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Abstract: Urban water drainage systems represent complex networks with nonlinear dynamics and
different types of interactions. This yields an involved modeling problem for which different off-line
simulation approaches are available. Nevertheless, these approaches cannot be used for real-time
simulations, i.e., running in parallel to weather now- and forecasts and enabling the monitoring
and automatic control of urban water drainage systems. Alternative approaches, used commonly
for automation purposes, involve parameterized linear delay systems, which can be used in real-
time but lack the necessary level of detail, which, in particular, is required for adequate flood risk
prognostics. Given this setup, in the present paper, an approach for the effective modeling of detailed
water drainage systems for real-time applications implemented with the open-source Storm Water
Management Model (SWMM) software is addressed and exemplified for a part of the water drainage
system of the city of Flensburg in northern Germany. Additionally, a freely available early-warning
system prototype is introduced and used to combine weather forcast information on a 2-h prediction
horizon with the developed model and available measurements. This prototype is subsequently used
for data assimilation using the ensemble Kalman filter (EnKF) for the considered area in Flensburg.

Keywords: real-time monitoring of water networks; efficient hydrodynamic modelling; complex
networks; data assimilation; flood forecasting

1. Introduction

Due to climate change, a shift in climatic behavior has been observed in recent years.
In summer, long dry phases are followed by heavy rainfall events that bring large amounts
of rain in a short period of time. In addition, persistent periods of rain can be observed in
the winter months [1]. Since the capacities of urban stormwater networks in many cities
are often not designed for these extreme situations, tools are needed to estimate the impact
of upcoming rainfall scenarios in real-time [2]. In this way, precautionary actions can be
taken before extreme events occur.

In the last decades, the term digital twin has become widespread with applications in
many areas worldwide [3–5]. Based on a mathematical model of the system, the digital twin
is supposed to provide insights into physical properties of the real plant and can support
decision-making. The horizon of these decisions can range from everyday operations to
long-term planning [6,7]. Prediction of extreme situations belongs to the area of everyday
operations, since reliable weather forecasts are available only for a limited period of time [8].
For this operation mode, a model of the real plant must be developed that simulates its
dynamic behavior accurately but sufficiently fast [7,9,10].

The modelling of stormwater systems has been investigated for decades and several
different approaches have been presented [11–14]. In general, to accurately capture the
behavior of the system both the channel system, which can be described by coupled one- or
two-dimensional conduit components, and the surface flow have to be taken into account to
investigate the distribution of the water on the surface in case of an overflow [15–19]. Both
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components can be described using combinations of 1D, 2D or 3D approaches, whereas the
3D approach is rarely used in practice due to heavy computational effort. Regarding the
channel system, a 2D description can be useful if detailed information is required or if a big
river is involved in the modelling area, but it is commonly modelled using connected 1D
components. This typically leaves two combinations for practical use, namely the 1D1D
and the 1D2D approach, where the surface is modelled in 1D and 2D, respectively. For both
methods, the exact topology information of the surface is required and can be obtained from
data of the geographical information system (GIS). They can be transformed to a surface
grid on which the overland flow can be computed [11,20]. Rather detailed information can
be obtained from 1D2D models [16,21]. However, three drawbacks have to be considered
when using the 1D2D approach, which are the computational effort, the calibration effort
and the potential license cost for commercial tools. From a computational point of view, the
solution of the partial differential equations describing the shallow water flow is the most
demanding component, especially when two dimensions are involved, and thus, the bottle-
neck with respect to real-time application [9,22]. Therefore, simplification methods for the
2D description and new modelling methods have been explored, and different approaches
were presented in the last decades [11,15,18,23,24]. The 1D1D approach from [18] shows
that 1D1D models can capture flooding reasonably well compared to the 1D2D model.
For implementation purposes, a wide range of open-source and commercial tools have
been developed [25]. Examples include the commonly used Storm Water Management
Model (SWMM) from the US Environmental Protection Agency [26] and Mike Urban from
DHI [27], which provides the possibility of 1D2D modelling.

The resulting models are based on the physical properties of the stormwater system
and are typically called high-fidelity (HiFi) models, whereas surrogate models try to capture
the dynamics based on a simplified or conceptual formulation of the network [10,28,29].
Many approaches for detailed and surrogate modelling have been proposed and compared
in literature [28–30]. Surrogate models enable increasing the computational speed, which
makes their use attractive for efficient simulation and real-time control [31–35]. However,
since the flows of certain areas are usually combined, and the water level is only determined
at some selected points in the system, the spatial accuracy is significantly reduced [10]. For
that reason, the focus of this work points to the question of how efficient HiFi models can
be used for real-time applications while maintaining the model accuracy.

Finally, to provide insights into the actual state of the real plant by a real-time monitor-
ing system that can support decision-making, the unmeasured states have to be estimated,
since only a few states are accessible through measurements. From a system-theoretic point
of view, this problem is typically addressed using state-estimation or filtering techniques,
such as the Kalman Filter with its different implementations [36,37]. In this approach, a
particular form of data assimilation is employed in which the measurements are frequently
compared to the simulation in real-time, and systematic corrections of the estimated states
are performed to ensure minimum error covariance. Such data assimilation techniques
have been introduced and applied to different types of urban stormwater systems (see,
e.g., [38–40]), highlighting the great potential of these approaches for the problem at hand.
Starting from an estimated state, future water levels and discharges of the system can be
predicted based on the mathematical model in combination with the rainfall forecasts (cp.,
e.g., [39,41]).

In this article the efficient 1D1D modelling approach from [18] is further utilized,
refined and transferred to the open-source tool SWMM. This approach is applied to obtain
a model of the Mühlenstrom area in Flensburg (Germany), which is used as the case area of
this work. An efficient model can be created automatically with the data handling structure
presented in this paper. In addition, the real-time applicability of the resulting SWMM
model is investigated, and a simulated real-time state estimation scheme is carried out
using the ensemble Kalman filter (EnKF) as a data assimilation approach [37]. Since several
simulations have to be run in parallel in this Monte-Carlo simulation-like scheme, the
need for an efficient model is emphasized. Additionally, an open-source tool is presented
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that enables SWMM-based data assimilation and an early warning system for urban
stormwater systems.

First, an approach for efficient modelling for urban stormwater systems is shown,
whereupon the automatic data processing scheme is presented. After the considered data
assimilation approach is briefly recalled, the open-source early warning tool is presented in
Section 3. Thereupon, in Section 4, the results of the hydrodynamic modelling, the data
assimilation and the flood forecasting system are shown. Finally, Section 5 concludes this
paper with a summary and remarks for future investigations.

2. Hydrodynamic/Hydraulic Modelling
2.1. Description of the Channel Components

The simultaneously efficient and accurate modeling of a stormwater network on the
city scale is a challenging task. To model such a system, many different components have
to be taken into account, such as:

• Retention basins;
• Open and piped channels;
• Hydraulic structures;
• Catchments.

Retention basins enable storing a limited amount of water, which can be released later
if a control actuator is available at the outlet. Their behavior follows the mass balance law

V̇ = Qin −Qout, V(t0) = V0 (1)

of in- and outflow, which are denoted as Qin and Qout, respectively. For practical imple-
mentation, the total volume V of the storage unit is derived from the water level and the
topology of the basin.

Open and piped channels are the transport elements of the stormwater system, which
connect catchment areas, retention basins and other elements of the system. In general,
the mass balance and momentum equations should be taken into account to describe the
flow of water. Inside the spatial domain x ∈ (0, L) of length L, the wetted area A and the
discharge Q at time t > 0 can be described using the shallow water equations

∂t A + ∂zQ = 0, A(z, 0) = A0, z ∈ [0, L], (2a)

∂tQ + ∂z

(
Q2

A

)
+ gA(∂zh + S f − S0) = 0, Q(z, 0) = Q0, z ∈ [0, L] (2b)

from St. Venant [42]. They give an accurate description of the channel flow and are
commonly used in HiFi-models. The partial derivatives with respect to time and space
are written as ∂t and ∂z, while the water level, the gravitational acceleration, the bed and
friction slope are denoted as h, g, S0 and S f , respectively. In addition, boundary conditions
have to be set at the up- and downstream boundary, which are usually given by the wetted
area or water level to ensure a spatially continuous water surface elevation. Since Section
Section 2.1 is a set of coupled hyperbolic partial differential equations, the time delay of the
travel time is taken into account. The level of detail with regard to the network of conduits
can be selected by setting a lower threshold on the pipe diameter, such that only such
components are considered that have a sufficiently large diameter.

Hydraulic structures such as orifices, weirs and pumps have to be modelled indi-
vidually based on their physical properties. The description of the individual hydraulic
structures are given in [26]. These elements can be used to control the water flow if they can
be actuated. Finally, catchments provide the input of precipitation to the hydrodynamic net-
work. Available rain gauges are used to measure the current precipitation, while weather
predictions can be obtained from radar data or numerical weather models. Radar data
are more precise, while usually having a prediction horizon up to 2 h, whereas numerical
models can be used to estimate future rain up to 10 or 14 days with decreasing accuracy



Modelling 2022, 3 467

over time. Based on the weather, now- and forecast future infiltration and runoff volumes
can be calculated using approaches like the Green–Ampt model, Horton’s method or unit
hydrographs. They define the inflow and thus the boundary conditions for the nodes in
the model that are connected to catchment areas. For rivers that enter the modelling area,
the boundary conditions are determined from the upstream area in combination with unit
hydrographs to estimate the external inflow at those points.

2.2. Efficient Modelling of Surface Flows

When the water levels do not exceed the maximal storage of junctions and storages,
the water will stay in the system, and the aforementioned components are sufficient to
describe the system dynamics. However, in the real world, the water can exceed the limits
of the channel system, which requires modeling the surface of the area as well. The rolling
ball technique presented in [18] is briefly recalled and used to create a topology-based
1D1D mesh; it then computes the water levels and discharges on that mesh. This method
aims to drastically reduce the computational time compared to the 2D surface modelling
approach. The procedure basically consists of four steps. First, the surface is split into
depression subareas based on the information of the surface elevation. This information can
be obtained from the digital elevation model (DEM) data of the modelled area. Different
thresholds can be set to ensure a minimal depth of the subareas. Thus, different mesh
resolutions can be obtained. If detailed information is needed locally, a low threshold
is recommended. Each of the identified subareas is assigned a storage with information
about the maximal depth according to the head difference between the subarea boundaries
and its deepest point. This point is subsequently called the subarea center point. Next,
all interconnections of these subareas have to be modelled. For each depression area,
the rolling ball technique is used to keep track of the contributing catchment area. Since
the water can only leaves the storage if the physical boundary is exceeded, an overflow
structure represents this process and connects the neighboring subareas. As the last step,
the channel nodes—where the subareas could possibly drain to—have to be identified.
Each of these connections are again modelled by using overflow structures. Depending on
the terrain, the manholes are connected to a depression on the surface. The general idea of
the overland flow simulation is illustrated in Figure 1.

Overland flow

surface
depression

areas
Conduits

Figure 1. Schematic representation of the 1D1D overland flow modelling.

The subareas are marked by the dashed gray circles, with the corresponding storage el-
ements in darker green, which are able to exchange water between each other. Additionally,
the storage elements can exchange water with open channels or manholes.

In total, a complex transformation from the 3D information of the DEM to an intercon-
nected 1D surface model can be obtained. All data are stored in a database such that the
pipe network and the 1D description of the terrain can be combined at any level of detail
with respect to the included pipe dimensions and depression depths.

If the center points of two subareas are far away from each other, the travel time of the
water should be taken into account. Therefore, additional conduit elements can be used,
which again have to be connected by weirs at the border of the connecting subareas.
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2.3. Data Processing

To set up the model automatically, different data sources have to be taken into account.
The information about the channel system should include all storages and open and closed
pipes with their corresponding parameters, e.g., their length, diameter and roughness.
If these data are not complete, information from the DEM can help to identify channel
pathways and storage areas. Additionally, available information about actuators such
as gates, flow regulators and overflow structures have to be included to capture the
behavior of the water system when the actuator settings are changed. All this information
is typically available to the operators or maintainer of the system. To model the surface
runoff in the catchments, information from the DEM is used to identify the dimension of a
catchment, while its characteristics are obtained from the surface material composition. If
this information is not available, it can be approximated using satellite pictures, e.g., from
Google Maps. From the DEM model, all depression subareas with a minimal depth of
10 cm and all connecting links are identified and added to the database. The parameters to
describe the overflow structure and the dimensions (area-depth curve) of the depression
are given in the DEM, whereas the infiltration to the soil has to be obtained from the surface
material again. For each component, a separate entry in the database is created, while other
type-dependent databases store the corresponding parameters of the system elements.

Finally, to create the SWMM model, the channel diameter and depression thresholds
are chosen, and the model is created sequentially. First, information about the channel
system is set up. Therefore, all channels that satisfy the threshold condition are modelled
as conduits, whereas the connecting nodes are modelled as junctions or storages, depending
on the node type. Additional junctions are included if a subcatchment drains to a point
in the channel. The subcatchments are directly transferred to the SWMM model with
the parameters from the database. To conclude the channel system model, the control
actuators are included. Subsequently, the surface depressions are modelled as storages
with the corresponding area-depth curve from the database. All connections between the
considered depression subareas are taken from the database, and the overflow structures
are modelled as weir elements in SWMM. A schematic overview of the data processing
scheme for the automatic creation of efficient 1D1D SWMM models is given in Figure 2.

DEMSurface information Channel information

Subareas & connectionsSubcatchments Channel/pipe system

Database

SWMM Model

depression
threshold

diameter
threshold

Figure 2. Schematic overview of data processing for efficient 1D1D modelling.
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2.4. Application of Stormwater System Modelling in Flensburg
2.4.1. Characteristics of the Case Study Area

Flensburg is a city in northern Germany (at 54◦47′ N, 9◦26′ E) close to the border of
Denmark with approximately 90.000 inhabitants. The city center is located at the Baltic
Sea (1 m above sea level), while the foreland lies on a plateau about 50 m above sea level.
However, this difference in altitude is covered within a distance of about 4 km, which
results in steep slopes in some areas. These already belong to an urbanized area with
residential and industrial parts. The total catchment area of the considered case area is
about 6.000 hectares, whose water is drained to the Baltic Sea through open and closed
underground channels, with a total length of approx. 229 km. Five larger natural retention
basins with a total volume of approx. 260.000 m3 can be used to store water temporarily.
The response time of the system is around two hours.

2.4.2. Developement of the SWMM Model

Based on the channel information, which has been provided by the utility, the hydraulic
components of the pipes, including manholes, were transferred to the database. All
controllable actuators were identified, whereas the information about the open retention
basins was extracted from the DEM and subsequently converted to area-height curves to
describe the storage capacity of the natural basins. Fortunately, a detailed mapping of
the surface was made by the utility for maintenance, which simplified the identification
of the surface imperviousness. By using information from the DEM, the database entries
for subcatchments and surface subarea center points, including their pathways, were
subsequently added.

Different levels of detail can be obtained depending on the threshold setting for the
pipe diameter. It is also related to the computational effort that is needed to simulate the
system. In this work, all pipes with a diameter bigger than 30 cm have been taken into
account. This results in a channel system model of the case area, which is displayed in
Figure 3. The urban sub-catchment areas are colored, while the open and closed channels
are marked in blue.

0 0.5 1 1.5 2 km

N

© OpenStreetMap (and) contributors, CC-BY-SA

A
B

DC

E

F
G

Figure 3. Overview of the stormwater network of Flensburg modelled with a pipe diameter threshold
of 30 cm. Nodes of the model are highlighted with green dots, while the links are colored in blue. The
red circles correspond to the points at which level sensors are considered later for system monitoring.
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Regarding the surface network, different depression thresholds will be considered and
analyzed later in this work. Figure 4 shows the identified subarea center points with the
corresponding depression depth.

N

0 100 200 300 400m
© OpenStreetMap (and) contributors, CC-BY-SA

Figure 4. Identified subarea center points for extraction of the case area with 10 cm (black dots), 30 cm
(magenta squares) and 50 cm (green circles) thresholds, respectively.

The subareas and the corresponding subarea center points from the window marked
in Figure 4 are displayed in Figure 5a. Additionally, all interconnecting overflow structures
between neighboring subareas are sketched in Figure 5b.

N

0 20 40 60 80m

(a)

N

0 20 40 60 80m

(b)

Figure 5. Illustration of the identified subareas for the extraction marked in Figure 4 with a depression
threshold of 10 cm. (a) Identified subareas (colored) and corresponding subarea center points (black
dots). (b) Overflow interconnections (marked with blue dots) of the identified subareas.

Finally, a SWMM modell with 1078 junction, 18 storage, 1110 conduit and 5603 catch-
ment elements in total is obtained for the channel system with a minimal pipe diameter of
30 cm. When the surface flow is modelled, 718 storages and 2787 weir elements are added
for the Mühlenstrom area when a depression threshold of 30 cm is chosen.

3. Data Assimilation
3.1. General Idea

The mathematical model tries to capture the dynamics of the stormwater system.
However, two things must be taken into account if the model is to be used for monitoring
and as an early warning system of the real stormwater network. Even after sufficient
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calibration and detailed modelling using extensive information of sub-catchments and
the hydraulic structures, the model will never capture the behavior of the real world
exactly [43]. Furthermore, different behaviors will be predicted even when the model is
quite exact but the initial conditions are not correct. In order to be able to simulate and
predict the behavior of the real world starting from an estimated initial state, it is thus
necessary to use available measurements for automatic comparison with the simulation.
This can be achieved by an adequate data assimilation scheme. Different data assimilation
techniques have been proposed in the literature.

A classical approach is the Kalman filter [36] or a modified version, whose scheme can
be divided into two steps. First, the estimated state x̂t at time t is propagated over a time
interval ∆t using an internal modelMi to obtain a predicted state

x̂p
t+∆t =Mi(x̂t + wt, ut), wt ∼ N (0, Qt), (3)

which is disturbed due to process noise (e.g., model inaccuracies), with covariance Qt; it
depends on the control input, which is denoted as ut. Thereupon, when the measurement
yt+∆t is available, the estimated states can be updated using

x̂t+∆t = x̂p
t+∆t + K(yt+∆t − ŷp

t+∆t), (4)

where ŷp
t+∆t = Hx̂p

t+∆t denotes the simulated output, i.e., the level and/or flow value
measurements at specific points. In general, the Kalman correction gain

K = Pp HT
(

HT Pp H + R
)−1

, (5)

for which a minimum error covariance is ensured under some assumptions [36,37,44,45] can
be determined using the predicted covariance Pp of the estimation error, which depends
explicitly on the measurement noise covariance R. Different approaches can applied to
obtain Pp. In contrast to the classical and extended Kalman filter [36], where a Riccati equa-
tion must be solved at each time step to determine the covariance matrix of the predicted
state, the EnKF determines the covariance using ensembles. Since the computational effort
increases quadratically with the number of states when solving the Riccati equation, the
EnKF is rather suitable for high-dimensional systems. Additionally, the EnKF is a preferred
choice when the underlying system dynamics are nonlinear [44,45]. The general idea of the
EnKF is to propagate an ensemble

Xt =
[
x̂1

t . . . x̂i
t . . . x̂N

t
]

(6)

with N members of estimated states using the system dynamicsMi. The predicted states
of the ensemble X p

t+∆t are corrected by using the deterministic update step. Here, the
approach introduced in [37] is used for this purpose, as it appears to be more robust
compared to, e.g., using an update step involving artificial measurement noise injection.
First, the predicted mean

X̄ p
t+∆t =

1
N

N

∑
i=1

x̂i,p
t+∆t (7)

is calculated from the predicted ensemble members x̂i,p
t+∆t. This ensemble mean is updated

as described in (4) to obtain X̄t+∆t. Therefore, the Kalman gain is computed from (5) using
the relationships

HT PpH = Py,y =
1

N − 1

N

∑
i=1

(HX p
t+∆t − HX̄ p

t+∆t)(HX p
t+∆t − HX̄ p

t+∆t)
T (8)
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and

Pp HT = Px,y =
1

N − 1

N

∑
i=1

(X p
t+∆t − X̄

p
t+∆t)(HX p

t+∆t − HX̄ p
t+∆t)

T . (9)

Subsequently, to update all ensemble members, the predicted ensemble anomaly

Ap
t+∆t =

[
x̂1,p

t+∆t − X̄
p

t+∆t . . . x̂i,p
t+∆t − X̄

p
t+∆t . . . x̂N,p

t+∆t − X̄
p

t+∆t

]
(10)

is computed and updated using

At+∆t = A
p
t+∆t +

1
2

KHAp
t+∆t. (11)

Finally, the updated ensemble is given by

Xt+∆t = At+∆t +
[
X̄t+∆t . . . X̄t+∆t

]
. (12)

The scheme is applied iteratively with time intervals of ∆t to assimilate the measure-
ment data and thus compensate for initial value errors in Xt0

, model uncertainties (as far as
possible) and keep track of the real states. Starting from the adapted actual estimate Xt+∆t,
the model can be used to simulate beyond the prediction horizon of ∆t, which offers the
possibility to use it as an early warning system. Since the measured quantities are directly
simulated within the model, the output matrix H is linear. Otherwise, a linearization could
be used.

To obtain information about which states can be adequately estimated in a fixed time
interval, an observability analysis of the developed model has to be carried out based on the
given sensor configuration [46]. Typically, large systems are analyzed for their structural
observability [47], which is a necessary condition to be fulfilled if the system should be
observable. Applying the graph-based approach on the 1D1D stormwater system yields,
the structural observability is lost when there is no exchange between neighboring subareas
or with the conduit system. Since this is the case most of the time, the internal model that is
used for state estimation was chosen to contain only information about the channel system
in the present study. Accordingly, all states from the channel system are estimated from the
available sensor information using the data assimilation scheme. In Table 1, the information
which is available from the estimated states is summarized. Further information could be
obtained from the ensemble SWMM simulation.

Table 1. Components of the estimated state.

Component Type Depth (In-)Flow Runoff

Storages × ×
Nodes × ×
Links × ×

Subcatchments ×

3.2. Implementation in Forecasting System

As proposed in the introduction, a python-based open-source tool is introduced
that can be used for data assimilation and forecasting hydrodynamic systems when an
underlying SWMM model is available. The scheme of the data assimilation process and
the folder structure that is used in the tool is sketched in Figure 6.
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Ensemble Kalman Filter
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Rain
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Result
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Figure 6. Schematic overview of data assimilation procedure (left) and the general folder structure of
the early warning system tool (right).

In general, when using SWMM for prediction purposes, the states can be initialized
through a so-called hot-start file, which is automatically read in from SWMM when a
simulation is started.

When starting the process for the first time, an initial guess Xt0
is created for each

of the N ensemble members using uniformly distributed water levels from zero to its
maximal water depth for all nodes, storages, and links. The information about the maximal
water depth of these states is obtained from the underlying SWMM model, which is read
in using the swmm-api toolkit [48]. Inflows are initialized by zero values. The initial
conditions of all ensembles are stored in individual hot-start files in the Hotstart folder,
and a corresponding SWMM model is stored in the Run folder, where it is executed by the
python wrapper pyswmm [49]. Expected rain time series and future control settings are
stored in the Input folder. Finally, the prediction results are stored in the Results folder.
Regarding the rain forecast, these data can be extracted from radar data by converting the
raw data to an ensemble of time series on a 1× 1 km grid. However, this part is not included
in the tool since the data source format usually varies. Thus, the SWMM models of all
ensemble members can be run in parallel with different combinations of initial conditions
and possible rainfall events. After executing the parallel simulations over the prediction
horizon, a hot-start file for each ensemble is created that contains the predicted states.
When the measurements are available, those hot-start files are read in, and the previously
described data assimilation scheme is carried out to obtain the corrected states x̂i

t+∆t. They
are used to rewrite the hot-start files before the next forecasting step is started. To speed
up the simulations, SWMM uses openMP parallelization, which results in significantly
reduced simulation time [50]. In addition, all instances of the forecasting system are run in
parallel in the CPU to minimize the computational time needed for one iteration.

All measurements and forecasts are displayed on a graphical user interface, where
different nodes and links can be selected to be displayed as a plot or on an interactive map
(if coordinates are available). Additionally, if there is no access to the real plant, a model
that simulatively represents the system can be used instead.

4. Results

In this section, first the results and accuracy of the efficient 1D1D modeling approach
are examined before the ensemble-based system monitoring and prediction scheme are
evaluated in the simulation of the case area Mühlenstrom in Flensburg.

4.1. Results of 1D1D Surface Modeling

To evaluate the matching between the model and historic data, a rain event from April
2022 was selected. The precipitation was exacted from radar nowcast information of that
period. In this time frame, a mobile measurement unit was used to record the flow close to
sensor A, whose position can be seen in Figure 3. As can be seen in Figure 7, the model was
able to simulate most of the base and peak flows, even though the initial condition was not
perfectly matched.
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Figure 7. Comparison of measured and calculated flow for a rain event in April 2022.

Additionally, the rain-dependent rural runoff was reasonably captured, which can be
seen when looking at the time period after the peak flow at noon of 7th April. Thus, the
measured and simulated data match for the available measurement time series. Further
time series comparisons have been carried out to ensure the the 1D1D model accurately
captures the measurement data and thus the behavior of the real stormwater system.

Furthermore, a comparison of different levels of detail was investigated in order to
show how the models are able to capture the resulting surcharge. Therefore, an academic
rain event with a return period of 100 years was used to generate overflows. The resulting
flood maps of a sub-area from 4 are shown in Figure 8a,b, where the surcharge water level
reaches from 0 to 1 m (color map white to red).

N

0 50 100 150 200m

(a) Flood map using a depression threshold of 10 cm.

N

0 50 100 150 200m

(b) Flood map using a depression threshold of 30 cm.

Figure 8. Flood maps of a 100-year event with different depression thresholds for the surface
modelling. The subarea center points of a 10 cm and 30 cm depression are marked with black dots
and mangeta squares, respectively. The surcharge water level reaches from 0 to 1 m (color map white
to red).

Both models capture the surcharge areas quantitatively well. However, it can be seen
that the model with a depression threshold of 10 cm captures slightly more areas where
overflows appear, especially in subareas, where the center points of the 30 cm threshold are
not very dense. This can be explained by the high level of detail that is given when using
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lower thresholds. For further information and a detailed comparison of a 1D2D model with
the efficient 1D1D approach, the interested reader is referred to [18].

To give an impression of the computational effort, a two hour simulation of the channel
model and the 1D1D Model (30 cm threshold) are compared. The pure channel model is,
on average, approximately 1.5 times faster compared to the model including overland flow,
which needs an average calculation time of 2.73 s, with a sample time of 1 min. Regarding
the previously presented simulative comparison, the increased level of detail when using a
10 cm depression threshold would be paid with a factor of 10 in simulation time. Those
results were obtained running the different models in pyswmm on Ubuntu LTS 20.04 with
an Intel Core i5-8265U CPU @ 1.60 GHz.

4.2. Results of System Monitoring

For the system monitoring, seven water level sensors, located at the red circles in
Figure 3, were used to estimate the state components of the channel network, summarized
in Table 1. Note that not all considered sensors were already installed in the real setup.
For this study, the data assimilation was validated in the simulation, which means that the
presented tool was used to create a simulated truth based on the created 1D1D model (with
a 30 cm depression threshold). This was compared to the estimated states of the channel
system in the data assimilation process. Therefore, a sample size of 10 min and a number of
15 ensembles was selected for the state estimation scheme. Again, an academic moderate
rain event, which is shown in Figure A1, was used to evaluate the convergence behavior of
the state estimation. It represents a long-lasting moderate rainfall event, which is applied
spatially equivalently. Additionally, a sensor noise with covariance R = (1 × 10−4)I7
with the identity matrix I7 was used for all sensors, while the process noise was applied
category-wise using the parameters from Table A1.

Figure 9 displays the mean absolute error (MAE) between the estimated states and
the simulated truth of the four component types. Additionally, the evolution of the true
water level compared to the minimal, maximal and mean water levels of the corresponding
estimated state of the internal model is shown for sensor A in Figure 10.
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Figure 9. Category-wise mean absolute error (MAE) of the estimated states.

Since the initial condition of the model is assumed to be unknown, a uniformly
distributed initial guess is used, as described in Section 3.2. This results in a high initial
deviation, which can be seen in both Figures 9 and 10. However, that deviation is reduced
almost every time step at the beginning of the data assimilation process before the mean
error stays approximately constant within a range of a couple centimeters or dm3/s around
1.5 h. Shortly after the rain event starts, the mean absolute error slightly rises but can be
reduced again, even before the rain event ends at 10:50. A similar behavior can be observed
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when looking at the tracking behavior of the water level measured by sensor A, where
the estimated state approaches the real state and follows its trajectory, even during the
rain event.
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Figure 10. Measured water level (black) and minimal (green), mean (blue), maximal (red) estimated
water levels at sensor location A.

Regarding real-time applicability, it can be said that only a fraction of the sample size
has been used for ensemble prediction, whereas further results will follow in Section 4.3.
Further investigation showed that the data assimilation using only the measurement
information that was available in the real system performed more weakly, which can be
traced back to the deteriorated observability properties. This again emphasizes the use of
such a digital tool in order to be able to simulatively test and evaluate whether an additional
sensor and the planned location can improve the accuracy of the estimated states.

Since the MAE shows the category-wise deviation of the estimated states, the tracking
behavior of the unmeasured states is included in this plot. By adjusting the sensor noise or
the injected process noise, this behavior can be changed.

4.3. Results of the Early Warning System

In addition to the estimation of the current state, the potential impact of future sce-
narios can be predicted based on the dynamic model. To evaluate the prediction quality,
again, the channel network was used as the internal model, and the hyper-parameters from
Section 4.2 are selected. Additionally, the prediction horizon was chosen to be 2 h, since
this is a typical time frame when radar data are used for rainfall prediction. However, for
the simulative evaluation, the academic rain scenario displayed in Figure A1 is used, which
is assumed to be known a priori.

An extraction of the results for the location of sensors B and C is shown in Figure 11.
For clarity, only three predictions and the corresponding trajectory confidence intervals
are plotted, whereas data assimilation was performed every 10 min. It can be seen that the
first prediction takes the increasing water level caused by the upcoming rain into account
but underestimates its impact. As time evolves and additional measurement information
is available, the predictions are more aligned with future measurements. Thus, the third
prediction that is displayed captures the current and the upcoming water levels accurately
while the water level is decreasing after the rain event.

In general, the deviation in the prediction can have different sources. On the one hand,
a deviating initial condition will have an impact on the prediction, and on the other hand,
model inaccuracies or statistic rain events can yield prediction errors. In reality, predictions
should become less accurate with increasing time; thus, the error band should grow with
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the predicted time. This can be obtained by using an ensemble forecast for the rain or by
setting an error band independent from the ensemble trajectories.
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Figure 11. Water level prediction at the locations of Sensor B (left) and Sensor C (right) at three time
instances compared with the measurements from Sensors B and C, respectively. The measurements
are marked in black, while the minimal (green), mean (blue) and maximal (red) water level are
obtained from the model predictions.

With respect to the hyper-parameters, such as the ensemble size and the forecast
prediction horizon, real-time ability can be achieved for sampling intervals of 10 and even
for 5 min.

5. Conclusions

An efficient approach for 1D1D urban stormwater modelling is recalled, and the
underlying data processing for the automatic creation of digital models, e.g., in the open-
source software SWMM, is presented. All system information is stored in a database,
whereafter the channel and surface model are created based on two threshold conditions to
adapt to the level of detail. Furthermore, an ensemble Kalman filter-based data assimilation
approach has been applied using the open-source tool that is introduced in this work. Both
the modelling and the state estimation are carried out for the stormwater system of the case
area in Flensburg city.

Comparing the efficient 1D1D model with the real measurement shows satisfying
results, which indicates sufficient model accuracy. Both the peak flow as well as the rain-
dependent rural runoff are captured. For further testing and evaluation, more and especially
more intense rainfall events are required. This will result in faster runoff, especially in
the urban areas. Regarding the computational effort and the level of detail with respect
to the depression threshold, 30 cm appears to be sufficient for this use case. However, if
a more detailed model is required, the automatic scheme enables a fast method to refine
the spatial resolution. Furthermore, the authors recommend using data assimilation to
obtain the estimated state, including information about all elements of the internal model.
It has been shown that the estimated states approach the real measurements after a small
warm-up phase of approximately 1 h when the initial states were not known a priori. Due
to observability restrictions, the internal model has been chosen to cover the channel system.
The observability of the system should be further analyzed, and the automatic creation
of the SWMM models can be optimized with respect to the observability of the internal
model, such that even surface elements could be taken into account.

The main goal for future work is now to connect the monitoring and early warning
systems to the real plant such that it can act as a digital twin. In this way, the system
helps operators to know where overflows can be expected in the upcoming hours. As
shown in the literature, approaches based on machine learning are also able to model
a rain network quickly and rather accurately after sufficient training [10]. An idea to
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combine these approaches is the possibility to use HiFi models for short-term simulations
to identify the current state, while neuronal networks are used for early warning under
the consideration of several different rain scenarios. However, it should be considered that
all data-based techniques need a wide range of training data to capture the dynamics for
a wide range of scenarios. Since a digital twin additionally aims to support the process
decision-making, a real-time control scheme can be developed based on the actual state
estimate, which is obtained from the data assimilation scheme. Finally, to further reduce
the computational time to be able to simulate more scenarios, GPU parallelization could
be used.
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Appendix A

Table A1. Covariances for the considered process noise, depending on the type of modelling element.

Component Type Depth (In-)flow Runoff

Storages 1× 10−2 1× 10−9

Nodes 1× 10−2 1× 10−3

Links 1× 10−2 1× 10−4

Subcatchments 1× 10−15

https://gitlab.com/HenryBmnn/swmmews


Modelling 2022, 3 479

07:12 08:24 09:36 10:48 12:00

0

0.5

1

1.5

2

2.5

Time (hh:mm)

R
ai

nf
al

li
nt

en
si

ty
[m

m
/h

]

Figure A1. Precipitation data of the rain event used for evaluation state estimation and early warning.
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