
Citation: Drieschner, M.; Herrmann,

C.; Petryna, Y. The Data Assimilation

Approach in a Multilayered

Uncertainty Space. Modelling 2023, 4,

529–547. https://doi.org/10.3390/

modelling4040030

Academic Editor: Günther Meschke

Received: 27 September 2023

Revised: 1 November 2023

Accepted: 2 November 2023

Published: 8 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

The Data Assimilation Approach in a Multilayered
Uncertainty Space
Martin Drieschner * , Clemens Herrmann and Yuri Petryna

Chair of Structural Mechanics, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany;
c.herrmann.1@tu-berlin.de (C.H.); yuriy.petryna@tu-berlin.de (Y.P.)
* Correspondence: martin.drieschner@tu-berlin.de

Abstract: The simultaneous consideration of a numerical model and of different observations can
be achieved using data-assimilation methods. In this contribution, the ensemble Kalman filter
(EnKF) is applied to obtain the system-state development and also an estimation of unknown model
parameters. An extension of the Kalman filter used is presented for the case of uncertain model
parameters, which should not or cannot be estimated due to a lack of necessary measurements. It
is shown that incorrectly assumed probability density functions for present uncertainties adversely
affect the model parameter to be estimated. Therefore, the problem is embedded in a multilayered
uncertainty space consisting of the stochastic space, the interval space, and the fuzzy space. Then, we
propose classifying all present uncertainties into aleatory and epistemic ones. Aleatorically uncertain
parameters can be used directly within the EnKF without an increase in computational costs and
without the necessity of additional methods for the output evaluation. Epistemically uncertain
parameters cannot be integrated into the classical EnKF procedure, so a multilayered uncertainty
space is defined, leading to inevitable higher computational costs. Various possibilities for uncertainty
quantification based on probability and possibility theory are shown, and the influence on the results
is analyzed in an academic example. Here, uncertainties in the initial conditions are of less importance
compared to uncertainties in system parameters that continuously influence the system state and the
model parameter estimation. Finally, the proposed extension using a multilayered uncertainty space
is applied on a multi-degree-of-freedom (MDOF) laboratory structure: a beam made of stainless steel
with synthetic data or real measured data of vertical accelerations. Young’s modulus as a model
parameter can be estimated in a reasonable range, independently of the measurement data generation.

Keywords: data assimilation; ensemble Kalman filter; aleatory and epistemic uncertainty; uncertainty
quantification; stochastic variables; interval variables; fuzzy variables

1. Introduction

Data assimilation is a widespread method that combines theory (usually in the form
of a numerical model evaluation) with observations, e.g., measurement data of some model
outputs, to optimally determine reasonable system states. The method is mainly known
for weather and climate forecasts [1], but it has also applied been in various fields like
robotics [2], economics [3], and many industrial branches [4] in recent decades.

In statistics, data assimilation can be considered as a Bayesian estimation problem
based on the Bayes’ theorem P(H|D) = P(D|H)P(H)/P(D) with hypothesis H and data
D. Basically, it is assumed that the numerical model and the observations are subject to
uncertainty, so probability density functions are defined for the prior P(H), the likelihood
function P(D|H), the model evidence P(D), and the posterior P(H|D). If normal distribu-
tions, represented using their mean and covariance, are used for modeling the uncertainty,
Kalman filters can be applied. Kalman filters are used to continuously improve the re-
sults (system state) of time-discrete models involving observations (measurements). The
standard Kalman filter [5] is efficient for low-dimensional problems and can process only
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linear systems. For nonlinear problems including a large number of variables, the ensemble
Kalman filter (EnKF) [6,7], the ensemble square root filter (EnSRF) [8,9], the reduced rank
square root Kalman filter (RRSQRT) [10,11], or the unscented Kalman filter (UKF) [12–14]
are suitable choices. A comprehensive overview and a comparison of different Kalman
filters can be found in [15,16].

In the case of uncertainties, e.g., in system parameters, robust Kalman filters have
been developed in the past. The uncertainties can be quantified in different ways, e.g., with
interval [17,18] or stochastic variables [19].

In addition to Kalman filters using probability distributions, a fuzzy Kalman filter based
on possibility theory has been developed [20], improved [21] and applied on practical experi-
ments [22] in recent years. Also, in the case of fuzzy Kalman filters, the robustness regarding
additional uncertain system parameters have to be considered to obtain usable results.

In this contribution, diverse uncertainties in the initial conditions and/or system
parameters are integrated into the data assimilation approach by using a multilayered
uncertainty space. The numerical model is embedded in the uncertainty space in which
uncertainties based on probability and the possibility theory can be defined simultaneously.
Therefore, we propose classifying the present uncertainties into aleatory and epistemic
ones [23]. Different quantification approaches are then compared using an academic
example. Finally, the applicability of the general concept with a multilayered uncertainty
space is shown on a MDOF laboratory structure.

The remainder of this paper is organized as follows: In Section 2, a brief introduc-
tion to Kalman filters is given. Then, the ensemble Kalman filter (EnKF) as the basis of
this contribution is mathematically introduced, including the possibility of estimating
model parameters simultaneously. Next, the basic concepts for quantifying aleatory and
epistemic uncertainties are presented, leading to a multilayered and nested uncertainty
space. Furthermore, the integration of the ensemble Kalman filter into the multilayered
uncertainty space is formally developed. In Section 3, different possibilities for uncertainty
quantification are shown in an academic example. In addition, an engineering application
with synthetic or, respectively, with real measurement data is given to demonstrate the
practical applicability of the proposed extensions. Finally, the discussion of the results and
an outlook are given in Section 4.

2. Materials and Methods

After introducing the ensemble Kalman filter (EnKF) in Section 2.1, the basic con-
cepts for aleatorically and epistemically uncertain parameters are given in Section 2.2. In
Section 2.3, the proposal to embed the EnKF in a multilayered uncertainty space for taking
both uncertainty types into account is formally presented.

2.1. The Ensemble Kalman Filter (EnKF)

In this contribution, the EnKF is used without loss of generality since other filters
can also be incorporated into the general scheme in Section 2.3. The ensemble Kalman
filter (EnKF) is a Monte Carlo implementation of the Bayesian estimation problem. It
is applicable to various nonlinear problems [24,25]. The combined state and parameter
estimation [26] or a multiplicative model parameter estimation [27] is also possible within
the EnKF. With spatial heterogeneity of parameters in the underlying model, the use of a
proper orthogonal-decomposition-based ensemble Kalman filter (POD-based EnKF) can
efficiently reduce the problem dimension [28]. Generally speaking, EnKFs represent the
distribution of the system state x by using an ensemble and replacing the covariance
matrix with the sample covariance computed from the ensemble. An ensemble consists of
q members and can be seen as a collection of system state vectors.

The bases are the (nonlinear) model equation and the measurement equation (lin-
earized here):

xk = f (xk−1, pk−1) + wk−1 and
yk = d(xk) + vk−1 = D · xk + vk−1

(1)
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with
system state vector xk ∈ Rn ,

system input vector pk ∈ Rl ,
system noise vector wk ∈ Rn ,

measurement vector yk ∈ Rm ,
mapping matrix D ∈ Rm×n and

measurement noise vector vk ∈ Rm

(2)

at the k-th time step. The uncertainty is quantified using the uncorrelated vectors wk and
vk with underlying normal distributions representing white noise. All means are set to
zero, and the scattering is quantified using a model noise matrix Qk and a measurement
noise matrix Rk, respectively. Both matrices provide the possibility to trust the numerical
model prediction or the observation more. This is taken into account within the correction
step by the Kalman gain Kk; see below.

2.1.1. Procedure

The procedure of the EnKF is depicted in Algorithm 1, consisting of

1. One-time initialization
2. Prediction or forecast −→ •f

3. Correction or analysis −→ •a

Algorithm 1: EnKF procedure [29].
Initialization
Create an ensemble with q members representing the probability density function
(PDF) of the initial state.

X0 =
(

xa1
0 , xa2

0 , . . . , x
aq
0

)
, X0 ∈ Rn×q (3)

Forecast step

xfi
k = f

(
xai

k−1, pk−1

)
+ wi

k−1, i = 1 . . . q (4)

x̄f
k =

1
q

q

∑
i=1

xfi
k (5)

Analysis step

yfi
k = D · xfi

k , i = 1 . . . q (6)

ȳf
k =

1
q

q

∑
i=1

yfi
k (7)

Pxy,k =
1

q− 1

q

∑
i=1

(
xfi

k − x̄f
k

)
·
(

yfi
k − ȳf

k

)T
(8)

Pyy,k =
1

q− 1

q

∑
i=1

(
yfi

k − ȳf
k

)
·
(

yfi
k − ȳf

k

)T
+ Rk (9)

Kk = Pxy,k ·
(

Pyy,k

)−1
(10)

xai
k = xfi

k + Kk ·
(

yk + vi
k − yfi

k

)
, i = 1 . . . q (11)

x̄a
k =

1
q

q

∑
i=1

xai
k (12)

The matrices Pxy,k and Pyy,k in Equations (8) and (9) contain the error covariance matrix
of the state Pk ∈ Rn×n, well-known from the KF algorithms:

Pxy,k = Pk · DT and
Pyy,k = D · Pk · DT + Rk .

(13)
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Note that the EnKF needs “perturbed observations”, which are achieved by vi
k in

Equation (11) in order to not underestimate the error covariance matrix.

2.1.2. Estimation of Model Parameters

The EnKF can also be used to estimate model parameters simultaneously with the
prediction of the system state. For this purpose, the original state x must be extended by
the parameters b to be estimated. This results in an augmented state vector z = (x, b)T,
which can be used analogously to x in the above procedure. The development of the model
parameters bfi

k = (1− β)bai
k−1 + βbfi

k−1 can be defined with a scalar value β ∈ [0, 1] in order
to prevent the model from diverging [27]. Analogous to Equation (4), a noise vector wbk
is also added to the unknown model parameters for additional scatter. Note that only
the number of model parameters that can be estimated as independent measurements
are available.

2.2. Aleatory and Epistemic Uncertainties

Various additional uncertainties c can be present in the system, which have to be
considered in the numerical simulations. Material properties, geometrical dimensions, and
also boundary conditions can be uncertain, influencing the prediction of the system state
xk and the estimation of unknown model parameters bk. Uncertain parameters can be
divided into two groups [23], aleatory uncertainties calea and epistemic uncertainties cepis,
with c = calea ∪ cepis and calea ∩ cepis = ∅.

Aleatory uncertainties calea are caused by randomness and natural variability and
are therefore also referred to as irreducible uncertainties. Statistical information with a
sufficient amount of realizations is at our disposal to reliably model and quantify the
uncertainty via a random variable X. The underlying distribution can be expressed by the
probability density function (PDF) fX(x, λ) or the cumulative distribution function (CDF)
FX(x, λ), where λ is the vector of shape parameters of the underlying PDF. The PDF and
CDF of X are related via the integral

FX(x) =
∫ x

−∞
fX(t)dt . (14)

In this study, normal distributions N
(
µ, σ2) with µ as the mean value and σ2 as vari-

ance or lognormal distributions LN
(
µ, σ2) with µ as the mean value of logarithmic

values and σ2 as variance of logarithmic values are used for all random variables; see
Figure 1 (top left/top right).

Epistemic uncertain parameters cepis are based on a limited number of data, subjec-
tivity, or expert knowledge, and no statistical information is given that could reduce the
uncertainty. These uncertainties can be modeled using non-stochastic variables [30], e.g., as
interval x̄ or as fuzzy set x̃. An interval x̄ is defined by a lower and upper bound

x̄ = [a, b] , (15)

whereas a fuzzy set x̃ is expressed using its membership function

x̃ = {(x, µx̃(x) ∈ [0, 1])} . (16)

Note that an interval is a special case of a fuzzy set with a membership function value
of either µx̃ = 1 (total membership) or µx̃ = 0 (non-membership). In this study, interval
variables or fuzzy variables with a triangular membership function, called triangular fuzzy
numbers TFN〈a, b, c〉, with support [a, c] and core value b, are used for epistemic uncertain
parameters cepis; see Figure 1 (bottom left/bottom right) [31].
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Figure 1. Applied uncertainty models: (top left): normal distribution x1 ∼ N
(
µ, σ2) = N (5, 1),

(top right): lognormal distribution x2 ∼ LN
(
µ, σ2) = LN (5, 1), (bottom left): interval

x̄3 = [a, b] = [0, 1], (bottom right): triangular fuzzy number x̃4 = TFN〈a, b, c〉 = TFN〈0, 1, 3〉.

Defining different uncertainty models simultaneously leads to a multilayered uncer-
tainty space; see Figure 2. The deterministic finite element model (D) or an appropriate
surrogate model (D̃) is embedded in the uncertainty space, which generally consists of
the stochastic space (S), the interval space (I), and the fuzzy space (F). Sometimes, some
individual uncertainty spaces are empty and do not have to be considered. The simulation
can then be simplified to the non-empty uncertainty spaces. The stochastic space is usually
embedded in the interval space, which is itself embedded in the fuzzy space, leading to
a nested analysis. The computational costs for the nested simulation can be calculated
as ttot = ntot · tD = ∑nF

iF=1 ∑
nI(iF)
iI=1 ∑

nS(iI,iF)
iS=1 tD(iF, iI, iS), with the number of samples in the

fuzzy space nF, the number of samples in the interval space nI on the iF-th fuzzy point, the
number of samples in the stochastic space nS on the iI-th interval point, and the duration
tD of a single model evaluation. This approach of different uncertainty models leads to a
polymorphic uncertainty modeling [30,32–34], for which different solution methods for the
uncertainty propagation and evaluation methods for the assessment have to be applied.
The framework PolyUQ [35] has been developed in MATLAB for those issues. The output,
denominated as augmented state vector zk(c) in Section 2.1.2, is in general influenced by
the uncertain parameters c; see Section 2.3 in detail.

fuzzy space (F)

interval space (I)

stochastic space (S)

deterministic model
(
D→ D̃

)
Figure 2. General scheme of a nested fuzzy-interval stochastic analysis.

2.3. The Ensemble Kalman Filter (EnKF) in a Multilayered Uncertainty Space

In this Section, the ensemble Kalman filter (EnKF) of Section 2.1 is integrated into
the multilayered uncertainty space presented in Section 2.2. Since normally distributed
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random variables are used for the noise in the Kalman filter in this contribution, the EnKF
is integrated directly into the stochastic space (S); see Figure 3.

fuzzy space (F)

interval space (I)

EnKF in stochastic space (S)

deterministic model
(
D→ D̃

)
Figure 3. The EnKF embedded in the multilayered uncertainty space.

First, uncertain model parameters are distinguished in parameters b to be estimated
and parameters c not to be estimated within the EnKF. The parameters c are classified
as aleatorically (calea) or epistemically (cepis) uncertain, and different uncertainty models
can be applied. The output, namely the augmented state vector zk(c) = (xk(c), bk(c))

T,
generally depends on all uncertain parameters c = calea ∪ cepis.

Samples from calea are used directly in the stochastic space within the EnKF without
additional computational costs compared to the classical EnKF in Section 2.1. The output zk
remains a purely stochastic vector if only aleatory uncertain parameters calea are given. The
calculation of, e.g., the mean value or the standard deviation is then still possible without
further methods.

Otherwise, the present epistemic uncertain parameters cepis cannot be integrated
directly in the EnKF procedure. Additional methods are necessary, and additional com-
putational costs are inevitable to take them into account. The EnKF is now executed for
each sample from cepis, since the interval and/or the fuzzy space are/is non-empty. Note
that the used uncertainty models influence whether an uncertainty space is empty or not.
Consequently, the output zk

(
cepis

)
is defined in the multilayered uncertainty space. For

the output interpretation, the nested structure has to be considered. The stochastic space is
evaluated first, e.g., by determining the mean value on each sample of cepis. In the next
step, the non-empty interval space has to be evaluated, e.g., by determining the bounds of
the output variables on each fuzzy sample of cepis. Finally, the non-empty fuzzy space is
considered. The membership function and also a defuzzified value for each time step k can
be determined.

3. Results

The presented EnKF in the multilayered uncertainty space is applied to an academic
example in Section 3.1 and on a laboratory structure in Section 3.2.

3.1. Academic Example

Below, an academic example is used to demonstrate the influence of various un-
certainty models for aleatory and epistemic uncertainties on the augmented state vector
zk(c). The deterministic model (D) is an unloaded cantilever beam with longitudinal
time-dependent degrees of freedom for the displacement u(t), for the velocity u̇(t), and for
the acceleration ü(t) at the end of the beam; see Figure 4. Young’s modulus E, the cross-
sectional area A, the density 2.454ρ, the damping ratio ξ, and the length L are (potentially
uncertain) system parameters. The mass m of the equivalent single-degree-of-freedom
system for the cantilever beam is then m = 0.4075 · 2.454ρAL = ρAL. Note that the initial
displacement u0 = u(0) and the initial velocity u̇0 = u̇(0) can be uncertain as well.



Modelling 2023, 4 535

L

E, A, 2.454ρ, ξ u(t), u̇(t), ü(t)

Figure 4. Cantilever beam as a deterministic model (D).

The underlying ordinary differential equation for the displacement u(t) is given as
mü(t) + cu̇(t) + ku(t) = 0 with mass m = ρAL, stiffness k = EA/L, damping c = 2ξ

√
km

and initial conditions u0 and u̇0. A time-discrete solution with time steps k = {0, 1, . . . , kmax}
and time increment ∆t can be achieved by using the Newmark method [36]. Alterna-
tively, Equation (1) can be transformed into the following discrete formulation (for the
unloaded case):

Rn 3 xk = Adis · xk−1 + wk−1 and
Rm 3 yk = uk + vk−1

(17)

with n = 2, including displacement and velocity, and m = 1 for the displacement measure-
ment (excluding velocity measurements for simplicity). The system transition matrix Adis
can be derived using the state space representation:

Adis = eA∆t with

A =

(
0 1
− E

ρL2 −2ξ
√

E
ρL2

)
.

(18)

Note that the numerical prediction is independent of the cross-sectional area A, since the
stiffness k and the mass m are both linearly dependent on A.

The quasi-continuous system state vector x(t) = (u(t), u̇(t))T can finally be composed
using the discrete solutions xk = (uk, u̇k)

T on all time steps k = {0, 1, . . . , kmax}. Addition-
ally, unknown model parameters b can be estimated in time within the EnKF by using the
augmented state vector z = (x, b)T. Here, Young’s modulus E has to be estimated. The
initial Young’s modulus E0 is set to be a normally distributed random variable

E0

[
MN/m2

]
∼ N

(
µE0 , σ2

E0

)
= N

(
0.5, (0.10 · 0.5)2

)
(19)

with initial mean value µE0 and initial variance σ2
E0

. The following normal distributions
have been defined for the noise terms wk, vk and wE,k:

wk =

(
wuk

wu̇k

)
∼

N(0,
(
0.01 · µuk

)2
)

N
(

0,
(
0.01 · µu̇k

)2
) ,

vk ∼ N
(
0, 0.0052) and

wEk ∼ N
(

0,
(
0.001 · µEk

)2
)

.

(20)

As the basis for all calculations, the values

Ereal = 1 MN/m2 ,
Areal = 0.01 m2 ,
ρreal = 1000 kg/m3 ,
ξreal = 10 % ,
Lreal = 1 m ,

u0,real = 0.1 m and
u̇0,real = 0.1 m/s

(21)
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are taken as real, and the initial state is quantified by

u0 ∼ N
(
µu0 , σ2

u0

)
= N

(
u0,real, (0.10 · u0,real)

2
)

and

u̇0 ∼ N
(

µu̇0 , σ2
u̇0

)
= N

(
u̇0,real, (0.10 · u̇0,real)

2
) (22)

in the following unless otherwise specified.
The presented academic example is applied to different scenarios. The ensemble size

is set to q = 100 at all time steps k = {0, 1, . . . , 1000}. In Section 3.1.1, different uncer-
tainty models for the uncertain initial conditions u0 and u̇0 are defined, and the influence
on the system state prediction as well as on the model parameter estimation is investi-
gated. Aleatory and epistemic uncertainties in different model parameters are analyzed
in Section 3.1.2. The monotonic behavior of the augmented state vector z = (x, b)T can be
presumed regarding Equation (18). This fact leads to an exact evaluation of the interval
and the fuzzy space by using the vertex method [37] and the reduced transformation
method [31], respectively. In the fuzzy space, eleven equidistantly distributed α-levels from
0.0 to 1.0 are used. The framework PolyUQ [35] is used for the numerical model evaluation,
with different uncertainty models simultaneously present.

3.1.1. Uncertain Initial Conditions (u0 and u̇0)

First, the initial conditions are defined as normally distributed random variables

u0 [m] ∼ N
(
0.12, 0.0122) and

u̇0 [m/s] ∼ N
(
0.08, 0.0082) (23)

with mean values µu0 = 0.12 m 6= 0.1 m = u0,real and µu̇0 = 0.08 m/s 6= 0.1 m/s = u̇0,real.
Within the classical EnKF procedure, a sample of the initial state is used, as shown in
Equation (3), leading to the system state prediction and the model parameter estimation
depicted in Figure 5.

Figure 5. Results with stochastic initial conditions: (top left): displacement u(t); (top right): ve-
locity u̇(t); (bottom left): Young’s modulus E(t); (bottom right): standard deviation of Young’s
modulus σE(t).
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The prediction of the system state vector x(t) = (u(t), u̇(t))T is practically exact, except
for deviations at the beginning resulting from incorrect and scattering initial conditions.
Despite the initial Young’s modulus with a mean value of µE0 = 0.5 MN/m2, which is half
the real value Ereal = 1 MN/m2, Young’s modulus E(t) converges quickly to the real value
with a coefficient of variation of around 2 %. The scattering is small, resulting from the
random initial conditions.

It is also possible to define the initial conditions as epistemic uncertainties leading to
non-stochastic uncertainty models, e.g., the mean values as the intervals

µu0 [m] = [0.0829, 0.1571] and
µu̇0 [m/s] = [0.0553, 0.1047]

(24)

with a coefficient of variation of 10 %. The interval-stochastic results are displayed in
Figure 6. Additionally, the real values, the measurements (if present), and the results from
the classical EnKF procedure for Young’s modulus are shown.

Figure 6. Results with interval-stochastic initial conditions: (top left): mean of displacement µu(t),
(top right): mean of velocity µu̇(t), (bottom left): mean of Young’s modulus µE(t) compared to µE of
Figure 5 (bottom left), (bottom right): standard deviation of Young’s modulus σE(t) compared to σE

of Figure 5 (bottom right).

It can be concluded that the extension using other uncertainty models for the initial
conditions does not have a concrete benefit in this example. The computational costs have
been increased without a concrete change in the results. The system state vector is predicted
again practically exactly, except for the values at the beginning. It is worth mentioning
that models exist that are more sensitive to the initial conditions. In those cases, different
uncertainty models would affect the system state prediction and the model parameter
estimation much more.
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3.1.2. Uncertain Model Parameters (L and ρ)

In this section, various model parameters are defined as uncertain using the differ-
ent uncertainty models from Section 2.2. The effect on the augmented state vector z is
investigated each time.

Stochastic problem: uncertain beam length L

In a purely stochastic problem, the beam length is defined as a lognormally distributed
random variable

L [m] ∼ LN
(

1, 0.12
)

. (25)

The mean value of logarithmic values µL is set to the real value Lreal, and the standard
deviation of logarithmic values σL is set to 0.1 m. For each of the q members within the
ensemble, a sample of L is used, leading to the results shown in Figure 7.

Figure 7. Results with stochastic beam length L: (top left): displacement u(t); (top right): velocity
u̇(t); (bottom left): Young’s modulus E(t); (bottom right): standard deviation of Young’s modu-
lus σE(t).

It is obvious that the displacement and the velocity are predicted again quite perfectly,
but the deviation of the mean value µE from the real value Ereal is around 5 %. This results
from the right-skewed distribution of L and the relation to E; see Equation (18). The
model-parameter estimation depends (more or less) on the assumptions of other model
parameters. Since the real values are in general unknown, a parameter study has been
conducted with varying σL or µL; see Figure 8.

The best estimation of Young’s modulus can be achieved naturally by having no
scattering and the correct mean value µL = µreal; see the blue curve in Figure 8 (left).
A variation in one of both values leads to bad or useless estimations. If exact values
are unknown, it should be avoided to assume a pdf, but it can be useful to apply other
non-stochastic uncertainty models.
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Interval-stochastic problem: uncertain density ρ̄

In this section, the density ρ is assumed to be uncertain using the interval

ρ̄
[
kg/m3

]
= [900, 1200] (26)

around the real value ρreal = 1000 kg/m3. As in the previous examples, the system state
vector x is predicted practically exactly. A value E is determined to an “associated” value
ρ in each time step k. Since the density is now defined as an interval variable, the mean and
the standard deviation of Young’s modulus are now also intervals; see Figure 9.

Figure 8. Parameter study within the stochastic problem: (left): varying σL [m] values for fixed
µL = 1 m, (right): varying µL [m] values for fixed σL = 0.1 m.

Figure 9. Results with interval-valued density ρ̄: (left): mean of Young’s modulus µE(t),
(right): standard deviation of Young’s modulus σE(t).

The real value of Young’s modulus Ereal is inside the bounds of the predicted interval-
valued mean µE, except for the first time steps. The interval-valued standard deviation
σE also remains small with a maximum of around 0.026 MN/m2 at the final time step. If
more data about the uncertain density ρ̄ were available, the epistemic uncertainty could be
reduced, leading to a smaller range of possible values for Young’s modulus E. In the next
Section, the interval-based idea is extended by defining a fuzzy-valued density ρ̃.

Fuzzy-stochastic problem: uncertain density ρ̃

The extension from intervals to fuzzy values is shown by defining the density ρ̃ as a
triangular fuzzy number:

ρ̃
[
kg/m3

]
= TFN〈900, 1000, 1200〉 . (27)

The real value ρreal is assumed on the core of the fuzzy variable. If an interval is preferred
on the core, a trapezoidal fuzzy interval [31,35] can be used instead. The extension to
Figure 9 is given in Figure 10.
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Figure 10. Results with fuzzy-valued density ρ̃: (left): mean of Young’s modulus µE(t),
(right): fuzzy-valued density ρ̃.

The envelope in Figure 10 (left) is equivalent to the solution in Figure 9 (left) since the
support is defined with the same bounds as the interval in Equation (26). Decreasing the
uncertainty leads to a higher membership function value in Figure 10 (right) with the exact
value for µ = 1.0. As a consequence, the blue shading in Figure 10 (left) is darker for higher
membership-function values around the real value Ereal. Finally, the membership function
has been defuzzified [38] at each time step k, leading to a scalar value, here namely the
center of gravity (COG). The COG curve is also in good agreement with the real value.

Finally, it should be mentioned that it is possible to combine different uncertainty
models for the same parameter, obtaining, for example, a random variable with interval-
valued parameters λ̄. Furthermore, interval and fuzzy variables can be simultaneously
present in the same problem. These aspects can be found, for example, in [35] but are
beyond the scope of the present paper.

3.2. Laboratory Structure

In this section, a beam made of stainless steel with synthetic or real measurement
data of vertical accelerations is investigated. The beam has a length of L = 4.0 m between
two supports with 0.20 m lateral overhangs on each side. The cross section is a box girder
with an outer width of w = 0.05 m, an outer height of h = 0.03 m, and a wall thickness of
t = 0.0026 m, leading to a cross-sectional area A = 3.89 · 10−4 m2 and moments of inertia
Iy = 5.56 · 10−8 m4 and Iz = 1.27 · 10−7 m4. The material is assumed to be homogeneous
with a density of ρ = 8000 kg/m3. Isotropic behavior is defined via a Young’s modulus
value that is to be estimated with initial mean value µE0 = 100,000 MN/m2 and initial
standard deviation σE0 = 10,000 MN/m2 and a Poisson’s ratio of ν = 0.3. For the damping
ratio, a triangular fuzzy number ξ̃ [%] = TFN〈0.00, 0.50, 1.00〉 is defined. Additional
overhangs with a length of ladd = 0.125 m have been welded in the beam center on both
sides for various measurement procedures. The additional mass of madd = 0.907 kg is
taken into account in the numerical model.

The numerical finite element model is defined in the x-y-plane and consists of 21 nodes,
each one with three degrees of freedom (ux, uy, φz), leading to 63 system degrees of
freedom in total. The origin of the x-y coordinate system is located in the left support; see
Figure 11 (top). Consequently, the translational degrees of freedom ux and uy are fixed at
x = 0 m and x = 4 m. A free vibration test (p = pown, ∀t) is defined with the following
initial conditions:

u0 = K−1 · (pown + padd) ,
u̇0 = 0 and
ü0 = M−1 · (p0 − C · u̇0 − K · u0)) = −M−1 · padd

(28)

with M, C, and K indicating the mass, damping, and stiffness matrices, respectively.
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Figure 11. Beam made of stainless steel with initial deflection u0,y [m] due to dead load and additional
mass of 2 kg in the beam center: (top): real structure with five accelerometers, (bottom): calculated
deflection of the beam with E = 100,000 MN/m2.

The initial displacement u0 results from the dead load of the beam (pown) and an
additional mass of 2 kg in the beam center (padd); see Figure 11 (top). Note that the
additional mass is only present at the beginning and not during the free vibration of the
beam. Additionally, mmeas = 0.1 kg for each of the five measurement points is considered
in the load vector pown and in the mass matrix M. As usual, the Rayleigh damping matrix
C = α(ξ)M + β(ξ)K is used to consider damping effects. The Newmark method [36] is
applied for solving the differential equation system using the time steps k = {0, 1, . . . , kmax}
and the time increment ∆t = 1/ fs (resulting from the sampling frequency of fs = 204.8 Hz
in the conducted measurements).

For the EnKF, the initial state is quantified using normal distributions with a coefficient
of variation of 10 %, which is equal to that in Section 3.1. The ensemble size is set to q = 100.
The model noise terms are defined equally to Section 3.1 (wk for each degree of freedom) as

wk =

(
wuk

wu̇k

)
∼

N(0,
(
0.01 · µuk

)2
)

N
(

0,
(
0.01 · µu̇k

)2
) and

wEk ∼ N
(

0,
(
0.001 · µEk

)2
)

.

(29)

Observations of vertical accelerations ay are synthetically produced (Section 3.2.1) or mea-
sured using the MEDA measurement system on the structure (Section 3.2.2) at five locations;
see Figure 11 (top).

3.2.1. Synthetic Measurement Data

The measurement noise is presumed to be small. To show the influence of the mea-
surement noise on the system state and the parameter estimation, three different values are
chosen here:

vk ∼ N
(

0, σ2
vk

)
with

σvk = {0.001, 0.01, 0.1} .
(30)

The parameters Ereal = 200,000 MN/m2 and ξreal = 0.17 % are chosen as the reference in
each case. The most important results with synthetic measurement data are displayed in
Figures 12 and 13.
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Figure 12. Results with synthetic measurement data with σvk = 0.01: (top left): mean of vertical
acceleration in the beam center µüy (2, t), (top right): mean of final vertical acceleration µüy (x, 100),
(bottom left): mean of final vertical velocity µu̇y (x, 100), (bottom right): mean of Young’s modu-
lus µE(t).

The measurement data are almost equal to the real data in Figure 12 (top left), since the
measurement noise is small. The fuzzy-valued mean of the vertical acceleration in the beam
center is estimated with only small deviations. The real vertical acceleration is enveloped
by the numerical results, and the COG curve is close to the real data; see Figure 12 (top
right) for the final system state. The vertical velocity is also estimated very well due to
the fact that u̇0 = 0 (see Equation (28)) over the beam length, an example of which is
shown in Figure 12 (bottom left) for the final system state. The deviation between the real
vertical velocity and the COG curve of the numerics results from the symmetric triangular
fuzzy number for ξ̃ with the core value of 0.5 % instead of the real value ξreal = 0.17 %.
Nevertheless, the real vertical velocity is also enveloped by the numerical values. The
mean value of Young’s modulus is depicted in Figure 12 (bottom right). The real value
Ereal = 200,000 MN/m2 is found very quickly with slight variations above and below it.
The variations in the model parameter estimation due to the model and the measurement
noise are increased due to the present uncertainty in the damping ratio ξ̃. However, the
estimation is not adversely influenced by the consideration of the fuzzy-valued parameter.

The results are naturally influenced by all selected numerical parameters. In the
following, the variation in the measurement noise is investigated, leading to the results in
Figure 13. The prediction of the acceleration in the middle of the beam µüy(2, t) is more
noisy for higher measurement noise σvk and vice versa (Figure 13 (top left/top right)).
Furthermore, it can be seen that the real value of Young’s modulus Ereal is reached much
more slowly the higher the noise is (Figure 13 (bottom left/bottom right)). Note that
in the case of the smallest measurement noise σvk = 0.01, the scatter in µE(t) is almost
the same as in Figure 12 (bottom right) due to the unchanged parameter noise wEk . The
highest measurement noise σvk = 0.1 leads to the weakest update for the Kalman gain,
since the measurement data are less trustworthy. Thus, the discrepancy between the model
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results and the measurement data is weighted less. In general, appropriate values for the
measurement and the model noise have to be chosen by the user.

Figure 13. Selected results obtained with higher and smaller measurement noise: (top left): mean
of vertical acceleration in the beam center µüy (2, t) with σvk = 0.001, (top right): mean of vertical
acceleration in the beam center µüy (2, t) with σvk = 0.1, (bottom left): mean of Young’s modulus
µE(t) with σvk = 0.001, (bottom right): mean of Young’s modulus µE(t) with σvk = 0.1.

3.2.2. Real Measurement Data

The measurement noise was determined as the difference between the recorded
and the filtered measurement data in this section. A lowpass filter was applied with
a passband frequency of 50 Hz. The covariance matrix R of the measurement noise was
then determined as

R = 10−4 ·


0.6990 0 0 0 0

0.3753 0 0 0
0.9798 0 0

0.5983 0
sym. 0.8534

 (31)

with a maximum standard deviation value max(σv) =
√

10−4 · 0.9798 ≈ 0.01, equivalent
to the measurement noise value in Section 3.2.1.

The results of the selected system state variables and Young’s modulus as the model
parameter to be estimated are shown in Figure 14. A total of 1000 time steps were used,
leading to a total time of ttot ≈ 4.88 s.

In the case of real measurement data, the vertical acceleration in the beam center is also
predicted well despite the presence of an uncertain, fuzzy-valued damping ratio. The real
curve, the measurement curve, and the numerical prediction curve of the vertical accelera-
tion in the beam center are qualitatively and quantitatively similar; see Figure 14 (top left).
For the final state, the vertical acceleration is predicted very well (Figure 14 (top right)),
whereas quantitative deviations are present for the vertical velocity (Figure 14 (bottom
left)) with a maximum of 15 % between the real curve and the COG curve. The mean of
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Young’s modulus is depicted in Figure 14 (bottom right). Transient effects are present in the
conducted measurement and visible in the recorded acceleration data but are decaying after
approximately 2 s (400 timesteps). The estimation of the real value Ereal = 200,000 MN/m2

has been performed successfully.

Figure 14. Results with real measurement data: (top left): mean of vertical acceleration in the beam
center µüy (2, t); (top right): mean of final vertical acceleration µüy (x, 1000), (bottom left): mean of
final vertical velocity µu̇y (x, 1000); (bottom right): mean of Young’s modulus µE(t).

4. Discussion and Conclusions

The improvement in the prediction quality through the use of numerical simulation
and measurement can be achieved through the data assimilation of the both. In the
case of uncertainties influencing the numerical prediction, the classification of aleatory
and epistemic uncertainties and the definition of a multilayered uncertainty space are
proposed in this contribution. The obtained numerical results have been compared with
the observations of system state variables, using either synthetic or real measurement data.
Furthermore, the ensemble Kalman filter (EnKF) used has been extended to simultaneously
estimate an unknown model parameter. It has been shown using an academic example
that the application of non-stochastic uncertainty models is useful for present uncertain
variables if no exact probability density functions are known. Thus, a reasonable numerical
prediction can be achieved. The overall testing of the proposed integration of the data-
assimilation approach in a multilayered uncertainty space can be considered as successful,
also for an MDOF laboratory structure, even if some quantitative deviations in results are
still present.

Besides this general conclusion, some specific conclusions can also be made as follows.
Uncertainties can be present either in initial conditions or in system parameters. In the
academic example, the influence of uncertain initial conditions on the system state estima-
tion was small and disappeared after a limited number of time steps. It is important to
mention that it is necessary for a successful estimation using the EnKF that the uncertain
initial conditions are close to the real values and that the model noise is large enough to
enable assimilation in consideration of the observations. Furthermore, the extension to an
interval-stochastic mean value of the initial conditions has been investigated. The system
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state and model parameter estimation is successful, but higher computational costs are
unavoidable. In the presented example, the definition of non-stochastic initial conditions is
not beneficial.

It has been demonstrated that uncertain model parameters lead to a more continuous
influence on the estimations since they are present at each time step in contrast to the
initial conditions. Bad or useless estimations appear if wrong probability density functions
are assumed. Even though non-stochastic uncertainty models lead to non-stochastic out-
comes during data assimilation, the real values can be captured in the case of properly
defined input variables. Fuzzy-valued input parameters extend the concept of intervals
through a membership function with a higher informative value at the expense of higher
computational costs.

The applicability of a multilayered uncertainty space is finally shown on a MDOF
example, independently of synthetic or real measurement data. The system state and the
model parameter estimation were successfully conducted for both cases.

For future studies, the following aspects can be considered to improve or to extend the
presented approach. Localization effects [39,40] would improve the numerical prediction
for a MDOF structure by separating the effects of different observations. Although the EnKF
has successfully been applied in this contribution, other Kalman filters can alternatively be
used as well, since the proposal of a multilayered uncertainty space is independent of the
used filter. In the framework of structural health monitoring, the presented approach can
also be used for the detection of system changes such as stiffness reduction due to damage.
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