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Abstract: Social media significantly influences business, politics, and society. Easy access and
interaction among users allow information to spread rapidly across social networks. Understanding
how information is disseminated through these new publishing methods is crucial for political and
marketing purposes. However, modeling and predicting information diffusion is challenging due to
the complex interactions between network users. This study proposes an analytical approach based
on diffusion models to predict the number of social media users engaging in discussions on a topic.
We develop a modified version of the susceptible–infected (SI) model that considers the heterogeneity
of interactions between users in complex networks. Our model considers the network structure,
abandons the assumption of homogeneous mixing, and focuses on information diffusion in scale-free
networks. We provide explicit algorithms for modeling information propagation on different types of
random graphs and real network structures. We compare our model with alternative approaches,
both those considering network structure and those that do not. The accuracy of our model in
predicting the number of informed nodes in simulated information diffusion networks demonstrates
its effectiveness in describing and predicting information dissemination in social networks. This
study highlights the potential of graph-based epidemic models in analyzing online discussion topics
and understanding other phenomena spreading on social networks.

Keywords: social networks; information diffusion; SI model; random graphs; complex networks

1. Introduction

In recent years, social media has come to dominate as a major source of rapid dis-
semination of information, gaining immense popularity among a huge number of online
users. The influence of social media on business, politics, and society has becoming increas-
ingly significant. Thanks to easy access and interaction among many users, information
spreads epidemically across social networks. Understanding the mechanisms of infor-
mation dissemination through these new publishing methods is important for political
and marketing purposes. However, due to the high complexity of interactions between
network users, it is still a significant challenge to adequately model the information dis-
semination processes and then accurately predict the information diffusion. This study
proposes an analytical approach based on diffusion models to predict the number of social
media users who engage in discussion on a topic. In this paper, we develop a modified
version of the susceptible–infected (SI) model of block approximation for node degrees to
predict the information diffusion process at all its stages. The modification considers the
heterogeneity of interactions between social network users and is expressed by a system of
nonlinear differential equations on complex networks. The proposed model differs from
other similar models by three main features: it considers the network structure, it abandons
the homogeneous mixing hypothesis, and it focuses on information diffusion in scale-free
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networks. The paper provides explicit algorithms for modeling information propagation
on various types of random graphs, as well as on real network structures. A comparison is
also provided with alternative information dissemination approaches, both those that take
into account network structure and those that do not. The number of informed nodes of
the simulated information diffusion networks was compared with the number of informed
nodes in a simulation-based approach to determine which information diffusion model
provides the best fit. The high accuracy of the results showed that the proposed model is
able to describe and predict the process of information dissemination in social networks.
This study shows that graph-based epidemic models can expand their application to on-
line discussion topics and can also help in understanding other phenomena spreading on
social networks.

In recent years, attention to the study and analysis of the information diffusion in
complex networks has increased significantly. One of the most popular areas of research is
the modeling of the information diffusion in social and media networks. One important
problem is to study the temporal dynamics for the total number of users who received
a message on a specific topic. The curve describing the information diffusion in social
networks is usually an S-shaped line as shown in [1]. The curve can be conditionally
divided into three main sections, which correspond to three stages of the diffusion process.
The process of information propagation in social networks can be described in terms of the
epidemic diffusion.

At the first stage, only a small number of social network users have some specific
information. They are usually called innovators. The innovators then distribute this
information by posting it on their social media pages. The information becomes available
to subscribers and, first of all, to their closest contacts. Then, those users newly infected
with this information (topics, news, memes) continue to distribute information further on
the social network via their contacts and subscribers. At this stage (outbreak), the curve is
slowly growing.

At the second stage, the growth rate of the curve increases significantly, passing
into the exponential mode. At this stage, there is the largest increase in the number of
users who received the information. The increase in the growth speed of the information
diffusion is high due to the large number of susceptible users who have not yet received this
information. Moreover, by this point, a sufficient number of infected peaks have already
appeared, among which there are super-spreaders.

Then, the curve goes into the so-called saturation mode, which implies a significant
decrease in the speed of information diffusion, caused by the fact that most network users
have already received this information and/or have lost interest in it.

Note that such processes also arise during the propagation of infectious diseases as well as
the spread of innovations. For example, the growth of the mobile market in different countries
is modeled as the innovation diffusion process using the logistic model in studies of [2–7].

Over the course of the past fifty years, many different diffusion models have been
developed and studied, including the Bass model and the Gompertz model in the works
of [8,9] and others. Scientists have widely used these models and their modifications to
analyze various phenomena in [10–13]. An important step of a study is to compare several
models to examine a specific dataset, identifying the advantages and disadvantages of
each model (as in [14]). An overview of innovation diffusion models based on the agent
approach can be found in the work of [15]. In recent years, one of the main topics in
social sciences has been the study of the information diffusion in social networks and
communities (see, e.g., the works of [16–20]).

Social networks have become a convenient object of study due to the provision of
unprecedented amounts of data from network users. This has stimulated the emergence
of many works on the information diffusion dynamics in social networks. Many previ-
ous studies of the information dissemination in social communities were based either on
experimental analysis or on the solution of the rate equations describing the temporal
dynamics of the diffusion process. In addition, some recent studies by [21,22] have de-
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veloped a methodology for modeling information diffusion processes using heat transfer
equations, reaction–diffusion equations, or hydrodynamic equations.

Unfortunately, the existing models focus mainly on modeling the information dif-
fusion in the early stages. In our study, we primarily focus on creating a model that
adequately describes the behavior not only at the outbreak stage but also at later periods
of the information diffusion processes. In addition, previous studies have shown that it is
necessary to take into account the network structure when modeling the diffusion process
via differential equations. In this regard, this paper proposes the model that takes into
account the network structure. Therefore, we reject the homogeneous mixing hypothesis
and concentrate on the diffusion of information in scale-free networks.

The paper proposes a SI-type model on graphs which aims to describe information
diffusion processes in complex social networks. The model takes into account the net-
work structure. Moreover, the model abandons the homogeneous mixing hypothesis and
concentrates on the information diffusion in scale-free networks. The proposed model is
compared with other known models both on random graphs of two types (Erdős–Rényi,
Barabási–Albert) and on real social networks. The agent-based simulation model of in-
formation diffusion is taken as a benchmark model. The empirical results show that
the proposed model more adequately predicts behavior at all stages of the information
diffusion process.

The work contains three sections. The classical SI information diffusion model is
described in Section 2. The SI information diffusion model on graphs is presented in
Section 3. Section 4 includes a description of the data and empirical results obtained using
the considered models.

2. SI Model

To analyze the information diffusion, three frequently used logistic models are usually
considered, the so-called susceptible–infected (SI), susceptible–infected–susceptible (SIS),
and susceptible–infected–recovered (SIR) models, which elucidate the basic building blocks
of information diffusion modeling [23]. The aim of all of these models is calculate an
S-curve that reflects the information diffusion among specific groups of social media users.

The SI model is the most key of all segmental models used to describe the information
diffusion in social networks. The SI model was first used by Griliches [24], who applied
the logistic model to explain the widespread use of hybrid corn in the US. Refs. [25–28]
considered this study as a model for using the logistic model in their works.

According to this model, social network users (who have participated in the discussion
of a certain topic) can be classified into two categories: a group that starts disseminating
information (for example, publishing articles or posts on a certain topic using unique
hashtags) and a group that has not yet received information and has not yet participated in
its distribution. The SI model of logistic growth is represented by the following differen-
tial equation:

dI(t)
dt

= β · 〈k〉 · S(t)I(t)
N

, (1)

where

• N is the number of network users;
• S(t) is the number of users who are susceptible to a given topic and have not yet

received a news message and/or its derivative publications, i.e., not possessing the
information at time t (susceptible);

• I(t) is the number of users who received a news message and/or its derivative
publications on a given topic at time t, i.e., received information and continued its
dissemination (informed);

• β is the information diffusion probability, i.e., the probability that a network user
who has received a message will be interested in its topic and will broadcast it or its
derivative form to other network users, per unit of time;

• 〈k〉 is the average number of contacts of social network users.
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s = s(t) = S(t)/N and i = i(t) = I(t)/N denote the shares of susceptible and
informed users, respectively, at time t. Then, Equation (1) can be rewritten as follows:

di
dt

= β〈k〉si = β〈k〉i(1− i), (2)

where the product β〈k〉 is essentially the rate of the information diffusion.
The solution of this first-order differential equation with initial condition i0 = i(0) is

i = i(t) =
i0eβ〈k〉t

1− i0 + i0eβ〈k〉t (3)

Equation (3) predicts that:

• At the beginning, the proportion of users who received the news message increases
exponentially. Indeed, at an early stage, the informed user encounters only the
receptive, so information can be easily disseminated.

• The characteristic time required to reach the share of 1/e (about 36%) of all susceptible
individuals is

τ =
1

β〈k〉 (4)

Therefore, the value of τ is inversely proportional to the rate with which information
is distributed among the network users. Thus, it follows from (4) that an increase in
either the link density 〈k〉 or β increases the rate of diffusion information and reduces
the characteristic time.

• Over time, a user who has received information (message) on a given topic broadcasts
it further to a progressively smaller number of susceptible users. Consequently,
the growth of i slows down for large t. The information diffusion ends when everyone
is informed, i.e., when i(t→ ∞) = 1 and s(t→ ∞) = 0.

3. Information Diffusion on Networks

It should be noted that the models discussed above do not take into account the
structure of the contact network in which the information is disseminated. The main as-
sumption of such models is that any network user can infect any other user with some topic
(homogeneous mixing hypothesis) and that all users have a comparable number of contacts
(friends, subscribers). However, in real social networks, these assumptions are incorrect: a
message posted by a social network user is available to their friends (subscribers); therefore,
information is distributed through a complex network of contacts. In addition, such contact
networks are usually scale-free, so the average number of connections (i.e., the average
degree) in the networks is not enough to characterize their topology.

The failure of these assumptions has recently caused a fundamental revision of the
basis for modeling the information dissemination in social networks. This change began
with the work [29] that extended the basic epidemic diffusion models (which are easily
portable to the case of information dissemination), taking into account the topological
characteristics of the network. The information diffusion, as well as the best conditions
for the emergence of super-spreaders, has been largely explored in network science via
models of the spread of dangerous viruses and pathogens (as well as disinformation and
gossip) in the paper [30]. Recently, Reference [31] has investigated the influence of network
community structure on percolations that model the diffusion of an epidemic using the
classical SIR epidemic model. The work [32,33] has concluded that intra-community diffu-
sion is critically related to network density, and community structure is the most important
factor for the spread of an epidemic, regardless of community size and shape. In addition,
Reference [34] has studied an epidemic spread using the graph adjacency matrix.

Reference [35] presented a new SIR model on social networks for studying the spread
of rumors which makes it possible to explicitly take into account the location of objects,
as well as the connections and interactions between objects. Experiments in this model
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have shown that the existence of a networked environment shortens the diffusion time
of rumors. However, in the model, the authors neglected the connections of the network
environment, which strongly influence the process of spreading rumors.

The study [36] improved the SIR model by using an integrated methodology to model
the dissemination of opinions and ideas in web forums. This updated model was validated
on a large dataset from a large retail company web forum as well as on a dataset from a
general political discussion forum. The experimental results also showed that this updated
SIR model works well with the spread of topics on web forums.

The work [37] studied the mechanism of information dissemination using heat transfer
methods together with connections between network nodes to model the dissemination of
information in social networks. The model proposed in [37] depends on network structures,
since the proposed mechanisms are determined by the states and degrees of network nodes.

The study [21] presented a model of information dissemination based on the principles
of the heat transfer process. It assumed that the diffusion mechanism of the model depends
on how many times a particular node interacts with its neighbors. Experiments on a
real social media dataset have demonstrated the effectiveness of the model. The authors
also developed algorithms to find the top k nodes that were influenced by marketing
information. The limitation of the model is that it does not take into account the friendships
of users when disseminating information.

This study proposes SI-type models and their modifications to study the patterns of
the information dissemination process on various types of random graphs, as well as on
real social network data. We are interested in developing new models on graphs that could
take into account the features of their topology.

3.1. SI Model on Graphs

To build the SI model on the network, we used Equation (2) of the classical SI model,
which does not take into account the network structure. Note that in the process of
information diffusion over the network, people with a large number of connections are
more likely to come into contact with an informed person; therefore, they are more likely
to obtain the information. Thus, the mathematical formalism must consider the degree of
each node as an implicit variable. This can be achieved with the use of the degree block
approximation, which distinguishes nodes based on their degrees and assumes that nodes
with the same degree are statistically equivalent. Therefore,

ik =
Ik
Nk

(5)

denotes share of informed nodes with degree k among all Nk nodes with degree k in the
network. The total share of informed nodes is equal to the sum of all such nodes in all
blocks, i.e.,

i = ∑
k

pkik, (6)

where pk is the probability of choosing the node k.
Taking into account the notation, we can present the SI model for the block of nodes

with degree k as follows:
dik
dt

= β(1− ik)kθk. (7)

Equation (7) has almost the same structure as the main equation of the classical
SI model: the level of dissemination of information is proportional both to β and the
share of not yet informed nodes with degree k, i.e., to 1− ik. However, there are a few
key differences:

• The average degree 〈k〉 in (2) is replaced by the actual degree k of each node in (7).
• The density function θk represents the proportion of informed neighbors of a sus-

ceptible node with degree k. Thus, θk is just the proportion of ik nodes that are
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informed. However, in a network environment, the proportion of informed nodes in
the immediate vicinity of a node may depend on its degree k and time t.

• While (2) describes the behavior of the entire system with a single time-dependent
equation, (7) is a system of kmax coupled equations, one equation for each degree k
present in the network.

Ref. [29] studied the behavior of ik in early time periods of diffusion process. In this
work, we expand the formalism developed in [29] by considering the dissemination of
information at all time stages (periods) of its diffusion over the network.

As discussed earlier, in order to calculate ik, we must first determine θk. If the network
is degree–degree dis-assortative, i.e., there are no degree correlations in the network, and
the probability that a link leads from a node of degree k to a node of degree k′ is independent
of k and k′. Therefore, the probability that a randomly selected link of the network points
to a node of degree k′ is

k′pk′

∑k kpk
=

k′pk′

〈k〉 . (8)

It is quite natural that at least one link of each informed node is connected to another
informed node that transmits information. In this regard, the authors of [29] assume that
the number of links available for information transmission in the future periods is k′ − 1.
Then, the density function θk can be defined as follows:

θk =
∑k′(k′ − 1)pk′ ik′

〈k〉 . (9)

It should be noted that such an assumption is rather rough and can take place only at
early stages of information dissemination.

Now, we return to Equation (9). Note that in the absence of the degree–degree
correlations, θ = θk will not depend on k. Then, after differentiating (9), we get:

dθ

dt
= ∑

k

(k− 1)pk
〈k〉

dik
dt

. (10)

Then, it follows from (7) and (10) that

dθ

dt
= ∑

k

k(k− 1)pk
〈k〉 β(1− ik)θ. (11)

Obviously, at the early stages of information dissemination (for small t) the share of
the informed nodes is much smaller than 1, and the multiplier 1− ik can be neglected. It is
noted in [29] that in this case the share of informed nodes can be found explicitly. In our
case, we cannot drop the 1− ik multiplier.

Thus, we get the following system of kmax coupled equations:{
θ = ∑k(k−1)pk ik

〈k〉 ,
dik
dt = β(1− ik)kθ, k = 1, . . . , kmax.

(12)

3.2. New Model

In this section, we propose a new model in which it is assumed that the number of links
available to transmit information in the future will increase over time as the infectiousness
of network users increases. This is in the contrast with the model of [29]. The justification for
our assumption is that the more nodes become informed, the more opportunities (channels)
arise for them to transmit information in the future. Then, the density function θk can be
defined as follows:

θk =
∑k′ k′(t, β)pk′ ik′

〈k〉 . (13)
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We assume that the number of links k′(t, β) available for information transmission in
the future can be approximated by a function depending on the time t and the probability
of information diffusion β as follows: k′(t, β) = k′(1− βc(β)t), where c(β) = aβ + b linearly
depends on β. Coefficients a and b were estimated empirically on one of the graphs a = 2.8,
b = 0.06.

Thus, we get the following system of kmax coupled equations:θ = ∑k k(1−βc(β)t)pk ik
〈k〉 ,

dik
dt = β(1− Ik)kθ, k = 1, . . . , kmax.

(14)

The algorithm for solving these equations can be easily programmed.
The results of solving Equations (12) and (14), as well as Equation (2), are presented in

Section 4 on various types of simulated graphs and real networks.
In contrast to existing models, the proposed model allows the diffusion of information

to be modeled, both in the early stages and at later stages of information dissemination.
In addition, the proposed model makes it possible to take into account the network structure
when modeling differential equations. We abandon the homogeneous mixing hypothesis
and concentrate on the diffusion of information on scale-free networks.

3.3. Agent-Based Simulation Model

In order to test the adequacy of the proposed SI models on graphs, this section will
consider an approach that is essentially similar to the Monte Carlo method. We will
simulate the information propagation on networks using agent-based modeling techniques.
This approach involves studying information diffusion over a network, taking into account
the behavior of nodes and their influence on neighboring vertices.

G = (V, E) denotes the social network. The nodes of the graph (set V) are agents (or
network users) who receive information and decide on its further distribution; the set of
edges E are social links through which agents exchange information.

Graph nodes could be in several states. These states are the same as in the logistic
growth models discussed earlier. For example, the active state I from the SI model indicates
that the node is infected and may transmit an information to neighboring nodes. In the
context of social networks, this means that the user posts a message on their page, which
their friends or followers can see. We assume that the information dissemination may
occur at discrete times. Initially, there is a set of informed graph nodes, for example, those
that have received information from external sources. Their subscribers, by reposting
their messages, thereby lead to a further dissemination of the information (i.e., activate
neighboring nodes), changing the state of the neighboring node from S (susceptible) to I
(informed). At the next step, the newly activated nodes are considered, and the neighboring
nodes associated with them may be activated with probability p. The process continues until
the diffusion is completed. The information propagation rules are determined according to
the model of independent cascades: at each step, an activated node v has only one chance
to activate an inactive neighbor u with probability p.

4. Testing Models on Random and Real Graphs

We tested the adequacy of our proposed new SI model on graphs. We also considered
the predictive power of the classical SI model (which does not take into account the structure
of the contact network) and the model on graphs proposed by [29] in their ability to predict
the information diffusion on graphs. Simulations of agent-oriented modeling were taken
as a benchmark. The proposed models were tested both on random graphs, such as the
Erdős–Rényi (ER) graph and the Barabási–Albert (BA) graph, and on real social graphs.
Different sizes of graphs were also considered.

For comparison, the following approximating differential Equations (models) were
considered:



Modelling 2023, 4 592

1. The classical SI model that does not take into account the network structure:

di
dt

= β〈k〉i(1− i).

For brevity, we will call such a model an SI model.
2. The SI model on the network proposed by [29]:{

θ = ∑k(k−1)pk ik
〈k〉 ,

dik
dt = β(1− ik)kθ, k = 1, . . . , kmax.

For brevity, we will call such a model SI on the network (netSI).
3. An approximating version of the SI model on graphs, taking into account the change

in the number of information transmission channels over time:θ = ∑k k(1−βc(β)t)pk ik
〈k〉 ,

dik
dt = β(1− Ik)kθ, k = 1, . . . , kmax.

For brevity, we will call such a model SI on the network with approximation for the
number of information transmission channels over time (netSIapprox).

4. An agent-based model. This approach involves simulating the process of information
dissemination according to the SI model. For brevity, we will call such a model the
“Benchmark”. Ten simulations were run.

To compare models, two metrics were used: L2-norm and L∞ norm:

‖ · ‖2 =
n

∑
i=1

(yi − xi)
2,

‖ · ‖∞ = max
1≤i≤n

|yi − xi|.

Simulations of the agent-based model were averaged and taken as a benchmark for
calculating the accuracy of the considered models in differential equations. Table 1 lists the
characteristics of the considered real graphs for model testing.

Table 1. Characteristics of real graphs.

Graphs/Characteristics Number of Nodes Number of Edges Density Average
Degree

Power Law
Exponent γ

Twitch Social Networks (DE) 9498 153,138 0.003 32.25 2.01
Github-social (GS) 37,700 289,003 0.0004 15.33 2.4

Ego-Gplus (EG) 107,614 12,238,285 0.002 227.45 1.35
Large twitch (LT) 168,114 6,797,557 0.0005 80.87 2.23

As shown in Table 1, the considered real graphs are not similar. The only aspect that
unites them is the power law of the distribution of degrees.

Table 2 gives estimates of model accuracy for random and real graphs of various sizes
and densities.
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Table 2. Model accuracy in L2-norm and L∞-norm.

Graph/Model SI netSI netSIapprox

Random graphs, nodes = 10,000, density = 0.001

β 0.001 0.005 0.02 0.001 0.005 0.02 0.001 0.005 0.02

ER 0.0032 0.0037 0.0059 0.0006 0.0009 0.0021 0.0047 0.004 0.0026
0.129 0.138 0.179 0.064 0.073 0.113 0.165 0.154 0.128

BA 0.012 0.0096 0.00494 0.00008 0.00025 0.00194 0.0003 0.00065 0.0006
0.257 0.242 0.178 0.023 0.041 0.104 0.042 0.057 0.054

Random graphs, nodes = 25,000, density = 0.0008

β 0.001 0.005 0.02 0.001 0.005 0.02 0.001 0.005 0.02

ER 0.00072 0.0008 0.0085 0.00014 0.0008 0.006 0.0009 0.0008 0.0005
0.064 0.071 0.219 0.031 0.071 0.186 0.072 0.071 0.057

BA 0.0113 0.009 0.0022 0.00007 0.00039 0.00497 0.0002 0.00005 0.0001
0.275 0.249 0.128 0.022 0.051 0.169 0.033 0.017 0.027

Random graphs, nodes =100,000, density = 0.0004

β 0.001 0.005 0.02 0.001 0.005 0.02 0.001 0.005 0.02

ER 0.00039 0.0022 0.021 0.00015 0.0016 0.018 0.00024 0.00009 0.0006
0.048 0.117 0.335 0.032 0.101 0.318 0.04 0.019 0.06

BA 0.0124 0.0067 0.0012 0.00007 0.00146 0.0178 0.00002 0.00003 0.0003
0.287 0.218 0.082 0.022 0.094 0.304 0.012 0.021 0.049

Real graphs

β 0.001 0.005 0.02 0.001 0.005 0.02 0.001 0.005 0.02

DE 0.0051 0.00452 0.0035 0.00005 0.00023 0.00156 0.00002 0.00001 0.000007
0.341 0.305 0.189 0.045 0.098 0.234 0.025 0.01 0.013

GS 0.00894 0.00858 0.00747 0.00002 0.0001 0.00056 0.00006 0.00005 0.00003
0.352 0.338 0.291 0.025 0.052 0.123 0.017 0.016 0.012

EG 0.0059 0.0068 0.012 0.0001 0.0006 0.0032 0.00004 0.00002 0.0002
0.386 0.443 0.667 0.098 0.272 0.467 0.045 0.025 0.111

LT 0.004 0.00352 0.0045 0.00005 0.00042 0.00334 0.00001 0.000004 0.000008
0.331 0.251 0.283 0.06 0.165 0.366 0.016 0.018 0.025

Note that the best results of our proposed model “SI approximation” are shown on
real graphs. The root mean square error for various graphs and information dissemina-
tion probabilities does not exceed 0.0002. The ”SI on the network” model also showed
acceptable results, while the classical SI model turned out to be unsuitable for predicting
the distribution of information on such graphs.

The “SI Approximation” model showed the best accuracy on Barabási–Albert random
graphs, except for a small β = 0.001. In this case, the “SI on the network” model showed
the best accuracy.

For the Erdős–Rényi graph, the “SI approximation” approach also yielded good results in
information dissemination prediction, except for a graph of dimension 10,000 (density = 0.001).
The models “SI on network” and “SI without network” showed good results for small β
(0.005 and 0.001).

Diffusion trajectories of information for various models on social networks and ran-
dom graphs are shown in Figures 1–6.
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We tested and compared the dynamics of information dissemination according to
the proposed model with other existing models both on generated random graphs and
on real networks. Empirical results show that the proposed model gives adequate results
regardless of the topology of random or real graphs. The model we propose is particularly
good at describing the dissemination of information on graphs with a scale-free structure.

5. Conclusions and Discussion

Previous studies of diffusion on graph structures have typically focused on the spread
of infections in the early stages of an epidemic. This is entirely justified because, if a cure
has not yet been invented, the only way to change the course of the epidemic is to do
so at an early stage, using various restrictive measures to slow its spread. In this regard,
in order to make the right decision about the nature, timing, and scale of the epidemic, it is
quite sufficient to estimate the number of people infected in early stages of the epidemic.
From the point of view of mathematical modeling, this significantly simplifies the problem,
since we assume that the proportion of infected people in the early stages is close to zero
and it is possible to obtain an explicit solution.

In our study, we consider the dissemination of information, and therefore we are inter-
ested in all stages of this process. As a result, we use the block approximation approach
and show that it successfully predicts the information propagation at all its stages. In
addition, we proposed a new approach that assumes that the number of available informa-
tion transmission channels increases over time as an increasing number of network users
become infected. The rationale behind our assumption is that the more nodes are infected,
the more opportunities (channels) they have to transmit information over the network. We
described a function which approximates the number of channels available for transmitting
information in the future, and we empirically estimated its parameters (depending on the
time and probability of information dissemination). As a result, we received a system of
simultaneous (coupled) equations, the solution of which was implemented in Python.

The proposed models were tested on various types of random graphs, as well as on
real social networks and for different probabilities of information dissemination. It should
be noted that

• All considered approaches showed good results on Erdős–Rényi graphs. Even the
basic model (SI), which does not take into account the network structure, showed
acceptable results. This is quite natural, since this type of random graph essentially
embodies the homogeneous mixing hypothesis. However, real interactions between
network users have a more complex structure.

• Secondly, the basic model (SI) turned out to be unsuitable for predicting the spread
of information on Barabási–Albert graphs and real networks. This is quite expected
since such graphs have a more complex structure and are scale-free, i.e., their degree
distributions follow a power law. At the same time, the modified version of the block
approximation model and especially the new approach showed good results in their
ability to predict information diffusion on these types of graphs.

• In the modified version of the block approximation model, it was assumed that the
number of channels available for transmitting information in the future will be one less
than the degree of the vertex. In our opinion, this is a rather rough assumption for all
stages of information dissemination, and this approach can be further improved.

The derivation of the SI graph model and our first analytical results open up many
perspectives in modeling information propagation in complex networks. This paper
represents the first stage of a research program on modeling in this vein. In particular,
it is planned to implement the SIS and SIR models and their various modifications in
network structures.
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