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Abstract: We consider the problem of system-level balanced scheduling in a pediatric hospital setting.
A hospital clinic has a queue for patients needing care. After being seen in clinic, many require follow-
up surgery, for which they also wait in a queue. The rate-limiting factor is physician availability for
both clinic visits and surgical cases. Although much existing work has been done to optimize clinic
appointments, as well as to optimize surgical appointments, this novel approach models the entire
patient journey at the system level, through both clinic and surgery, to optimize the total patient
experience. A discrete-event simulation model of the system was built based on historic patient
encounter data and validated. The system model was then optimized to determine the best allocation
of physician resources across the system to minimize total patient wait time using machine learning.
The results were then compared to baseline.
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1. Introduction and Background
1.1. Statement of the Problem

This study proposes a novel discrete event simulation model to study physician
allocation between clinic and surgery to minimize patient wait time. As an extension of
classical queuing theory, many studies have been done to optimize the clinic scheduling
aspect of the patient journey, or the surgery scheduling aspect [1]; however, this study
is distinctive in considering how allocation of resources for one service affect the other
and vice versa, as well as how to optimize the allocation between them to minimize total,
holistic patient wait time. This is explained further in the literature review below. The
variables in the analysis will be physician allocation; that is, what is the effect of changing
the amount of time in clinic seeing new patients versus the amount of time in surgery on
the total indirect wait time for the total patient population? A secondary variable will be
patient scheduling, both in the clinic and in surgery, though these will be changed as a
result of physician allocation and not true independent variables.

The study examines a mid-sized (300+ bed) pediatric teaching hospital that serves
a regional population of approximately 3,000,000 people (1,000,000 children). It features
a Level IV neonatal intensive care unit (NICU), a pediatric intensive care unit (PICU), a
burn center (which treats both pediatric and adult patients), and a Level I pediatric trauma
center. In addition to the 14 inpatient units, it also has 35 outpatient primary care and
specialty care clinics, with over 500 physicians, 200 residents, and more than 4000 nurses
and ancillary support staff. The outpatient clinics treat over 220,000 patients per year, while
over 55,000 are seen in the Emergency Department [2].

Routine visits, such as primary care, may happen at one of the hospital’s primary care
clinics, or at a community provider. For specific ailments, or if the ailment is outside the
scope of primary care, those patients may need to be seen in one of the specialty clinics.
For example, stomach problems are seen in the Gastroenterology Clinic, while seizures
are treated in the Neuroscience Clinic. Appointments in specialty clinics are typically via
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referral from a primary care physician [3]. After a referral, the patient will typically have
to wait until an available appointment slot opens which matches the patient’s schedule,
physician availability, and acuity priority [4]. This delay in care from need identified until
care is provided is called indirect wait time. This is opposed to direct wait time, which is
the delay in care from arrival on the scheduled day to service. Direct wait time is the most
visible type of waiting, though it is a small fraction of the total wait time. Indirect wait time
can be orders of magnitude greater than direct wait times [5]. The indirect wait time is
shown as Delay nodes in the process map in Figure 1.
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Once seen in the specialty clinic, the diagnosis and treatment of the underlying ailment
can begin. Such treatments sometimes involve a surgical procedure. If surgery is needed,
then the search for an available surgical slot that fits within the patient’s schedule is
conducted. When a match is found, the surgery is scheduled. There is typically a delay
between the time that the need for a surgery is identified and when an available surgical
appointment is open. This is another instance of an indirect wait for care, also shown
in Figure 1.

The delays in this process, both from the referral to the initial visit, and from the visit
to the surgery, adversely affect patients. Delays in appointments are delays in diagnosis
and delays in care. Every day between the referral and the initial specialty visit is another
day with an undiagnosed, untreated condition. Every day between the diagnosis and the
surgery is an extra day the patient is living with the condition that could be treated. The
goal of clinics is to treat the condition effectively and safely, but also in a timely manner.

A contributing factor to these delays is the requirement for physicians to perform
multiple tasks within the process [6]. Physicians see patients in the clinic as well as perform
required surgeries. Many of them also have teaching and research obligations, which will
constrain clinic and surgical availability. Seeing patients in the clinic clears the clinic referral
backlog. A certain percentage of those clinic visits will also need surgery, which will fill the
surgical backlog. Performing surgeries will clear the surgical backlog. However, in either
case, time spent in one activity is time away from the other.

Compounding this is the patient mix seen by different physicians. Each physician
has a sub-specialty, which sees a slightly different patient population. These different
populations have clinic visits of varying lengths, and generate different types of surgeries
of varying complexities. It is not uncommon to have a long clinic visit result in a relatively
short surgery, or a short clinic visit uncover the need for a complex surgery. Finally, differ-
ent patient populations require surgeries at varying rates. As such, different physicians
generate surgery cases at different rates [7].

The availability of surgical appointments is limited by operating room (OR) time.
There are a limited number of ORs available, which must be shared by different specialties.
An eight-hour shift in a single operating room is commonly referred to as a “block”.
Different services are allocated different numbers of blocks per week (or per month) based
on a heuristic considering the number of cases performed, the backlog of cases, the duration
of cases, and the average block utilization (i.e., how much of an eight-hour OR day is spent
with active surgical patients, versus how much is unfilled). This varies from an “open
booking” schedule, in which time in ORs is available to services/surgeons on a first-come,
first-served basis [8].
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Within that assigned block, physicians often prefer to group similar procedures to-
gether. This leverages economies of scale and reduces turnover time between procedures.
Depending on the volume and make-up of cases, it is not always possible to group “like”
cases. For some specialists, the variation in cases is such that each is unique, both in proce-
dure and duration. Variability in case duration is a leading cause of unfilled block time.

At the hospital of interest, there are just over 500 physician specialists across 35 outpatient
specialty clinics and 14 in-patient units. This study proposes to examine one specialty
clinic, Otolaryngology (colloquially known as the Ear, Nose, and Throat [ENT] Clinic). The
ENT clinic employs 14 specialty physicians. It operates its clinic five days per week. It is
allocated 15 surgical blocks per week (three per day, five days per week). In calendar year
2019, the clinic saw 19,649 patients in office visits. Of those clinic visits, 5307 resulted in
surgical cases. The median time from referral to being seen in the clinic was 35 days, with a
mean and standard deviation of 40.5 and 43.3 days. This spread indicates a high degree of
variation with some significant outliers. The median time from being seen in the clinic to
the surgery date was 41 days, with a mean of 64.4 days and standard deviation of 64.3 days,
again implying high variation with significant outliers. The ENT service would like to
minimize the time from referral to completion of the patient encounter (either a clinic visit
without surgical procedure, or the total length with surgical procedure); i.e., they seek to
minimize the total indirect wait time.

1.2. Related Works

A prior systematic literature review we conducted per the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) framework [9] identified 933 unique
articles related to discrete event simulation in healthcare published in calendar years
2017–2021. From the systematic review, no articles related to this unique intersection of
scheduling both patients and staff across both clinic and surgery were found. However,
those related to scheduling either patients or staff, in either clinic or surgery, are worth
further consideration.

1.2.1. Staff Scheduling
Surgery Scheduling

Lamprecht et al. [10] studied staffing patterns and work breakdown structures and
how they affect patient wait times and process durations. Considering an emergency
surgical center, it was shown that a significant fraction of the physicians’ time (up to 31%)
was spent in documentation. At baseline levels, nursing resources were used at an average
rate of 53% capacity, while physicians were used at 79% of capacity, and were the rate-
limiting resource. A simulation was built that added another employee resource type,
the Medical Documentation Assistant (MDA), who was responsible for performing the
physicians’ documentation tasks. The simulation showed that adding the MDA resource
reduced the average physician use to 63% of capacity. In addition to staffing benefits, the
average patient visit duration was reduced by 50%, from almost 400 min to just under
200. This simulation shows the value of resource optimization in a constrained setting, as
well as the effect of resource optimization on patient time in system. However, it focused
on only one aspect of the total patient experience, surgery, while keeping clinic wait out
of scope.

Clinic Scheduling

Chalk [11] studied staffing patterns in an ambulatory emergency center (sometimes
called “urgent care clinic” in the U.S., to indicate a lower level of care required than a
traditional emergency room). Arrival patterns were identified from historic data, and
throughput rate as a function of staff availability was calculated. With those inputs, a
model was built to compare different staffing patterns. The objective function was the
number of patients that required transfer to the medical assessment unit (MAU) of the
hospital. Different configurations of operating hours, staffing levels, and days of operation
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were simulated. Based on historical arrival data, there was more benefit from extending
operating hours than in adding additional staff to the current hours. This study optimized
staff allocation across a clinic, with patient wait time being examined in proxy by the
number of transfers. However, downstream staff allocations were outside the scope of
the model.

A study by Qureshi et al. [12] looked at the effects of staffing levels via the nurse to
patient ratio. A simulation modeled the typical tasks performed by a nurse during a given
shift. The frequency and duration of each was defined. The simulation measured how
many tasks were in the nurse’s queue. This was a proxy measure for mental workload.
More tasks in the queue meant that the nurse had to spend more of his/her mental attention
resources prioritizing and routing. Unsurprisingly, a higher number of patients per nurse
resulted in more tasks in queue, longer queue time, and more missed tasks. This study
did not seek to find an optimum allocation of resources, only to compare different staffing
levels on efficiency. Additionally, downstream staff allocation was outside its scope.

A real-world detail often overlooked in healthcare simulation models is the allocation
of specific tasks in a workflow between different resources. Zhong et al. [13] studied
the allocation of various tasks involved in a clinic visit to find the optimal distribution
to minimize patient visit length. The physician workload is typically the limiting factor
in patient throughput. Finding ways to distribute tasks to other staff members frees the
physician to focus on patient care and eliminate bottlenecks. This resulted in the shortest
patient visit length. While the study did use optimization to minimize patient visit length,
it did so by evaluating task allocation, rather than staff allocation; additionally, downstream
staff allocation was outside its scope.

Patient arrival patterns are a prime driver of staffing requirements. Most clinics try
to schedule patient arrivals to plan staff levels accordingly. However, irregular arrivals
can be difficult to plan for accurately. Zimmerman et al. [14] studied a general practice
clinic in Canada. Actual patient arrival rates were modeled. Scheduled patients were
given priority over walk-up patients. With the objective of minimizing patient wait time
while maintaining existing staffing levels, an optimal staffing pattern was developed. This
allowed the clinic management to reallocate staff without adversely affecting either staffing
rates or worked hours while improving patient access. While this is a prime example of
optimizing staff allocation to minimize patient wait time, downstream and indirect wait
times are outside of its scope.

1.2.2. Patient Scheduling
Surgery Scheduling

Yip et al. [15] studied surgery scheduling in a multi-theater surgery center with
inpatient prep and recovery in Hong Kong. The center had eight operating rooms in the
surgical suite. It operated on a block allocation, with a block being a half-day; this resulted
in 16 blocks per day (112 per week), divided between 13 different surgical services. Pre-op
preparation and post-op recovery occurred in four different inpatient wards. Different
surgeries in different services generated post-op stays of varying lengths. A simulation was
built to study pre- and post-op inpatient unit occupancy as a function of surgery schedule.
The master schedule was optimized to minimize variation in recovery ward volume.
This helped to ensure constant patient flow and level staffing. This study has valuable
implications for block scheduling of patient surgery times. However, clinic scheduling and
staff allocation were outside its scope.

Samudra et al. [16] studied scheduling surgical patients to try to meet target dates. At
their surgical hospital in Belgium, a goal is set to complete all surgeries before their due
date. As a baseline, 65.4% of surgeries were completed before their due date and 34.6%
were completed after the due date. Twelve percent were 28 or more days after their due
date, and six percent were 28 or more days before the due date. This wide variance in
completion times left some patients very satisfied with quick service, while others waited
more than a month beyond when they should have been scheduled. The surgical block
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allocation rules in place constrained how much the scheduling rules could be changed. The
simulation model found that a mix of first-come, first-served combined with a waiting list
for unclaimed slots was the ideal balance. This model varied staff allocation primarily, with
patient schedule as a dependent variable. However, clinic scheduling was outside its scope.

Bovim et al. [17] studied not simply surgery scheduling optimization, but the master
surgery schedule. Most hospitals use a master surgery schedule to allocate surgical blocks to
the different surgical specialties. Each surgical specialty is then responsible for scheduling
individual surgeries within its own block. Within this framework, some OR space and time
must be set aside for emergency surgeries. These must be performed nearly immediately,
and the demand rate is variable. However, under heavy demand, emergency surgery
requirements may exceed the allocated space, and therefore require last-minute cancellation
of scheduled surgeries. Based on historic baseline data from a hospital in Norway, a model
was built to optimize the surgical block allocation. The objective was to maximize the
elective surgical block allocation and minimize elective surgery cancellations. The model
was iterated until an optimal schedule was found. This model has implications for surgery
staff allocation as well as meta-level surgical block allocation. However, clinic scheduling
was outside the scope of this study.

Clinic Scheduling

Peres et al. [18] studied patient scheduling in an outpatient bariatric clinic. Their study
focused on minimizing total cost—that is, the combined wait time of the patients and
idle time of the physician. In many situations, there is a trade-off between patient wait
time and physician idle time. Minimizing physician idle time by having many patients
available increases patient wait time. Conversely, minimizing patient wait time can increase
physician idle time, especially in real-world situations that consider patient no-shows or
late appointment arrivals. This study created a model that considered both no-show rates
and appointment arrival patterns (both early and late) in its simulation. With the objective
of minimizing total cost, the variable in the simulation was the patient arrival schedule. A
series of defined arrival patterns and overbooking strategies were simulated. An increasing-
interval clustering rule with 30% overbooking was found to be the best pattern of those
considered, though not necessarily mathematically optimal. Of note, this study only
considered clinic visit scheduling. It did not analyze surgical scheduling patterns or the
interaction between them and physician availability, nor did it find a true optimum.

In many outpatient clinics, there is variation in the types of patients seen and their visit
lengths and requirements. Clinics allot slots in their schedules for patient types in certain
mixes in advance. For example, there may be a set number of appointments for new patients,
a set number for follow-ups, a set number for referrals, etc. Laana et al. [19] considered
a Dutch oncology clinic schedule allocation. Using a simulation model, they compared
various scheduling rules in an effort to minimize patient wait time and maximize slot
utilization. They found that a dynamic scheduling scheme, which changed the allocation of
patient appointment types throughout the year, was superior to a static schedule. Treating
the patient schedule as the independent variable and staff allocation as the dependent
variable differs from many other simulations. Additionally, surgery allocation was outside
the scope of the study.

1.2.3. Other Areas of Research

Beyond direct application of discrete event simulation, there are other areas of research
that need consideration. As a service system [20], other methods have been explored for
application to problems in this category. Petri nets can also be used to model and analyze
healthcare systems. For example, Kang et al. [21] used a Petri net model paired with mixed-
integer linear programming to optimize staff allocation in an outpatient clinic to minimize
patient wait times. Generalized nets are another potential alternative for modeling health
systems, as demonstrated by Stefanova-Pavlova et al., who used the tool to model and
optimize staff resources in a diabetic telemedicine setting [22].
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2. Materials and Methods
2.1. Designing the Simulation Model with Real Baseline Data, Constraints, and Assumptions

This study uses a discrete event simulation model to study the effects of physician
allocation between clinic and surgery on the total indirect patient wait time between clinic
referral and clinic visit, and between clinic visit and surgical procedure. The primary
variable in the analysis is physician allocation; that is, what is the effect of changing the
amount of time in clinic seeing new/follow-up patients versus the amount of time in
surgery on the total indirect wait time for the total patient population? A secondary
variable is patient scheduling, both in the clinic and in surgery, though this will be changed
as a result of physician allocation and is not truly independently variable. Specifically, as a
physician’s availability varies between clinic and surgery, the time available for patients for
each activity is changed as a result.

One calendar year of real data was analyzed to establish baseline patterns to use in
defining the details of the simulation model. Calendar year 2019 was considered “typical”,
in that it did not suffer from pandemic-induced volume fluctuations. The data were studied
to establish the breakdown of visit type by provider, the percentage of visits by provider
that generate surgeries, and the breakdown of surgery types by provider. Additionally,
time distributions for both visit type and surgery type were established. Data for clinic visit
allocation, surgical case allocation, and time distributions for each physician (anonymized)
are shown in Table 1. Note, of the 14 clinic physicians, only seven perform surgeries.

Table 1. Allocation and duration of clinic and surgical case per physician.

Physician Clinic
Visits

Avg
Time/Visit
(Minutes)

Clinic
Visits

Surgery
Cases

Visits to
Surgery

Avg
Time/Surgery

(Minutes)

Std Dev
(Minutes)

Cases to
Surgery

1 2412 19.90 12.28% 865 35.86% 46.60 86.16 16.30%

2 1788 26.85 9.10% 711 39.77% 37.74 160.91 13.40%

3 2381 20.16 12.12% 815 34.23% 47.42 113.59 15.36%

4 2034 23.60 10.35% 889 43.71% 51.80 158.87 16.75%

5 1333 18.00 6.78% 625 46.89% 35.15 69.17 11.78%

6 2259 21.25 11.50% 820 36.30% 33.04 79.19 15.45%

7 1943 24.70 9.89% 582 29.95% 51.93 63.25 10.97%

8 2157 33.38 10.98%

9 1427 84.09 7.26%

10 796 60.30 4.05%

11 288 83.30 1.47%

12 601 119.80 3.06%

13 115 104.35 0.59%

14 115 105.26 0.59%

The current rate of clinic referrals was assumed to remain constant. With an annual
volume of 19,649 visits per year, 52 weeks per year, 5 days per week, and 9 clinic hours per
day, this gives an average arrival rate of one patient entering the clinic queue every 7.15 min.
There is a mix of patient visits in the ENT clinic, depending on the chief complaint, for
example, cleft lip/palate, hearing loss, breathing difficulty, fever/swelling/pain, etc. The
arrival rate of new requests remains constant, but the rate at which different visit/patient
types clear the queue varies based on physician allocation.

This model assumes that surgical availability is limited only by block allocation and
physician availability. It does not consider limitations outside ENT resources, such as
surgical nurses, sedation or anesthesia resources, or post-operative care resources. This
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model does not affect the time allocated to physicians for teaching or research. Only the
time allocation between clinic and surgery was varied.

One aspect of total patient wait time is patient preference. In many cases, even if a
surgical slot is immediately available, the patient will prefer to wait for a later slot, due to
scheduling conflicts, such as arranging time off from work. This model takes two different
approaches to that aspect of the total wait. For baseline model validation, a minimum
voluntary wait time was modeled, based on discussions with members of the Family
Advisory Board, a group of parents and caregivers of patients and former patients at the
hospital who meet regularly with hospital leadership as a sounding board for hospital
policy and practice. These discussions found that patients will voluntarily wait an average
of 20 days, distributed normally with a standard deviation of 20 days. For optimization,
the minimum voluntary wait time was removed, and the model assumed that if a clinic or
surgical appointment slot is available, the patient will accept the first available slot. After
the optimized allocation is found, the schedule was checked with the minimum voluntary
wait time for an “apples-to-apples” comparison.

Total wait time is the dependent variable to be minimized. This is defined as the
difference between when a patient enters the system and when a patient leaves the system.
The patient enters the system in two ways: upon referral from an outside physician, or as a
follow-up visit to a prior visit in the ENT clinic. These events “start the clock”. A patient
exits the system upon completion of their needed care. This could happen in two ways: the
clinic visit could resolve their case, or a surgical visit could resolve the case. These events
“stop the clock”. (Either of these could potentially require a follow-up visit. If so, that
would be considered a new encounter, and the clock would reset and the process repeat).
The time is measured in days between referral and final encounter (either clinic visit, if no
surgery is required, or surgical case).

Physician allocation between clinic and surgery is the independent variable to be
changed. The ENT clinic sees patients five days per week. However, not every physician
sees clinic patients every day. Physicians see clinic patients on a set schedule. This is
typically in half-day blocks. A full day consists of two half-day blocks, morning and
afternoon. The first part of the independent variable is how many half-day blocks are
allocated to each physician to see patients in clinic. The ENT clinic operates six clinic rooms,
five days per week. These blocks clear the clinic visit referral backlog, which addresses the
first half of the patient wait time. They also generate new surgical cases. The rate of surgical
case generation is determined by the historic data, driven by visit type. The ENT service is
allocated fifteen full-day surgical blocks per week. That is, three operating rooms per day,
five days per week, are reserved for ENT patients. Not each physician performs surgery in
each block. Much like clinic visits, physicians typically work a number of half-day blocks,
morning or afternoon, throughout the week. It is possible to mix the block allocation—to
see clinic patients in the morning and surgical patients in the afternoon (or vice versa)—but
this is not preferred as it runs the risk of delays in one block cascading into the next block.
The allocation of clinic and surgery block allocation is varied in the model. Each physician
has a set number of half-day blocks available. The theoretical maximum is ten (morning
and afternoon, five days per week), but in practice, most physicians serve fewer blocks
than the maximum. Each has duties outside clinic and surgery, such as in-patient care,
teaching, and research. The baseline allocation of physician resources between clinic and
surgery (anonymized) is shown in Table 2.

The number shown in the “Total” column is how many half-day blocks each resource
has available. A goal is to keep the total resource usage consistent; only the allocation
between clinic and surgery is subject to change. The numbers in the “Clinic” and “Surgery”
rows indicate how many half-day blocks are allocated to each per day. These are subject to
change based on the optimization, subject to constraints on maximum utilization.
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Table 2. Baseline physician allocation between clinic and surgery by day of week.

Physician Mon Tue Wed Thu Fri Total

1 Clinic Surgery Clinic Surgery 8

2 Clinic Surgery Clinic Surgery 8

3 Surgery Clinic Surgery Clinic 8

4 Clinic Surgery Clinic Surgery 8

5 Surgery Surgery Clinic 6

6 Surgery Clinic Surgery Clinic 8

7 Clinic Surgery Clinic Surgery 8

8 Clinic Clinic Clinic 6

9 Clinic Clinic Clinic Clinic Clinic 10

10 Clinic Clinic 4

11 Clinic 2

12 Clinic Clinic Clinic 6

13 Clinic (AM) 1

14 Clinic (PM) 1

Surgery 6 6 4 6 6 28

Clinic 12 12 12 10 10 56

2.2. Baseline Model Validation

The model was built in the Simul8 2022 Professional discrete event modeling software,
shown in Figure 2. For more specific detail on the Simul8 model construction, please refer
to the Supplementary Materials.
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The model is a high-level representation of the patient flow through the ENT clinic
and surgical visit. Patients arrive at the start point with an average arrival rate of 1 every
7.15 min. Next is a queue with an initial volume of 400 patients. This is to front-load the
simulation to account for steady-state operation and avoid beginning with a completely
empty system, which would artificially speed the patient through, since they would not
be waiting for prior patients to clear. Next is a “dummy” activity. This activity is assigned
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a duration of 0 min and is the step that assigns which physician will be seen by each
patient. The probability of seeing any given physician is based on the historic data, as
shown in Table 1.

Next the patient enters the queue for the clinic visit. This is the traditional start of
the patient journey. Here the patient waits for their clinic visit. This wait is determined
by two factors: the minimum voluntary wait time and the physician availability. This
minimum voluntary wait time is modeled as a distribution based on discussions with the
Family Advisory Board. Many patients are willing and able to be seen almost immediately,
but others have various social needs that necessitate a longer wait. As per the family
feedback, the minimum wait time was modeled as a normal distribution with a mean and
standard deviation of 4 weeks.

Next the patients are seen by their assigned physician. This task is replicated 6 times to
account for the number of available exam rooms. Each physician is modeled as a separate
resource, which can be assigned to either the clinic or surgery. If physician #1 is in clinic,
the resource “CN01” equals 1, while resource “OR01” must equal 0, since the physician
cannot be in both at the same time. This resource availability is defined in the Simul8
Resource Schedule tool, as per the defined baseline schedule from Table 2. Each day and
each physician are modeled separately.

The workflow is a “first in, first out” selection from the queue, once the minimum wait
time has elapsed. This ensures that patients with extended visits or complex diagnoses are
not made to wait an unreasonable amount of time. The minimum wait time models the
probability of a longer wait for a more complex or less-common case, and avoids modeling
in such a way that patients languish in the queue.

The clinic visit length is modeled per physician, as per the data from Table 1. Based on
the physician label assigned earlier in the flow, the average clinic visit time is assigned.

After the clinic visit, a series of activities determine which patients exit the system.
Those patients seen by physicians 8 through 14 exit the system, as those physicians do not
perform surgeries. Those seen by physicians 1 through 7 have a certain percentage exit
the system, while the complement proceeds to the queue for surgery. The probability of a
physician’s patient proceeding to surgery is as per the probability in Table 1.

Also entering the queue for surgery is a prior queue with a set volume and another
dummy activity. This is similar to the earlier dummy activity, seeding the surgical queue
with patients so as to reach steady-state condition. The dummy activity assigns patients to
a surgeon based on the probability in Table 1.

When in the queue for surgery, much like the queue for clinic, there is a minimum
voluntary wait time based on patient preference. This distribution was much more flexible
than that for clinic, as a surgical visit entails a greater time commitment than a clinic visit,
and therefore more advance planning. The minimum voluntary wait distribution was
modeled as a normal distribution with a mean and standard deviation of 10 weeks.

Finally, the patient is seen by the assigned physician (surgeon). This activity is repli-
cated three times, to account for the three operating rooms available for ENT surgeries
each day. Much like clinic availability, surgical availability is modeled using the Resource
Scheduler. Also as with clinic visits, the queue is a “first in, first out” selection, after the
minimum wait time is reached. Surgery duration per physician is modeled from the data
in Table 1.

With the baseline model built, it was validated against historic data. In order to
ensure a discrete event simulation model gives statistically significant results, multiple
trials with different random variables must be run. This prevents encountering a fluke
scenario that is statistically improbable (but still possible) and outside statistical limits.
Simul8 has a Trial Calculator feature that evaluates how many trials are necessary to return
a statistically significant result. Based on the baseline model running for one year, the
number of independent trials required to reach a significant result for total patient time in
system is 4, as shown in Figure 3.
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The baseline model was validated against historic performance data. A trial of
four runs was conducted and the composite results compared to existing baseline data.

From historic baselines, the mean wait time for a clinic visit is 40.5 days with a standard
deviation of 43.3 days. The simulation results gave a mean clinic wait time of 40.7 days with
a standard deviation of 32.4 days. Similarly, the mean wait time for a surgical procedure
historically was 64.4 days with a standard deviation of 64.3 days. The simulation results
have a surgery wait time of 65.2 days with a standard deviation of 48.4 days. As will be
discussed in Section 3, the simulation results are not statistically significantly different from
historic data. From these two results, it can be concluded that the results from the simulation
are an accurate reflection of actual system performance, and that any changes from the
simulation can reasonably be expected to predict actual system performance changes.

2.3. Schedule Optimization

Next, the OptQuest for Simul8 (ver 7.0) tool was integrated with the Simul8 model
to find the optimal physician schedule in a constraint-reduced feasible region search.
OptQuest is an optimization plug-in that integrates with many discrete event simulation
tools. It uses a proprietary machine learning algorithm to optimize (minimize or maximize)
an outcome variable given a set of input variables and optional constraints. OptQuest then
uses the variables and constraints and runs various trials of the simulation model, studying
and learning how the input variables affect the output variable, seeking an optimal solution.
It should be noted that unless one is willing to exhaust all possible combinations of input
variables, it is not possible to absolutely guarantee a global optimum over the input variable
set. However, the machine learning tools it employs increase the likelihood of finding a
solution that is close to optimal. The number of trials necessary to reach a satisfactory
solution is dependent on several factors, but the one with the largest impact is the number
of input variables. From the software developer, as the number of input variables increases,
so too does the minimum number of required trials, as shown in Table 3 [23].

Table 3. Simulation trials needed by number of decision variables (adapted from [23]).

Number of Decision Variables Minimum Number of Simulation Trials

Less than 10 100

Between 10 and 25 500

Between 25 and 100 2500

More than 100 5000
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The OptQuest optimization program interfaces with the simulation model and vari-
ables defined in Simul8. The first step in the optimization process is defining all the
variables, as well as the minimum, maximum, and suggested values for each. For this,
the total number for each physician resource was defined as a variable. The clinic-only
physicians had their minimum, maximum, and suggested values set to be the same value.
This ensured that the clinic-only physicians do not have their allocations affected. For the
clinic and surgery physicians, their minimum for both surgery and clinic was set to 1. That
is, they must have at least one half-day in each. The maximum was set to their total work
time minus 1; that is, they cannot be fully assigned to either. The Suggested Value was the
baseline allocation, an even split between clinic and surgery.

After defining the variables, the constraints must be defined. For this project, the
sum of the clinic allocation and surgery allocation cannot exceed the total allocation. If
physician #1 has 8 total blocks available, then the sum of clinic allocation and surgery
allocation cannot exceed 8. For this model, the constraint was set to “equal to” ensuring
that no physician will lose any work compared to the baseline allocation. Additionally, the
total number of clinic blocks cannot exceed the maximum number of clinic rooms, and the
total number of surgical blocks cannot exceed the maximum number of operating rooms.

Finally, the objective function is selected. This project used Total Time in System. This
is the complete patient experience time, from entry in the queue for clinic, through clinic
visit, to queue for surgery, to finally exiting the system after surgery. This combines all
aspects of the patient journey, including the two primary indirect and voluntary wait times,
clinic wait and surgery wait, into one simplified variable. This was set to be minimized.

OptQuest then runs the simulation for either a set time, a set number of trials, or
until all feasible input variable combinations have been tested. This project was set to
run for 1,000,000 simulated minutes. This arbitrarily long time will allow the tool to
complete enough trials to reach a reasonable conclusion, as discussed in [18]. The number
of simulation runs per trial is variable. This project used four runs per trial, as per the
results of the Trial Calculator discussed previously.

OptQuest begins with the Suggested Value for each variable, runs the simulation
trial, and records the value of the output variable. It then systematically begins new trials
with variables set to extreme (minimum or maximum) values and studies the effect on
the output variable. Proprietary machine learning algorithms in the tool find patterns in
the input variables and begin to hone in on an optimum solution. Each “best” solution is
logged as it proceeds, and the value for each input variable is recorded.

Mathematically, the analysis is a constraint-reduced feasible region. The objective
function of the search is:

min ∑n
n=1(WCn + WSn)

n
(1)

Subject to the following constraints:

∑10
i=1 BCim + BSim = TBim, TBm ≤ 10 for each m (2)

∑m
m=1 BCim ≤ 6 for each i (3)

∑m
m=1 BSim ≤ 3 for each i (4)

BCim 6= BSim for each i; for each m (5)

m

∑
m=1

10

∑
i=1

BCim ≤ 60 (6)
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m

∑
m=1

10

∑
i=1

BSim ≤ 30 (7)

where:
WCn = Wait time from referral to clinic visit for patient n
WSn = Wait time from clinic visit to surgery for patient n
n = patient index, the nth patient
n = total number of patients visiting the clinic
m = physician index, the mth physician
i = index for half-day block, 1–10 (1 = Monday morning, 2 = Monday afternoon,

3 = Tuesday morning, . . . 10 = Friday afternoon)
BCim = binary variable, is the mth physician booked in the clinic during the ith block
BSim = binary variable, is the mth physician booked in surgery during the ith block
TBm = total blocks allocated to physician m
Equation (1) is the objective function of the search. It seeks to minimize the average

total wait time experienced by a patient in the ENT clinic. Equation (2) limits the total
number of blocks available to each physician. There are 10 half-day blocks in a week.
The absolute maximum number of blocks that can be assigned is 10. However, each
physician has a different number of total blocks available. They have time reserved for
research, teaching, in-patient care, etc., that reduces the time available to see patients in
clinic and surgery, and that time available is physician-specific. Equations (3) and (4) set
limits on how many physicians can be in clinic or surgery in one block. There can be a
maximum of 6 physicians in clinic at any one time, and a maximum of 3 physicians in
surgery. Equation (5) ensures that a physician is not double-booked into both clinic and
surgery during the same block. Equations (6) and (7) limit the total number of clinic and
surgery blocks in a given week.

After 2500 trials, the optimization was terminated. As per [18], this would be well
over the minimum number of trials required. With 7 decision variables, the minimum
recommended number of trials is 100. Therefore, 2500 trials would be sufficient for over
25 decision variables. The search took 8.5 days to complete, with an average of 4.9 min per
trial. The search history is shown in Figure 4.
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As the OptQuest tool iterated, it recorded the total time in the system, studied the
results, changed the input variables based on its internal machine learning algorithm, and
continued the search. If the resultant time was less than the previous “best”, those input
variables were recorded and that trial became the new basis for comparison. The overall
best trial was trial number 299. No combination of input variables gave a better result
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for over 2000 more trials. Therefore, while this result cannot be guaranteed to be a global
optimum, it is the best that was found over the space of input variables in a large number
of simulation trials, and superior to the baseline scenario. The optimized output compared
to baseline is shown in Table 4.

Table 4. OptQuest resource allocation.

Physician Clinic
Blocks—Baseline

Clinic
Blocks—Optimized

Surgery
Blocks—Baseline

Surgery
Blocks—Optimized

4 4 3 4 5

2 4 1 4 7

3 4 7 4 1

4 4 7 4 1

5 2 2 4 4

6 4 4 4 4

7 4 3 4 5

8 6 6 N/A N/A

9 10 10 N/A N/A

10 4 4 N/A N/A

11 2 2 N/A N/A

12 6 6 N/A N/A

13 1 1 N/A N/A

14 1 1 N/A N/A

2.4. Results Validation: Weekly Schedule, Optimized

There are many mathematically equivalent weekly schedules that match the total
block allocation given by the OptQuest results. One such schedule is shown in Table 5.

Table 5. Potential optimized weekly schedule.

Physician Mon Tue Wed Thu Fri

1
AM Surgery Surgery Clinic Clinic

PM Surgery Surgery Surgery Clinic

2
AM Surgery Surgery Surgery Surgery

PM Surgery Surgery Surgery Clinic

3
AM Clinic Clinic Clinic Clinic

PM Clinic Clinic Surgery Clinic

4
AM Clinic Clinic Surgery Clinic

PM Clinic Clinic Clinic Clinic

5
AM Clinic Surgery Surgery

PM Clinic Surgery Surgery

6
AM Surgery Surgery Clinic Clinic

PM Surgery Surgery Clinic Clinic

7
AM Clinic Clinic Surgery Surgery

PM Clinic Surgery Surgery Surgery
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Table 5. Cont.

Physician Mon Tue Wed Thu Fri

8 All Day Clinic Clinic Clinic

9 All Day Clinic Clinic Clinic Clinic Clinic

10 All Day Clinic Clinic

11 All Day Clinic

12 All Day Clinic Clinic Clinic

13 AM Clinic AM

14 PM Clinic PM

This schedule was put back into the original model. The simulation gave a clinic
wait time of 43.7 days with a standard deviation of 34.7 days compared to the historic
baseline of 40.5 days with a standard deviation of 43.3 days. The surgical wait time was
51.3 days with a standard deviation of 44.2 days; compared to the baseline of 64.4 days with
standard deviation of 64.3 days. Finally, the model gives a total wait time of 94.8 days with
a standard deviation of 52.3 days, compared to the baseline total wait time of 105.4 days
with standard deviation of 54.8. This shows that the optimized schedule gives a total
patient wait time below that of the historic baseline.

3. Results

At present, the median time from referral through clinic visit to completed surgery
is over 70 days. Wide variation leaves several outliers that can take over twice as long.
Physician availability is a leading bottleneck to clearing these queues and reducing the
wait time, as well as the most readily adjusted lever. Determining the optimal allocation
can reduce the time from diagnosis to treatment, improving patient quality of life and
outcome satisfaction.

For a simulation model to be useful in making predictions about alternate scenarios, it
must first be validated to accurately reflect current reality and model baseline scenarios
in alignment with historic data. Using the key performance indicators of clinic wait time
and surgery wait time, a two-tailed t-test for significance was conducted on the simulation.
The null hypothesis, h0, is that there is no significant difference between the historic data
and the simulation results. The test hypothesis, h1, is that the simulation is different than
historic baseline. As shown in Table 6, in both cases we fail to reject the null hypothesis.

Table 6. Baseline simulation statistical analysis.

Clinic Wait Time Surgery Wait Time

Historic Simulation Historic Simulation

mean 40.5 40.7 64.4 65.2

std dev 43.3 32.4 64.3 48.4

t-value 0.5467 1.3166

p-value 0.5486 0.1880

Conclusion Fail to reject Fail to reject

The baseline simulation model gave an accurate reflection of current-state patient
journey length, not statistically different than historic data (t-value of 0.5467, p-value of
0.5848). This demonstrates the validity of discrete event simulation as a tool for trialing
“what-if” scenarios to affect journey length.

The baseline model was then optimized by reallocating physician resources to mini-
mize to minimize the total patient wait. Again, two-tailed t-tests were conducted on the
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historic key performance indicators versus the simulation results, with the same null and
test hypotheses. In all three cases, we reject the null hypothesis and conclude that the
optimized values are different than baseline, as shown in Table 7.

Table 7. Optimized simulation statistical analysis.

Clinic Wait Time Surgery Wait Time Total Patient Wait

Historic Simulation Historic Simulation Historic Simulation

mean 40.5 43.7 64.4 51.3 105.4 94.8

std dev 43.3 34.7 64.3 44.2 54.8 52.3

t-value 7.94 11.91 19.22

p-value <<0.001 <<0.001 <<0.001

Conclusion Reject null hypothesis Reject null hypothesis Reject null hypothesis

The optimized simulation demonstrated a reduction in total patient journey length,
from 105.4 days to 94.8 days. This is a reduction of 10.6 days (just over two weeks, weekdays
only) or 10.1%. This indicates real opportunity to reduce patient visit journey by changing
physician resource allocation as per the results of the simulation optimization.

4. Discussion and Conclusions

As demands on the system increase, healthcare resources are becoming increasingly
taxed. Staff are required to do more, with less, on a shorter time frame. “Thus, specialty
clinics face the difficult task of simultaneously guaranteeing quick access for high-priority
cases and realizing high utilization of the specialist’s time” [7]. As payment models change
in the U.S., these pressures will further compound. This is already being seen in adult
settings, and is coming to pediatrics.

Various heuristics are currently used to allocate those limited healthcare resources.
However, many were developed when resources were more plentiful and demand was
lower. Administrators would benefit from knowing in advance if any revised paradigms
are beneficial.

Discrete event simulation (DES) has been used for several years across a variety of
applications. Its use in healthcare has continued to increase through recent years. It has
been used in a wide variety of healthcare applications, to assist in making many different
decisions. While most often thought of as a tool to make operational decisions, it is also
used frequently to model population health and economics. In addition to spreading into
different applications, its use is spreading to countries and health systems all over the
world. It has proven to be a valuable tool for solving vast numbers of healthcare problems.

While DES has seen growth in its use, there are some applications where it lags. In
particular, pediatrics has been relatively poorly represented in DES models. Pediatrics is a
small percentage of the overall healthcare system, and the wide variety in pediatric patients
can make the modeling more difficult. However, pediatric patients are some of the most
vulnerable, and need as many tools as possible to find ways to provide quality health care.

Many simulation models have been made of sections of the patient journey. Clinic
scheduling optimization models are abundant. Surgery optimization models are not
uncommon, with many of them being variations on clinic optimization models. However,
the interrelation between the clinic portion and the surgery portion of the patient journey is
still poorly studied. Yet, the two affect one another. Optimizing one may have deleterious
effects on the other. Only by studying both parts together, as in this study, can we optimize
the entire flow. To explore this direction further, our work in the pediatric domain could be
used to illuminate other medical domains as well, because while the underlying motivation
applies across medical domains, the specifics and the advantages may differ. Future work
is needed to investigate this.
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Many scheduling models focus only on patient arrival, keeping physician/provider
availability as a constant. Again, these two are interrelated, and changing one will affect the
other. Modeling the complex interaction between all four facets—clinic, surgery, patient,
physician—is a unique opportunity to truly optimize the system as a whole. Here again,
our work in the pediatric domain could be tested on other medical domains as well.

An interesting outcome of the optimization process was the trade-off between clinic
wait time and surgical wait time. While the optimized solution reduced total time by ten
days, clinic wait time actually increased by three days, with surgical wait time decreased by
13 days. This result would require further discussion with the stakeholders to determine if
this trade-off is acceptable. The fact that fully half of the clinic physicians’ allocations were
unchanged, and therefore should see no change in their patients’ wait time, means that
the patients whose physicians also perform surgeries see their clinic wait times increase
even more. Whether that increase in clinic wait, offset by the decrease in surgery wait, is
acceptable is a question for the decision makers. Further work is required to answer these
important questions.

This result may be explained by the impact that voluntary wait times have on total visit
wait times. The difference in clinic wait time without the voluntary wait was over 30 days.
Only approximately three days of clinic visit wait time was due to system inefficiencies,
versus 20 for surgery wait time. This indicates an allocation already disposed to favor
clinic access at the expense of surgery access. The optimized schedule results in a closer to
balanced wait time for both parts of the journey. This seems counterintuitive—the original
allocation of physicians between clinic and surgery was almost evenly balanced. However,
variation in case length and arrival rate between clinic and surgery result in more of the
unnecessary wait in the surgery half. The optimized schedule moved many physicians to
more time in surgery and less in clinic, resulting in a more balanced patient flow.

Another aspect of the optimization that would require consultation with the stake-
holders is the use of half-day split schedules. Under current practice, physicians spend the
whole day in either clinic or in surgery. There is the perception or concern that delays in
the first half of the day will be exacerbated further by changing workflows mid-day. For
example, assume a physician is scheduled in the clinic in the morning and in surgery in the
afternoon. If the clinic gets behind schedule for some reason, then the surgical half of the
day would start off behind schedule, in addition to the physician having to switch from
a clinical-diagnostic mindset to a surgical-treatment mindset. This also does not factor in
travel time between clinic and surgery, nor the time changing into (or out of) surgical attire.
As such, the split-schedule optimization is a best-case scenario.

We used this novel model to look at the meta-level interaction between clinic visit
scheduling and surgery visit scheduling, how changing one affects the other, and how to
optimally balance the two. This approach has not been tried before, and the model shows
promise for continued application. These techniques can be applied to other multi-stage
patient journey encounters, particularly those who see limited resources spread across the
different facets of the journey. Other clinic/surgical services would benefit from similar
analyses, including orthopedics, gastroenterology, and neurology.

Additionally, this technique could be applied at a higher level, to allocate not just
physician resources, but rather to balance clinic and surgical allocation to entire services to
optimize whole-hospital patient flow. A model could be built of total hospital clinic space
and total hospital surgical space. The variables could be which services operate clinics,
which services receive surgical blocks, and the numbers of each. This would be a more
computationally complex model, therefore requiring more rigor in building the model
parameters and more computational time. However, the potential benefit to the hospital
as a whole is great. Such a model could be further expanded, incorporating in-patient
bed availability (which varies day by day as a result of weekly and seasonal changes in
emergency department admissions volume) as a constraint equation.
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