GR distribution
under progressive type-II censoring.

In addition to the classical and Bayesian methods, fiducial inference, originally pro-
posed by Fisher [8], stands as a powerful statistical approach. His original concept for
fiducial inference was to overcome a limitation in the Bayesian framework (assuming a
prior distribution when there was insufficient or no information about the parameters).
The generalized fiducial inference (GFI) introduced by Hannig et al. [9] has been recog-
nized by more people. Wandler and Hannig [10] applied GFI on the largest mean of a
multivariate normal distribution. Wandler and Hannig [11] used the fiducial framework
to make inference about both parameters and extreme quantiles of the generalized Pareto
distribution. These intervals were designed to maintain stated coverage while having
average interval lengths comparable or shorter than other methods, as summarized in
Hannig et al. [12]. Li [13] studied the Fiducial inference with Birnbaum–Saunders distribu-
tion. Yan and Liu [14] studied the generalized fiducial inference method for generalized
exponential distribution. Qi et al. [15] studied the fiducial distribution for the skew normal
distribution. Cetinkaya [16] studied Chen distribution with the fiducial inference method.
Tian et al. [17] studied the generalized fiducial confidence intervals of the difference of
medians for the independent log-normal distributions. Based on our knowledge, the per-
formance of MLE is often unstable; it becomes necessary to explore alternative inference
methods for evaluating the parameters of the GR distribution. When prior information
about the parameters is insufficient, selecting a suitable prior distribution can significantly
impact the effectiveness of Bayesian inference. In this context, the application of the GFI
method could prove valuable in tackling these challenges. Based on this fact, we introduce
the GFI to the GR distribution . The performance of interval estimation with different
unknown parameters under different sample sizes is studied and compared with the other
three methods.

In this paper, we will use the GFI to construct the fiducial point estimators and the
fiducial confidence intervals for the GR distribution. The rest of the article is organized as
follows. The methods of constructing confidence intervals based on classical frequency
inference, bootstrap, GFI and Bayesian approaches are discussed in Section 2. Simulations
are conducted to compare the performances of the estimation methods in Section 3. Two
real data sets are analyzed for illustrating the usefulness of the proposed methods in
Section 4. Some conclusions are provided in Section 5.

2. Methods
2.1. Frequentist Inference

Given observed data x = (x1, . . . xn)
T from the GR(β, λ), the log-likelihood function

L(β, λ | x) is
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L(β, λ | x) =C + n ln β + 2n ln λ +
n

∑
i=1

ln xi − λ2
n

∑
i=1

x2
i

+ (β− 1)
n

∑
i=1

ln
(

1− e−(λxi)
2
)

.
(5)

The MLEs of β and λ can be derived from

∂L
∂β

=
n
β
+

n

∑
i=1

ln
(

1− e−(λxi)
2
)
= 0,

∂L
∂λ

=
2n
λ
− 2λ

n

∑
i=1

x2
i + 2λ(β− 1)

n

∑
i=1

x2
i e−(λxi)

2

1− e−(λxi)2 = 0.

(6)

MLEs of β and λ are computed by solving nonlinear equations; the log-likelihood
function with respect to λ is an unimodal function. The second-order partial derivative is
less than 0; for more details, see Kundu and Raqab [1].

Confidence intervals for β and λ can be obtained using the following asymptotic
normal distribution for β̂ and λ̂, that is,

(β̂, λ̂)T L−→ N2

(
(β, λ)T, I−1

0

)
, (7)

where L represents that as the sample size increases, the distribution of the random variable
or estimator tends toward a probability distribution, and the inverse of the observed Fisher
information matrix for I0 is

I−1
0 =

 − ∂2L
∂β2 − ∂2L

∂β∂λ

− ∂2L
∂β∂λ − ∂2L

∂λ2

−1

|
(β,λ)T=(β̂,λ̂)T

=

(
var(β̂) cov(β̂, λ̂)

cov(β̂, λ̂) var(λ̂)

)
. (8)

Consequently, the asymptotic 100(1− α)% confidence intervals for β and λ are

Iβ : β̂± zα/2

√
var(β̂) and Iλ : λ̂± zα/2

√
var(λ̂), (9)

where var(β̂), var(λ̂) is obtained from the observed information matrix; zα/2 represents
α/2 percentile of standard normal distribution.

2.2. Bootstrap Technique

The bootstrap method introduced by Efron [18] is a resampling technique based on
the random selection of new samples from the original sample to construct a sampling
distribution for a particular statistic. The bootstrap procedure requires the following steps:

(1) Randomly generate sample data (x1, . . . , xn) from the GR(β, λ). The MLEs for the
unknown parameter (β, λ) are calculated, and the estimated result is denoted as (β̂, λ̂).

(2) Use β̂, λ̂ to generate a bootstrap sample of observations (x∗1 , . . . , x∗n) from GR distribution.
(3) Based on the bootstrap sample, compute the MLEs of (β, λ), and the estimated result

is denoted as (β̂∗, λ̂∗) .
(4) Repeat Steps (2)–(3) for B times. Obtain estimates of (β, λ), denoted as (β̂∗1, . . . , β̂∗B)

and (λ̂∗1 , . . . , λ̂∗B).
(5) The parameter estimates of parameters β and λ obtained at B times are sorted in as-

cending order respectively. The 100(1− α%) percentile bootstrap confidence intervals
(PBCl) for β are

Iβ
PBCI : β̂∗B(α/2) ≤ β ≤ β̂∗B(1−α/2).



Modelling 2023, 4 614

Same treatment with λ̂∗ leads to the BPCI of λ as

Iλ
PBCI : λ̂∗B(α/2) ≤ λ ≤ λ̂∗B(1−α/2).

2.3. Generalized Fiducial Inference

Let the data-generating equation be

x = G(U, θ), (10)

where x = (x1, . . . xn)
T is the data, θ ∈ Θ ⊂ Rp is a p-dimensional vector and U is

a complete known random vector. Under certain specific differentiability conditions,
Hannig et al. [14] derived a user-friendly formula for calculating the generalized fiducial
distribution (GFD) for θ :

fF(θ) =
f (x, θ)J(x, θ)∫

Θ
f
(

x, θ′
)

J
(
x, θ′

)
dθ′

. (11)

where f (x | θ) represents the joint density function of x and

J(x, θ) = D

(
d

dθ
G(u, θ)

∣∣∣∣
u=G−1(x,θ)

)
. (12)

where D(A) = ∑i=(1≤i1<···<ip≤n)|det(A)i| and the above sum goes over (n
p) of p-tuples of

indexes i =
(
1 ≤ i1 < · · · < ip ≤ n

)
, and the submatrix (A)i is the p× p matrix formed by

the rows
(
i1, . . . , ip

)
of A. For more details, see Hannig et al. [14].

Regarding our concerned issue, we have that

Ui = F(xi; β, λ), i = 1, . . . , n, (13)

where F(xi; β, λ) ,
(

1− e−(λxi)
2
)β

is the distribution function of GR(β, λ) and Ui follows
a uniform distribution on (0, 1). According to (10), we can derive the data-generating
equation xi = G(ui, β, λ, ), which is

xi =
1
λ

√
− ln

(
1− u

1
β

i

)
. (14)

Then, we have

∂G
∂β

∣∣∣∣
ui=

(
1−e−(λxi)

2
)β = − 1

2βλ2xi

(
e(λxi)

2
− 1
)

ln
(

1− e−(λxi)
2
)

, (15)

and
∂G
∂λ

∣∣∣∣
ui=

(
1−e−(λxi)

2
)β = − xi

λ
. (16)

Together (12), (15) with (16), it follows that
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J(x, β, λ)= D

(
d

dθ
G(u, θ)

∣∣∣∣
u=G−1(x,θ)

)

=
1

2βλ3 ∑
16i<j6n

∣∣∣∣∣ xi
xj

(
e(λxj)

2
− 1
)

ln
(

1− e−(λxj)
2
)
−

xj

xi

(
e(λxi)

2
− 1
)

ln
(

1− e−(λxi)
2
)∣∣∣∣∣,

(17)

where g
(

xi, xj, λ
)
= xi

xj

(
e(λxj)

2
− 1
)

ln
(

1− e−(λxj)
2
)
− xj

xi

(
e(λxi)

2
− 1
)

ln
(

1− e−(λxi)
2
)

.

Finally, we can derive the following GFD of (β, λ) :

fF(β, λ | x) =
f (x | β, λ)J(x, β, λ)∫ ∞

0

∫ ∞

0
f (x | β, λ)J(x, β, λ)dβdλ

, (18)

where f (x | β, λ) = ∏n
i=1 fi(xi; β, λ) and

fi(xi; β, λ) , f (x; β, λ) = 2βλ2xe−(λx)2
(

1− e−(λx)2
)β−1

. (19)

Specifically,

fF(β, λ | x) ∝ βnλ2n
n

∏
i=1

xie∑n
i=1 −(λxi)

2
n

∏
i=1

(
1− e−(λxi)

2
)β−1

· 1
2βλ3 ∑

16i<j6n

∣∣g(xi, xj, λ
)∣∣

∝ βn−1λ2n−3
n

∏
i=1

xie
∑n

i=1

[
−(λxi)

2+(β−1) ln
(

1−e−(λxi)
2)]

∑
16i<j6n

∣∣g(xi, xj, λ
)∣∣, (20)

On the one hand, the conditional fiducial density function of β given λ can be derived
as follows:

fF(β | λ, x) ∝ βn−1e
β ∑n

i=1 ln
(

1−e−(λxi)
2
)

, (21)

and the conditional fiducial density function of λ given β is

fF(λ | β, x) ∝ λ2n−3e−∑n
i=1

[
(λxi)

2−(β−1) ln
(

1−e−(λxi)
2)]

∑
16i<j6n

∣∣g(xi, xj, λ
)∣∣. (22)

Obviously, it is easy to see that the sample of β can be implemented using the
Ga
(

n,−∑n
i=1 ln

(
1− e−(λxi)

2
))

generating routine. By observing Equation (22), we know
that the conditional posterior distribution of λ cannot be reduced analytically into a
common distribution. Therefore, we propose to use the normal proposal distribution
of Metropolis–Hasting (M-H) sampling in the Gibbs algorithm to obtain samples; for more
details, see Tierney [19]. The Gibbs algorithm with M-H sampling for the fiducial inference
of the GR distribution can be given as follows:
Step 1. Set the initial value (β0, λ0) = (β̂, λ̂) to be given by the MLEs.
Step 2. Set i = 1.
Step 3. Let βi and λi be the values of i− th iteration.

• Step 2-1 Generate βi from gamma proposal distribution, Ga
(

n,−∑n
i=1 ln

(
1− e−(λxi)

2
))

.

• Step 2-2 The procedures to generate λi using the M-H algorithm are listed as follows:

(i) Generate λ∗ from normal proposal distribution, N(λi−1,
√

var(λ̂)).
(ii) Evaluate the acceptance probability

Ωλ = min
[

1,
fF(λ

∗ | βi, x)
fF(λi−1 | βi, x)

]
.
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(iii) Generate a random variable v from a uniform (0, 1) distribution.
(iv) If v < Ωλ, accept the proposal and set λi = λ∗, else set λi = λi−1.

Step 4. Set i = i + 1.
Step 5. Repeat Steps 2–4 for N times.
Step 6. Calculate fiducial point estimators of β and λ by

β̂F =
1

N −M

N

∑
i=M+1

βi, λ̂F =
1

N −M

N

∑
i=M+1

λi,

where M is the burn-in period, which is based on the saved N − M samples. The
burn-in period is an initial segment of the generated Markov chain that is discarded or
ignored. After the burn-in period, the Markov chain is considered to be in a stationary
state, and the saved samples provide a representation of the target distribution. Ar-
range βM+1, . . . , βN from small to large. Select the (N−M)α/2th and (N−M)1−α/2th
of the permutation as β̂α/2 and β̂1−α/2, respectively.

Then, the 100(1− α)% fiducial credible intervals are

Iα
F : β̂α/2 ≤ α ≤ β̂1−α/2,

Iλ
F : λ̂α/2 ≤ λ ≤ λ̂1−α/2.

2.4. Bayesian Inference

Naqash et al. [6] illustrated that the reference prior of the GR(β, λ) results in an
improper posterior distribution. A Bayesian approach is adopted, where the representative
priors on β and λ are gamma priors. However, these priors are not conjugate, necessitating
an additional assumption that β and λ are independent a priori distributions, as follows,

π(β) ∝ βa1−1e−b1β, β > 0
π(λ) ∝ λa2−1e−b2λ, λ > 0.

(23)

Since all the hyperparameters a1, a2, b1, b2 are considered to be known and non-
negative, the joint posterior density function of β and λ is expressed as follows:

fB(β, λ | x) =
f (x | β, λ)π(λ)π(β)∫ ∞

0

∫ ∞

0
f (x | β, λ)π(λ)π(β)dβdλ

, (24)

where f (x | β, λ) is the joint density of x = (x1, . . . xn)
T. If no information is available, let

a1 = a2 = b1 = b2 = 0. Therefore,

fB(β, λ | x) ∝ βn−1λ2n−1
n

∏
i=1

xie−λ2Σx2
i

n

∏
i=1

(
1− e−(λxi)

2
)β−1

. (25)

Then, the full conditional function of β given λ is

fB(β | λ, x) ∝ βn−1e
β ∑n

i=1 ln
(

1−e−(λxi)
2
)

. (26)

Therefore, it is evident that the sample of β can be accomplished using the
Ga
(

n,−∑n
i=1 ln

(
1− e−(λxi)

2
))

generating routine. The full conditional function of λ given
β is as follows:

fB(λ | β, x) ∝ λ2n−1e−∑n
i=1

[
(λxi)

2−(β−1) ln
(

1−e−(λxi)
2)]

. (27)
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Using the fiducial process, we can easily obtain estimates of β and λ through the Gibbs
algorithm for M-H sampling. Finally, the 100(1− α)% credible intervals for the Bayesian
estimates proposed can be formulated as

Iβ
B : β̂α/2 ≤ β ≤ β̂1−α/2,

Iλ
B : λ̂α/2 ≤ λ ≤ λ̂1−α/2.

3. Simulation

In this section, we use R version 4.1.1 program software to compare the performance
of the different methods proposed in the previous section for GR distribution parameter
estimation and confidence intervals.

In point estimation, mean square error (MSE) is used to compare the performance

of MLE, GFI and Bayesian methods, where MSE(θ) = (1/N)∑N
k=1

(
θ̂(k) − θ

)2
, where

N = 1000.
In the interval estimation, we use coverage probability (CP) and average length (AL) to

compare MLE, confidence intervals for the bootstrap method, fiducial confidence intervals
for GFI and credible intervals for the Bayesian method.

Moreover, the frequentist confidence intervals (FrCI), the parameter bootstrap confi-
dence intervals (PBCI), the Bayesian credible posterior intervals (BaCI) and the fiducial con-
fidence intervals (FiCI) are considered to illustrate the usefulness of the proposed method.

In the simulation, the Markov chain Monte Carlo (MCMC) method is used to obtain
estimation of parameters. We run the Markov chain with N = 10,500 iterations; the first
M = 500 values are discarded as the burn-in period. In the bootstrap simulation, we used
B = 1000 regenerated samples. The simulation study is carried out for different parameter
values and different sample sizes. We consider six different combinations of the parameters
(β, λ) as (0.5, 1), (0.5, 2) , (0.5, 3), (1, 1), (1, 2) and (1, 3). The chosen sample sizes are n = 10,
20, 30 and 50. Based on these samples, the MSE, CP and AL of the 95% fiducial (confidence
or credible) intervals are calculated for each method.

We simulated the MSE of GR distribution parameters under MLE, GFI and Bayesian
estimation based on different parameter values and different samples. The simulation
results are shown in Table 1. It can be seen from the table that when the sample size
increases, the MSE of MLE, GFI and the Bayesian method gradually becomes smaller and
very close. It can also be seen from the table that when n = 10 and 20, GFI is superior to
MLE and the Bayesian method.

From Tables 2–7, we have the following conclusions. As the sample size increased, the
ALs of the confidence interval decreased. The FrCI and BaCI have better CPs when the
sample size is small. From the perspective of interval coverage, the actual coverage and
nominal coverage of FrCI and BaCI of parameters β and λ are very close to each other. The
actual coverage of FrCI of parameter β is too conservative, while the difference between
the actual coverage and the nominal coverage of FrCI of parameter λ is obvious. The actual
coverage of PBCI of parameter β and λ is significantly smaller than the nominal coverage.
The FrCI performs better than BaCI in terms of ALs in most large cases.
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Table 1. Mean (MSE) for the point estimations of β and λ.

(β, λ) n β̂MLE β̂GFI β̂BAY λ̂MLE λ̂GFI λ̂BAY

(0.5, 1)

10 0.668 (0.188) 0.613 (0.131) 0.621 (0.133) 1.175 (0.156) 1.054 (0.108) 1.077 (0.109)
20 0.562 (0.033) 0.546 (0.030) 0.552 (0.033) 1.068 (0.041) 1.034 (0.041) 1.037 (0.042)
30 0.541 (0.018) 0.524 (0.017) 0.533 (0.018) 1.047 (0.025) 1.012 (0.025) 1.025 (0.026)
50 0.524 (0.009) 0.517 (0.009) 0.518 (0.009) 1.030 (0.014) 1.012 (0.014) 1.013 (0.014)

(0.5, 2)

10 0.660 (0.152) 0.615 (0.138) 0.639 (0.163) 2.309 (0.545) 2.094 (0.431) 2.166 (0.426)
20 0.561 (0.033) 0.546 (0.033) 0.549 (0.031) 2.141 (0.195) 2.068 (0.163) 2.075 (0.172)
30 0.543 (0.019) 0.530 (0.017) 0.535 (0.019) 2.092 (0.110) 2.052 (0.103) 2.055 (0.105)
50 0.524 (0.009) 0.517 (0.009) 0.516 (0.009) 2.057 (0.058) 2.017 (0.058) 2.022 (0.056)

(0.5, 3)

10 0.649 (0.137) 0.621 (0.165) 0.643 (0.185) 3.416 (1.131) 3.145 (0.880) 3.259 (1.058)
20 0.580 (0.041) 0.549 (0.031) 0.554 (0.031) 3.239 (0.465) 3.044 (0.365) 3.125 (0.411)
30 0.542 (0.019) 0.526 (0.016) 0.534 (0.017) 3.128 (0.244) 3.021 (0.212) 3.074 (0.238)
50 0.520 (0.009) 0.519 (0.009) 0.519 (0.009) 3.074 (0.131) 3.031 (0.123) 3.027 (0.123)

(1, 1)

10 1.458 (1.851) 1.358 (1.461) 1.484 (3.108) 1.115 (0.077) 1.031 (0.060) 1.071 (0.067)
20 1.160 (0.185) 1.133 (0.182) 1.148 (0.203) 1.053 (0.028) 1.006 (0.024) 1.029 (0.026)
30 1.092 (0.095) 1.064 (0.090) 1.082 (0.091) 1.028 (0.017) 1.012 (0.016) 1.016 (0.016)
50 1.061 (0.049) 1.038 (0.048) 1.053 (0.049) 1.021 (0.010) 1.008 (0.009) 1.009 (0.009)

(1, 2)

10 1.457 (1.697) 1.337 (1.548) 1.476 (3.637) 2.222 (0.308) 2.046 (0.222) 2.132 (0.285)
20 1.155 (0.188) 1.124 (0.187) 0.145 (0.195) 2.089 (0.118) 2.026 (0.100) 2.054 (0.106)
30 1.096 (0.098) 1.078 (0.094) 1.080 (0.097) 2.064 (0.069) 2.010 (0.062) 2.030 (0.066)
50 1.058 (0.048) 1.042 (0.045) 1.052 (0.047) 2.039 (0.037) 2.009 (0.037) 2.019 (0.037)

(1, 3)

10 1.440 (1.530) 1.325 (1.299) 1.375 (1.548) 3.355 (0.715) 3.089 (0.555) 3.142 (0.581)
20 1.180 (0.193) 1.109 (0.143) 1.148 (0.180) 3.164 (0.250) 3.028 (0.211) 3.086 (0.232)
30 1.109 (0.102) 1.081 (0.096) 1.078 (0.092) 3.123 (0.173) 3.031 (0.146) 3.048 (0.142)
50 1.066 (0.053) 1.048 (0.043) 1.052 (0.045) 3.062 (0.091) 3.023 (0.082) 3.031 (0.084)

Table 2. Empirical coverage and average length of 95% two-sided confidence intervals for β = 0.5,
λ = 1.

CP AL

n θ FrCI PBCI BaCI FiCI FrCI PBCI BaCI FiCI

10 β 0.969 0.834 0.941 0.947 1.047 1.492 0.984 1.012
λ 0.928 0.843 0.942 0.949 1.102 1.324 1.099 1.102

20 β 0.961 0.882 0.941 0.951 0.599 0.637 0.588 0.599
λ 0.947 0.879 0.944 0.954 0.741 0.885 0.741 0.732

30 β 0.954 0.906 0.948 0.954 0.463 0.550 0.459 0.460
λ 0.942 0.905 0.946 0.948 0.594 0.634 0.597 0.591

50 β 0.954 0.926 0.949 0.953 0.345 0.356 0.342 0.341
λ 0.941 0.925 0.951 0.948 0.456 0.475 0.455 0.454

Table 3. Empirical coverage and average length of 95% two-sided confidence intervals for β = 0.5,
λ = 2.

CP AL

n θ FrCI PBCI BaCI FiCI FrCI PBCI BaCI FiCI

10 β 0.977 0.841 0.941 0.948 1.029 1.651 1.016 0.982
λ 0.927 0.854 0.938 0.943 2.190 2.888 2.164 2.162

20 β 0.965 0.902 0.948 0.951 0.595 0.627 0.586 0.584
λ 0.939 0.897 0.944 0.947 1.483 1.646 1.483 1.475

30 β 0.959 0.931 0.951 0.944 0.466 0.675 0.460 0.457
λ 0.943 0.915 0.951 0.948 1.187 1.228 1.188 1.184

50 β 0.954 0.937 0.953 0.951 0.345 0.375 0.341 0.342
λ 0.946 0.934 0.946 0.947 0.910 0.948 0.911 0.910
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Table 4. Empirical coverage and average length of 95% two-sided confidence intervals for β = 0.5,
λ = 3.

CP AL

n θ FrCI PBCI BaCI FiCI FrCI PBCI BaCI FiCI

10 β 0.972 0.859 0.955 0.944 1.026 1.490 1.044 0.999
λ 0.932 0.843 0.942 0.950 3.291 3.811 3.301 3.290

20 β 0.970 0.886 0.946 0.946 0.598 0.763 0.580 0.586
λ 0.940 0.911 0.951 0.942 2.226 2.692 2.243 2.210

30 β 0.958 0.896 0.950 0.948 0.465 0.584 0.460 0.453
λ 0.939 0.923 0.954 0.938 1.788 1.969 1.780 1.778

50 β 0.959 0.910 0.953 0.950 0.346 0.402 0.343 0.344
λ 0.944 0.917 0.941 0.947 1.364 1.388 1.363 1.369

Table 5. Empirical coverage and average length of 95% two-sided confidence intervals for β = 1,
λ = 1.

CP AL

n θ FrCI PBCI BaCI FiCI FrCI PBCI BaCI FiCI

10 β 0.968 0.863 0.940 0.946 2.757 3.089 2.841 2.623
λ 0.925 0.868 0.944 0.945 0.854 0.887 0.873 0.855

20 β 0.967 0.883 0.949 0.952 1.392 1.978 1.388 1.364
λ 0.939 0.896 0.950 0.942 0.588 0.637 0.594 0.584

30 β 0.962 0.914 0.948 0.949 1.063 1.332 1.049 1.039
λ 0.943 0.912 0.947 0.950 0.475 0.499 0.478 0.473

50 β 0.958 0.930 0.944 0.946 0.781 0.885 0.770 0.770
λ 0.947 0.926 0.943 0.948 0.366 0.376 0.366 0.364

Table 6. Empirical coverage and average length of 95% two-sided confidence intervals for β = 1,
λ = 2.

CP AL

n θ FrCI PBCI BaCI FiCI FrCI PBCI BaCI FiCI

10 β 0.971 0.825 0.937 0.947 2.704 3.495 2.656 2.557
λ 0.917 0.880 0.949 0.950 1.708 2.008 1.746 1.731

20 β 0.968 0.891 0.947 0.950 1.395 1.951 1.377 1.356
λ 0.938 0.883 0.944 0.941 1.177 1.275 1.190 1.182

30 β 0.961 0.904 0.945 0.951 1.063 1.323 1.054 1.041
λ 0.941 0.914 0.941 0.949 0.952 0.997 0.956 0.950

50 β 0.954 0.926 0.947 0.943 0.778 0.884 0.776 0.768
λ 0.947 0.928 0.944 0.949 0.731 0.749 0.733 0.730

Table 7. Empirical coverage and average length of 95% two-sided confidence intervals for β = 1,
λ = 3.

CP AL

n θ FrCI PBCI BaCI FiCI FrCI PBCI BaCI FiCI

10 β 0.961 0.857 0.943 0.943 2.734 3.471 2.670 2.617
λ 0.929 0.845 0.948 0.941 2.549 3.034 2.614 2.583

20 β 0.966 0.872 0.955 0.945 1.394 2.065 1.385 1.331
λ 0.941 0.876 0.950 0.946 1.783 1.909 1.783 1.760

30 β 0.968 0.918 0.949 0.945 1.064 1.312 1.041 1.054
λ 0.936 0.904 0.945 0.949 1.435 1.501 1.440 1.428

50 β 0.952 0.926 0.946 0.947 0.786 0.859 0.777 0.772
λ 0.945 0.931 0.952 0.948 1.098 1.128 1.101 1.103
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4. Application
4.1. Ball Bearing Data

In this section, real-life data are illustrated to compare different estimation procedures
studied in this study. Schafer [20] provides the numbers of 106 revolutions before failure
for each of 23 ball bearings in a life test. Meintanis et al. [21] pointed out that the GR
distribution could fit this sample well. The data are given in Appendix A.

We calculate the Kolmogorov–Smirnov (KS) test statistics and p-values between the
empirical distribution and the cumulative distribution function. The KS statistic is 0.157
and p-value is 0.625. Therefore, based on the p-value, we cannot reject this data set from
the GR distribution. Figure 1 shows the fitted density and CDF plot of the data set. The
point estimates, 95% confidence (fiducial and credible) intervals of β and λ are shown in
Tables 8 and 9. From Table 9, we can see that the interval estimation of FrCI is narrower
than that of other methods, as is consistent with our simulation study. The GFI method
provides better results than the MLE, bootstrap and Bayesian methods. Figure 2 depicts
the track plots, estimated marginal posterior densities and autocorrelation coefficient plots.
The observation of Figure 2 indicates that the Markov chain generated during the GFI
process exhibits convergence and stability.

Figure 1. Graphical fitting of the GR distribution.

Table 8. Estimations for the data of ball bearings.

MLE GFI Bayes

β (SE) 1.202 (0.072) 1.160 (0.071) 1.192 (0.071)

λ (SE) 0.013 (0.0004) 0.013 (0.0004) 0.013 (0.0004)

Table 9. Confidence intervals and lengths for the result of ball bearings.

β λ

Interval Length Interval Length

FrCI [0.526, 1.878] 1.352 [0.010, 0.017] 0.007
PBCI [0.776, 2.372] 1.596 [0.010, 0.018] 0.008
FICI [0.623, 1.876] 1.253 [0.009, 0.016] 0.007
BaCI [0.673, 1.973] 1.300 [0.010, 0.017] 0.007
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Figure 2. Trace, density and autocorrelation coefficient graphs for β (on up) and λ (on down) via
GFI methods.

4.2. COVID-19 Mortality Rate Data

In this section, for illustrative purposes, real-life data for COVID-19 mortality rate are
illustrated to compare different estimation procedures studied in this study. We consider
the set of real-life data, which is reported in Almetwally [21]. These data represent a
COVID-19 mortality rate belonging to France of 51 days, which is recorded from 1 January
to 20 February 2021. The data are given in the Appendix B.

For this example, the KS statistic is 0.118, and the associated p value is 0.474. Therefore,
the GR distribution has a good fitting effect on this set of data. Figure 3 shows the fitted
density and CDF plot of the data set. The point estimates and 95% confidence (fiducial and
credible) intervals of β and λ are shown in Tables 10 and 11. Because the sample size is
large enough, we can see that the estimates of the three methods are very close in Table 10.
The GFI method of the GR distribution is the best estimation method, according to Table 11.
Figure 4 depicts the track plots, estimated marginal posterior densities and autocorrelation
coefficient plots. Observe that the Markov chain generated in the GFI process in Figure 4
has convergence and stability.

Figure 3. Graphical fitting of the GR distribution.
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Table 10. Estimations for the data of COVID-19 mortality rate.

MLE GFI Bayes

β (SE) 1.109 (0.029) 1.093 (0.029) 1.093 (0.029)

λ (SE) 7.022 (0.089) 6.919 (0.089) 6.924 (0.089)

Table 11. Confidence intervals and lengths for the result of COVID-19 mortality rate.

β λ

Interval Length Interval Length

FrCI [0.696, 1.521] 0.825 [5.773, 8.270] 2.497
PBCI [0.794, 1.811] 1.017 [6.040, 8.548] 2.508
FiCI [0.750, 1.534] 0.784 [5.718, 8.075] 2.377
BaCI [0.719, 1.512] 0.793 [5.706, 8.111] 2.405

Figure 4. Trace, density and autocorrelation coefficient graphs for β (on up) and λ (on down) via
GFI methods.

5. Conclusions

This paper studies the statistical inference of the GR distribution, constructs the maxi-
mum likelihood estimation, bootstrap and Bayesian methods, and proposes another GFI
method for comparison through a large number of simulation studies and two real exam-
ples to evaluate the performance of our proposed method. From the simulation studies, in
most cases, the values of the MSE estimated by the GFI method for the parameters of the
GR distribution are better than other estimation methods, even in the case of small sample
sizes. The values of the AL of fiducial (confidence or credible) intervals of all methods
decrease with the increase in sample size. The effect of MLE is not ideal when the sample
size is small, and the bootstrap method does not reach the nominal level in the whole
simulation process. The fiducial estimates based on Hannig′s method are better than the
Bayesian estimates even when the sample size is small. In the future, we will improve
or propose some new methods to increase the values of the CP without affecting ALs. In
addition, we will extend our method to multivariate distributions.
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Appendix A. Data Set

Appendix A.1. Ball Bearing Data

17.88 28.92 33.00 41.52 42.12 45.60 48.80 51.84
51.96 54.12 55.56 67.80 68.64 68.64 68.88 84.12
93.12 98.64 105.12 105.84 127.92 128.04 173.40

Appendix A.2. COVID-19 Mortality Rate Data

0.0995 0.0525 0.0615 0.0455 0.1474 0.3373 0.1087 0.1055 0.2235
0.0633 0.0565 0.2577 0.1345 0.0843 0.1023 0.2296 0.0691 0.0505
0.1434 0.2326 0.1089 0.1206 0.2242 0.0786 0.0587 0.1516 0.2070
0.1170 0.1141 0.2705 0.0793 0.0635 0.1474 0.2345 0.1131 0.1129
0.2054 0.0600 0.0534 0.1422 0.2235 0.0908 0.1092 0.1958 0.0580
0.0502 0.1229 0.1738 0.0917 0.0787 0.1654

Appendix B. Code

ACI<-function(alpha,beta,n){
x<-rGR(n,alpha,beta)
fn<-function(theta){
alpha<-theta[1]
beta<-theta[2]
n<-length(x)
logL<-n*log(alpha)+2*n*log(beta)+sum(log(x))-beta^2*sum(x^2)+(alpha-1)*sum(log(1-exp(-beta^2*x^2)))
return(-logL)
}
res<-optim(theta<-c(alpha,beta),fn,method=‘‘L-BFGS-B’’,lower=c(0.01,0.01),hessian=T)
res$par
sqrt(diag(solve(res$hessian)))
down<-res$par-qnorm(0.975)*sqrt(diag(solve(res$hessian)))
up<-res$par+qnorm(0.975)*sqrt(diag(solve(res$hessian)))
return(c(res$par[1],res$par[2],down[1],up[1],down[2],up[2]))
}
p=0
q=0
m=1000
est1<-rep(0,m)
est2<-rep(0,m)
AL1<-rep(0,m)
AL2<-rep(0,m)
for(i in 1:m){
ACI=ACI(alpha,beta,n)
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est1[i]<-ACI[1]
est2[i]<-ACI[2]
AL1[i]<-ACI[4]-ACI[3]
AL2[i]<-ACI[6]-ACI[5]
if(ACI[3]<alpha&alpha<ACI[4]){
p=p+1
}
if(ACI[5]<beta&beta<ACI[6]){
q=q+1
}
bias1<-mean(est1)-alpha
var1<-var(est1)*(m-1)/m
mse1<-bias1^2+var1
bias2<-mean(est2)-beta
var2<-var(est2)*(m-1)/m
mse2<-bias2^2+var2
coverage1<-c(mean(est1),mean(est2), mse1, mse2,p/m,q/m,mean(AL1),mean(AL2))
#bootstrap
sim<-1000
NBOOT<-500
n<-30
alpha<-1
beta<-1
dis<-0
num<-0
DIS<-0
NUM<-0
rGR<-function(n,alpha,beta){
sqrt(-log(1-runif(n)^(1/alpha)))/beta
}
mle<-function(n,alpha,beta,x){
fn<-function(theta){
alpha<-theta[1]
beta<-theta[2]
n<-length(x)
logL<-n*log(2)+n*log(alpha)+2*n*log(beta)+sum(log(x))-beta^2*sum(x^2)+(alpha-1)
*sum(log(1-exp(-beta^2*x^2)))
return(-logL)
}
res<-optim(theta<-c(alpha,beta),fn,method=‘‘L-BFGS-B’’,lower=c(0.01,0.01),hessian=F)
res$par
return(res$par)
}
alphastar<-rep(0,NBOOT)
betastar<-rep(0,NBOOT)
BOOT.P<-function(n,alpha,beta){
para<-mle(n,alpha,beta,x)
alphahat<-para[1]
betahat<-para[2]
for(i in 1:NBOOT){
xstar<-rGR(n,alphahat,betahat)
par<-mle(n,alphahat,betahat,xstar)
par1<-par[1]
par2<-par[2]



Modelling 2023, 4 625

alphastar[i]<-par1
betastar[i]<-par2
}
low1<-quantile(alphastar,0.025,names=F)
up1<-quantile(alphastar,0.975,names=F)
low2<-quantile(betastar,0.025,names=F)
up2<-quantile(betastar,0.975,names=F)
num1<-sum(alpha>low1 && alpha<up1)
dis1<-up1-low1
num2<-sum(beta>low2 && beta<up2)
dis2<-up2-low2
return(c(dis1,num1,dis2,num2))
}
for(i in 1:sim){
x<-rGR(n, alpha,beta)
samples<- BOOT.P(n,alpha,beta)
dis<-dis+samples[1]
num<-num+samples[2]
DIS<-DIS+samples[3]
NUM<-NUM+samples[4]
}
dis/sim
num/sim
DIS/sim
NUM/sim
#fudicial or bayes
# fbeta<-function(theta1,theta2){
# theta2^(2*n-1)*exp(-theta2^2*sum(data^2))*prod((1-exp(-theta2^2*data^2))^(theta1-1))
# }
fbeta<-function(theta1,theta2){
for(i in 1:(n-1)){
for(j in (i+1):n){
g<-abs(data[i]*(exp((theta2*data[j])^2)-1)*log(1-exp(-(theta2*data[j])^2))/data[j]-data[j]*
(exp((theta2*data[i])^2)-1)*log(1-exp(-(theta2*data[i])^2))/data[i])
result<-result+g
}
}
theta2^(2*n-3)*exp(-theta2^2*sum(data^2))*prod((1-exp(-theta2^2*data^2))^(theta1-1))*result
}
gibbs_mh <- function(n,theta1,theta2) {
#data<-rGR(n,theta1,theta2)
num_samples <- 10500
burn_in <- 500
theta1 <- 1
theta2 <- 1
samples <- matrix(NA, nrow = num_samples, ncol = 2)
for (i in 1:num_samples) {
theta1 <- rgamma(1, shape = n, rate = -sum(log(1-exp(-(theta2*data)^2))))
theta2_candidate <- rnorm(1, mean = theta2, sd =0.2)
}
acceptance_prob <- min(1,fbeta(theta1,theta2_candidate)/fbeta(theta1,theta2))
if (runif(1) < acceptance_prob) {
theta2 <- theta2_candidate
}



Modelling 2023, 4 626

samples[i, ] <- c(theta1, theta2)
}
samples <- samples[-c(1:burn_in), ]
theta1hat<-mean(samples[,1])
theta2hat<-mean(samples[,2])
low<-quantile(samples[seq(1,num_samples-burn_in,1),1],0.025,names=F)
up<-quantile(samples[seq(1,num_samples-burn_in,1),1],0.975,names=F)
LOW<-quantile(samples[seq(1,num_samples-burn_in,1),2],0.025,names=F)
UP<-quantile(samples[seq(1,num_samples-burn_in,1),2],0.975,names=F)
return(c(theta1hat,theta2hat,low,up,LOW,UP))
}
result<-0
p=0
q=0
est1<-rep(0,m)
est2<-rep(0,m)
AL1<-rep(0,m)
AL2<-rep(0,m)
for(i in 1:m){
data<-rGR(n,theta1,theta2)
ACI=gibbs_mh(n,theta1,theta2)
est1[i]<-ACI[1]
est2[i]<-ACI[2]
AL1[i]<-ACI[4]-ACI[3]
AL2[i]<-ACI[6]-ACI[5]
if(ACI[3]<theta1&theta1<ACI[4]){
p=p+1
}
if(ACI[5]<theta2&theta2<ACI[6]){
q=q+1
}
}
bias1<-mean(est1)-theta1
var1<-var(est1)*(m-1)/m
mse1<-bias1^2+var1
bias2<-mean(est2)-theta2
var2<-var(est2)*(m-1)/m
mse2<-bias2^2+var2
coverage1<-c(mean(est1),mean(est2), mse1, mse2,p/m,q/m,mean(AL1),mean(AL2))
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