
Citation: Maksimov, F.; Tombari, A.

Derivation of Cyclic Stiffness and

Strength Degradation Curves of

Sands through Discrete Element

Modelling. Modelling 2022, 3, 400–416.

https://doi.org/10.3390/

modelling3040026

Academic Editor: José António

Correia

Received: 4 July 2022

Accepted: 26 September 2022

Published: 30 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Derivation of Cyclic Stiffness and Strength Degradation Curves
of Sands through Discrete Element Modelling
Fedor Maksimov and Alessandro Tombari *

School of Architecture, Technology and Engineering, University of Brighton, Brighton BN2 4GJ, UK
* Correspondence: a.tombari@brighton.ac.uk

Abstract: Cyclic degradation in fully saturated sands is a liquefaction phenomenon characterized by
the progressive variation of the soil strength and stiffness that occurs when the soil is subjected to
cyclic loading in undrained conditions. An evaluation of the relationships between the degradation
of the soil properties and the number of loading cycles is essential for deriving advanced cyclic
constitutive soil models. Generally, the calibration of cyclic damage models can be performed through
controlled laboratory tests, such as cyclic triaxial testing. However, the undrained response of soils is
dependent on several factors, such as the fabric, sample preparation, initial density, initial stress state,
and stress path during loading; hence, a large number of tests would be required. On the other hand,
the Discrete Element Method offers an interesting approach to simulating the complex behavior of an
assembly of particles, which can be used to perform simulations of geotechnical laboratory testing. In
this paper, numerical triaxial analyses of sands with different consistencies, loose and medium-dense
states, were performed. First, static triaxial testing was performed to characterize the sand properties
and validate the results with the literature data. Then, cyclic undrained triaxial testing was performed
to investigate the impact of the number of cycles on the cyclic degradation of the soil stiffness and
strength. Laws that can be used in damage soil models were derived.
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1. Introduction

Saturated cohesionless soils, when subjected to rapid cyclic loading in undrained con-
ditions, manifest a progressive variation of their stiffness and strength. This phenomenon
is caused by the reorganization of the complex assembly of grains which tend to compress
or dilate according to their initial state of compaction. If the tendency is to compress,
the pore water, that cannot flow out, will contrast this change by increasing its pressure.
Consequently, the contact forces between the grains will be reduced, causing soil degra-
dation. If the excess pore pressure is high enough to reduce each contact between the
particles completely, soil liquefaction will occur. Even without reaching full liquefaction,
the progressive degradation of the soil properties, during the cyclic loading, strongly affects
the dynamic response of their structures [1]. Therefore, an assessment of the strength and
stiffness degradation of sands is essential for the calibration of cyclic damage models [2].
The simulation of this fundamental phenomenon has been extensively studied over the
last decades, and a great variety of continuum constitutive models describing nonlinear
aspects of soils has been proposed [3]. Because of the continuum constitutive nature of
these models, an empirical or phenomenological calibration of the model parameters is
required: typically, experimental triaxial tests are performed [4–6].

On the other hand, the Discrete Element Method (DEM) [7] was originally developed
for soil mechanics to simulate granular assemblies with individual grains modeled by disks
or spherical particles [8]. Therefore, the advantage of the DEM is the ability to simulate
the material microstructure and to represent directly and intrinsically the heterogeneous
discrete nature of granular soils (e.g., particle shape and size distribution) [9].
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DEM simulations have been conducted to replicate geotechnical testing such as the
conventional monotonic triaxial test to derive the stress–strain behavior of the numerical
specimen [10] and to show typical theoretical aspects such as dilatation and critical state
behavior [11–22]. Most studies are based on the use of simplified sphere particle shapes to
keep calculation costs as low as possible [11,14,17–22]. On the other hand, spherical shapes
can manifest excessive rolling, leading to an underestimation of the value of the friction
angle as compared to real cohesionless soil [20–22]. To improve the reliability of the DEM
model, an additional contribution, i.e., the rolling stiffness with an elastic contact law, has
been introduced by Iwashita and Oda [21,22]; the resultant contact rolling moment acting
against the relative rolling rotation of the particles increases the soil strength. This rolling
resistance model has been used in [10] to simulate triaxial testing and the results evidenced
the ability of the numerical model to reproduce complex behaviors, as observed in real
granular materials, as the non-associative flow rule [23]. Moreover, rolling resistance can
be an alternative solution to consider the particles’ shapes instead of using computationally
expensive polygons and polyhedrons [20,24]. Several studies have been based on the
investigation of the irregularity of the sand particles’ shape on the macroscopic behavior of
the granular material [8–10,13,24]. In [24], a coefficient of the rolling friction related to the
normalized average eccentricity of contact has been introduced to capture the effects of the
grains’ shape. Aboul Hosn et al. [20] performed an extensive investigation of the influence
of the contact rolling resistance properties on the macroscopic behavior by performing
numerical triaxial tests of sands. They showed that increasing the rolling elastic stiffness
will cause an increase in the macroscopic internal friction angle; if the rolling stiffness
coefficient is high enough, its influence on both the peak friction angle and the dilatancy
angle becomes negligible.

The most widely used laboratory procedure to evaluate the liquefaction characteris-
tics of sands is the cyclic triaxial test on laboratory-prepared samples [25]. The DEM has
also been used to simulate fully saturated soil in undrained conditions by adopting the
constant volume method [26–31]. The representation of undrained conditions through
keeping volume change conditions has the advantage of saving computation time by
eliminating complex fluid–particle coupling calculations. However, almost all DEM sim-
ulations of liquefiable soils focused on the micromechanical investigation of liquefaction
triggering [27–31]. Martin et al. [28] focused on the micromechanical investigation of lique-
faction performed by DEM simulations of cyclic undrained triaxial tests. Vinod et al. [31]
claimed that a unique relationship exists between shear strain and the number of cycles for
triggering the initial liquefaction.

Although the potentiality of the DEM simulation in capturing the behavior of real
soils has been largely verified, the results have been rarely used to calibrate soil constitutive
models to be used in practical applications, usually conducted through the Finite Element
Method. Therefore, this paper aims to propose, for the first time, a derivation of the strength
and stiffness degradation relationships to be used in cyclic damage models at a meso- or
macro-scale, by exploiting the DEM instead of carrying out conventional but cumbersome
and costly experimental testing. Numerical cyclic triaxial testing is, hence, performed, and
the maximum deviatoric stress, as well as the shear modulus, is monitored with the increase
of the number of loading cycles to derive these fundamental and practical relationships.

2. Discrete Element Method for Cyclic Triaxial Testing

The Discrete (or Distinct) Element Method pioneered by Cundall [7] is based on the
numerical modelling of the contact interactions of an assembly of discrete particles that
move under specifically prescribed boundary conditions. Essentially, the method entails
computing the interaction forces generated by an artificial interpenetration of the particles
and, subsequently, using these forces to calculate the new position of each particle through
Newton’s second law. A summary of the method is presented below.
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2.1. Equation of Motion

Let us consider an assembly of n particles, hereinafter embodied by circular or spheri-
cal elements, as in Figure 1. The translational motion of the i-th discrete element is governed
by the Newton–Euler rigid body dynamics equations as follows:

mi·
..
xi(t) = Fi(t), (1)

where
..
xi is the acceleration of the center of mass of the particle, mi is its mass, and Fi is the

resultant force vector expressed as follows:

Fi(t) = ∑cεCi Fc
i (t) + Fext

i (t) + Fdamp
i (t), (2)

In Equation (2), Fc
i (t) is the vector of the contact forces, acting at the set of the m contact

points, Ci = {c1, c2 . . . cm}, with each one corresponding to the middle of the artificial
overall zone between any two particles (see Figure 1); Fext

i is the external load vector,

acting on the i-th particle at the time t, and Fdamp
i is the global damping force vector.

It is worth mentioning that Fext
i (t) represents the body forces, such as the gravitational

force component f ext
i = mi·g, where g is the gravity acceleration; this contribution can be

neglected for quasi-static triaxial analysis, and they will not be considered in this study.
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Figure 1. Contact forces generated acting on the ith particle at contact point c. 
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The contact force vector Fc
i (t) at the contact point, c in Equation (2), can be decomposed

into the normal and tangential or shear components, Nc
i and Sc

i , respectively:

Fc
i (t) = Nc

i + Sc
i (3)

The tangential or shear force, Sc
i , contributes to the sliding motion between two inter-

acting particles, as well as to the rotation about its center of mass; this rotation allows
the rolling motion of the particles relative to each other, which is a fundamental aspect
for the correct simulation of the redistribution of the grains in a soil sample [12,19,20].
Therefore, the rotational motion of a spherical particle of radius ri can be described by the
following expression:

Ii·
.

ωi(t) = Mi(t), (4)

in which
.

ωi is the angular velocity of the center of mass of the particle, Ii is the moment of
inertia tensor of components Ii = 2/5· mi·r2

i about its center of mass, and Mi is the resultant
moment. The resultant moment, Mi(t) in Equation (4), is derived from the cross product
(×) of the tangential contact forces, Ft, by the unit normal vector, nc, perpendicular to the
contact’s tangent plane, as follows:

Mi(t) = ∑cεCi Mr,c
i (t) + ∑cεCi sc × Fc

i (t) + Mdamp
i (t), (5)

where sc is the vector connecting the center of the i-th particle to the contact point c ε Ci,
Mr,c

i (t) is the rolling moment vector at the same contact points, and Mdamp
i is the global

damping moment.
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Equations (1) and (4) can be solved through an explicit time integration scheme, such
as the “leap-frog” algorithm [32], obtained by modifying the Verlet difference scheme [33].
Therefore, at each time, t, new particle positions are computed, and a new contact or
collisions are detected or updated; this generates new interaction forces that will be used in
Equations (1)–(5) to reach a new state of equilibrium.

In this paper, the simulation of the cyclic triaxial testing was performed under quasi-
static conditions; therefore, to facilitate a rapid convergence, a purely numerical global
non-viscous damping was used [34],

Fdamp = −αdamp·sgn(vi)|Fi| (6)

and
Mdamp = −αdamp·sgn

( .
ωi
)
|Mi| (7)

where αdamp is the positive numerical damping coefficient, and sgn(•) returns the sign of
the i-th component of the translational velocity, vi, and angular velocity,

.
ωi.

2.2. Contact Model

The Cundall-Strack elastic perfectly brittle contact model [34] was used to determine
the normal and tangential contact forces in Equation (3). Therefore, the normal force acting
at the i-th particle induced by the artificial overlap with the j-th particle, dij, is given by the
following expression:

Nc
i = kndijni

c (8)

where kn is the normal stiffness and ni
c is a unit normal vector that is perpendicular to the

contact’s tangent plane. The shear force vector, obtained by summing up all the incremental
tangential contributions, is given by the following expression:

∆Sc
i = −ks∆Uij, (9)

where ks = υkn is the shear stiffness related to the normal stiffness through the Poisson’s
ratio, υ, and ∆Uij is the relative tangential displacement at the contact point. The incre-
mental formulation is required to implement the Mohr–Coulomb rupture criterion, which
characterizes the typical behaviour of non-cohesive geomaterials:

‖Sc
i ‖ ≤ ‖Nc

i ‖ tan µ, (10)

where µ is the interparticle angle of friction, and ‖•‖ is the norm operator. The rolling
moment, Mr,c

i , in Equation (5) represents the rolling resistance against the relative rolling
rotation, θij, of two particles; it can be computed as the sum of the incremental contributions
expressed as follows:

∆Mr,c
i = −kr∆θij, (11)

in which kr is the rolling stiffness defined as follows:

kr = α·ks·ri·rj (12)

In Equation (12), ri is the radius of the i-th particle, and α is the rolling stiffness coefficient.
As for the shear force, the rolling resistance can be expressed through the frictional law:

‖Mr,c
i ‖ ≤ ‖N

c
i ‖ηrmin

(
ri, rj

)
, (13)

where ηr is the limiting rolling coefficient.

2.3. Calibration of the Input Parameters for Cyclic Triaxial Testing

The contact model described in Section 2.2 can be fully determined by six parameters:
the mass of each particle, mi, the normal stiffness, kn, the Poisson’s ratio, υ, the interparticle
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angle of friction, µ, the rolling stiffness coefficient, α, and the limiting rolling coefficient,
ηr. It should be noted that these parameters (except for the particle mass) do not have
a direct physical relation with the microscopic properties of a real soil grain. Nevertheless,
as observed in several past studies [12–15,20], a few of these parameters can be considered
to have a secondary impact on the macroscopic behavior of an assembly of particles [12,20]
if a few dimensionless indices are opportunely calibrated; for instance, it can be defined
a dimensionless stiffness level [20]:

k =
kn

2r·p , (14)

where p is the confining pressure, which in our case, should be set greater than 1000 to have
a negligible effect on the elastic properties of the macroscopic behavior [35]. The particle
mass can be adjusted to verify two conditions; the first is related to the inertial number
as follows:

I =
.
ε·2r

√
mi

Vs p
, (15)

in which
.
ε is the strain rate of the boundary conditions used to simulate the cyclic triaxial

testing, and Vs is the volume of the sphere. In an ideal quasi-static condition, I = 0; Radjai
and Dubois [36] suggested that the quasi-static limit is approached for I < 10−4. The
second condition is aimed to reduce the computational cost through the upper limit of
the time step in order to ensure the stability of the explicit integration scheme through the
following relation:

∆tmin = r·
√

2rρ

kn , (16)

where ρ is the particle density linked to the mass, mi. Therefore, the mass of each particle
could be set as high as possible in order to reduce the computational cost of the simulation
if the quasi-static condition is met by limiting the inertia number of Equation (15). Thornton
and Antony [37] suggested increasing the particle density up to a fictitious 1012 kg/m3

value, whilst Macaro and Utili [38] adopted a value of 109 kg/m3 for the simulation of
triaxial tests of seabed sands. On the other hand, the primary parameters are related to
the assembly’s frictional behavior, such as the interparticle angle of the friction, µ, and the
limiting rolling coefficient, ηr. In particular, the latter has the strongest influence on the
peak strength, the residual or critical strength, and the contractive/dilative behavior [20].
These two parameters are calibrated in this paper to define a macro-category of soil whose
physical characteristics are consistent with the average properties obtained from real sand
with uniform grains. Therefore, the Discrete Element Method is able to capture several
complex constitutive behaviors with few parameters; the final behavior will be essentially
affected by the initial void ratio and the distribution of the grains of the soil sample, as
shown in the following Section 3.

3. Results

In this section, the results of the cyclic triaxial testing are presented in order to propose
a methodology to derive the numerical stiffness and strength degradation relation that
can then be used at the mesoscale level to calibrate constitutive models or at a macroscale
to calibrate macro-models such as those formulated through the dynamic p-y curve ap-
proach [1]. First, monotonic drained triaxial testing was conducted in order to obtain the
geotechnical properties of the two investigated samples, and, then, undrained cyclic triaxial
testing was performed to derive the degradation curves. The simulation was conducted by
the open-source code, YADE [39].

3.1. Model Description

In this application, two soil samples featuring the behavior of loose sand and medium-
dense sand are modelled through the Discrete Element Method, as shown in Figure 2.
The loose packing of the spheres is characterized by a relative density of Dr = 33% and
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a void ratio of e = 0.72; the medium-dense sample has a relative density of Dr = 55% and
a void ratio of e = 0.60. The two soil samples are representative of uniformly graded, well-
rounded, coarse sand. Numerical simulations have been conducted on a representative cell
with periodic boundary conditions. In order to satisfy periodicity conditions, a periodic
space is created by the repetition of a parallelepiped-shaped cell. The use of the periodic
boundary allows for the production of homogeneous and isotropic states, eliminating the
disturbances in the granular structure induced by the wall effect [12]. The three-dimensional
assemblies are composed of 20,199 spheres for the loose sand sample and 20,898 for the
medium-dense sample, having a mean particle radius of 1 mm (hence, representing coarse
sand); the radii, ranging from a minimum of 0.92 mm to a maximum of 1.09 mm, are drawn
randomly from a uniform distribution.
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This approach has been used to avoid the phenomenon of “crystallization”, which
occurs with the perfectly regular packing of particles with the same radius, yielding
an unrealistic, extremely stiff, and strong soil medium. The relative density, Dr, is obtained
as follows:

Dr =
emax − e

emax − emin
, (17)

where e is the current void ration, and emax and emin are the maximum and minimum
void ratios, respectively. For uniform spheres with the same radius, emax = 0.90986, and
emin = 0.35047 [40]. The current void ratio is expressed as

e =
us

1− us
(18)

in which the porosity of the sample, us, is numerically computed from the subtraction of
the total volume of the cell and the total volume of the rigid spheres.

The input parameters used in this study are reported in Table 1, defined as described
in Section 2.3, and selected in the range of values proposed in [20] to simulate loose and
medium-dense sands. The preparation procedure consists of an isotropic compression
of a randomly generated packing of floating spheres as follows: (1) initially, the spheres
are generated randomly and placed within a cube of a 0.07 m side in order to avoid any
contact between them; (2) the packing is subjected to an isotropic compression by moving
all the sides (boundary conditions) of the cube uniformly until the target value of the
relative density has been reached; (3) the overlaps are eliminated by slightly decreasing the
particles’ radius by a factor of 0.999 in order to obtain an initial stress-free packing.
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Table 1. Input parameters selected for the numerical simulations.

Parameters Symbols Values

Dimensionless stiffness level k 5× 106

Poisson’s ratio ν 0.2
Rolling stiffness coefficient α 2

Particle density ρ 1× 1012 kg/m3

Interparticle friction angle µ 30◦

Limiting rolling coefficient ηr 10−2

Mean particles’ radius r 10−3 m

3.2. Monotonic Triaxial Testing

After the preparation procedure to obtain the target initial relative density, the two spec-
imens are subjected to drained triaxial compression to derive the main geotechnical prop-
erties, such as the angle of internal friction and shear modulus. A monotonic triaxial test
comprises two phases: (i) isotropic consolidation and (ii) the deviatoric stage. A constant
loading strain rate of 0.0001/s is applied to the boundary conditions in order to avoid
inertial effects and maintain quasi-static conditions; the inertial number calculated through
Equation (15) is equal to 1.65× 10−4; hence, smaller than 10−3, as aimed. In this study, the
timestep used for the analyses is set to 0.01481 s, corresponding to 50% of the limit value
defined by Equation (16).

During the isotropic stage, the strain-control conditions are applied (by uniformly
moving the artificial sides of the cube) to achieve constant isotropic stress equal to 100 kPa.
Subsequently, a deviatoric phase is carried out by moving the upper and bottom periodic
boundaries at the constant loading strain rate while controlling the lateral sides in order
to maintain the confining stress of 100 kPa. The frictional angle is calculated through the
following expression:

ϕ = sin−1
(

tan
(

q
2p

))
, (19)

where q and p are the deviatoric and the mean stress computed at the peak or at the critical
state, respectively.

Calculated geotechnical parameters have been summarized in Table 2. The results
on the strength and stiffness evidence a good agreement with the experimental data for
loose and medium coarse-grained sand [41,42]; therefore, the discrete element model is
able to capture the global behavior of the soil at the mesoscale. Figure 3 illustrates the
stress–strain and volume change behaviors of the two samples in loose and medium-dense
states. A maximum value of an axial strain of 20% is applied to reach a critical state.
Figure 3a shows that at large strains both loose and medium-dense soils reach the same
critical shearing resistance characterized by the residual angle of friction of 27◦ and the
same void ratio, termed the critical void ratio (e = 0.75), corresponding to a critical relative
density of 29%. This is consistent with the critical state concept [23] in which cohesionless
soil tends to move toward the critical void ratio regardless of its initial value of the void
ratio. The critical void ratio marks the boundary between a contractive and a dilative
response; therefore, it is expected that a very small dilatancy occurs for the loose sand
sample (e = 0.72) and a much larger dilation for the medium-dense sample (e = 0.60).
Moreover, it can be noted that the sample at medium-dense density mobilizes a peak
shearing resistance of 35◦, which is much higher than the residual fraction angle of 27◦,
whilst an almost constant deviatoric plateau is obtained for the loose soil sample. The
evolution of the volumetric strain with the axial strain is shown in Figure 3b; the increment
of the volumetric strain indicates an increment of the total volume of the specimen and,
hence, a dilative behavior, which is higher in medium-dense sands than in loose sands. For
small values of axial strain, a contractive behavior is observed.
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Table 2. Results of the monotonic triaxial testing.

Parameters Loose Sand Medium-Dense Sand

Relative density, Dr [%] 33 55
Rel. density at critical state [%] 29 29

Peak friction angle [◦] 30 35
Residual frictional angle [◦] 27 27
Initial Shear Modulus [MPa] 34 49.5
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Parameters Loose Sand Medium-Dense Sand 

Relative density, 𝐷𝑟  [%] 33 55 

Rel. density at critical state [%] 29 29 

Peak friction angle [°] 30 35 
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Figure 3. Results of the numerical drained triaxial testing for the loose and medium-dense soil
specimens: (a) stress–strain curve; (b) volumetric strain behavior.

Figure 4 shows the degradation curve of G/Gmax versus the shear strain. The tangen-
tial shear modulus, Gmax, is defined at a strain level of 10−4. Typically, the normalized shear
modulus, G/Gmax, decreases with the increase of the shear strain, and it can be observed
that the loose sand shows a stronger nonlinearity than the medium-dense sand, as expected.
These curves can be used for typical problems of seismic site response analysis where the
definition of an equivalent linear model for the soil is required [43].
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3.3. Cyclic Triaxial Testing

The undrained cyclic triaxial test is carried out by applying a one-way strain-control
input, as shown in Figure 5, for the loose and medium-dense sand, respectively; different
maximum axial strain amplitudes, εmax

zz , ranging from 0.1% to 0.5% for loose soil and from
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0.1% to 5% for medium-dense soil, are applied to identify the effect of the magnitude of
the input (related to the geotechnical concept of the cyclic stress ratio) on the degradation
as a function of the number of cycles. The same soil specimens of the input parameters
in Table 1, tested under monotonic conditions, are now considered for cyclic testing. The
first stage of isotropic consolidation is performed under the same drained conditions of the
previous test, reaching a confining pressure of 100 kPa. On the other hand, to perform the
undrained shearing stage, a constant volume approach is used [26]; instead of simulating
the interaction of the solid particles with the fluid occupying the pores of the sample, this
approach aims to simulate the main kinematic condition arising from an undrained test,
i.e., the shearing deformation occurs, preserving the total volume.
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Therefore, this condition can be achieved by controlling the prescribed strain of the
boundaries in order to maintain the following relation:

εxx = εyy = −0.5·εzz, (20)

in which εxx and εyy are the strains of the lateral boundaries of the cell, whilst εzz is the
axial strain of the top and bottom boundary controlled during the triaxial testing, according
to the one-way input of Figure 5.

This method reduces the computational complexity of a solid–fluid couple model, and
it is appropriate for simulating the undrained behaviors of granular materials with coarse
grains [26], as were the soil samples investigated in this paper.

Figure 6a shows the hysteresis curves obtained from the results of the cyclic triaxial
testing for the loose sand at several levels of maximum strain. The hysteresis curves show
a typical oval-shaped behavior characteristic of loose sand [44]; the area covered by each
loop, related to the dissipation of energy, increases with the increase of the level of strain. It
can be observed that the hysteresis loops rotate after each cycle, manifesting an important
degradation of the soil strength; in real loose sand, this phenomenon is induced by the
increment of the excess pore pressure caused by the compaction of the soil grains, which
decreases the effective soil stresses. This effect has been properly captured, as shown in
Figure 6a, by the numerical simulation conducted under the constant volume condition.
To assess the strength degradation, Figure 6b depicts the evolution of the deviatoric stress
with the progression of the cyclic test, i.e., the number of cycles. The maximum value of
deviatoric stress decreases after each cycle: for a small level of strain above 0.2%, a few
cycles are needed to reach a level of liquefaction where the soil loses its strength entirely.
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Figure 6. Results of the cyclic triaxial testing for loose sand: (a) deviatoric stress–strain hysteresis
curves; (b) evolution of the deviatoric stress with the increase of the number of cycles.

The variation of the deviatoric stress with the number of cycles is due to the re-
organization of the granular material and, hence, to the different exchange of contact forces
between the particles; the evolution of the normal contact forces for a representative volume
element of the loose sand sample is shown in Figure 7. A little variation of the maximum
magnitude of the contact forces is observed at a small level of axial strain during the first
three cycles; on the other hand, with the increase of the maximum level of strain, the
degradation of the maximum value of the contact forces becomes relevant after a few cycles.
It can also be observed that the number of interactions between the particles decreases
with the increase of the number of cycles, similarly to what occurs in real soil during
a liquefaction phenomenon.



Modelling 2022, 3 410

Modelling 2022, 3 410 
 

 

The variation of the deviatoric stress with the number of cycles is due to the re-or-

ganization of the granular material and, hence, to the different exchange of contact forces 

between the particles; the evolution of the normal contact forces for a representative vol-

ume element of the loose sand sample is shown in Figure 7. A little variation of the maxi-

mum magnitude of the contact forces is observed at a small level of axial strain during the 

first three cycles; on the other hand, with the increase of the maximum level of strain, the 

degradation of the maximum value of the contact forces becomes relevant after a few cy-

cles. It can also be observed that the number of interactions between the particles de-

creases with the increase of the number of cycles, similarly to what occurs in real soil dur-

ing a liquefaction phenomenon.  

 𝑁 = 1 𝑁 = 2 𝑁 = 3  

𝜀 𝑧
𝑧𝑚

𝑎
𝑥

=
0

.1
%

 

    

𝜀 𝑧
𝑧𝑚

𝑎
𝑥

=
0

.2
%

 

   
 

𝜀 𝑧
𝑧𝑚

𝑎
𝑥

=
0

.5
%

 

 
  

 

Figure 7. Normal contact forces for a representative volume element obtained from the results of 

the cyclic triaxial testing for loose sand at various maximum axial strain levels and at an increasing 

number of cycles (values in Newton). 

Figure 8a illustrates the deviatoric stress–strain cyclic response for medium-dense 

soil, and Figure 8b shows the evolution of the deviatoric stress with the progress of the 

cyclic testing (Dr = 55%). It is interesting to note the different shapes of the medium-dense 

samples compared to the loose ones: they present the typical “S shape” or “banana shape” 

observed in real experiments [45,46]. The change in the stiffness and strength response 

with the increase of the strain level corresponds to the tendency to move from the volume 

contraction to the volume dilation.  

Figure 7. Normal contact forces for a representative volume element obtained from the results of
the cyclic triaxial testing for loose sand at various maximum axial strain levels and at an increasing
number of cycles (values in Newton).

Figure 8a illustrates the deviatoric stress–strain cyclic response for medium-dense
soil, and Figure 8b shows the evolution of the deviatoric stress with the progress of the
cyclic testing (Dr = 55%). It is interesting to note the different shapes of the medium-dense
samples compared to the loose ones: they present the typical “S shape” or “banana shape”
observed in real experiments [45,46]. The change in the stiffness and strength response
with the increase of the strain level corresponds to the tendency to move from the volume
contraction to the volume dilation.

Remarkably, the samples subjected to low axial strain corresponding to 0.1–0.5% show
an important and gradual loss of shear resistance whilst at larger strain levels, the hysteresis
loops after an initial partial degradation and become stable, showing a behavior similar to
the plastic shakedown of the traditional elastoplastic theory. Moreover, the cyclic test with
medium-dense samples reveals a general strain hardening type of behavior: while at low
strain levels, the contraction induces a partial degradation, and at a large strain, dilatancy
helps to reduce the effect of the cyclic strength degradation.
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Figure 8. Results of the cyclic triaxial testing for medium-dense sand: (a) deviatoric stress–strain 
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Figure 8. Results of the cyclic triaxial testing for medium-dense sand: (a) deviatoric stress–strain
hysteresis curves; (b) evolution of the deviatoric stress with the increase of the number of cycles.
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4. Discussion

In this section, the results of the cyclic triaxial testing are elaborated to derive the cyclic
stiffness and strength degradation curves. Adopting the general fatigue-based approach,
these derived curves can be used in models based on the total stress approach where the
cyclic degradation can be expressed as a function of the number of loading cycles [47–49].

Figure 9a shows, for the loose sand samples, the evolution with the number of cycles
of the Strength Degradation Index, δ

q
N , defined as:

δ
q
N =

qmax
1

qmax
N

, (21)

where qmax
1 is the maximum deviatoric stress recorded at the first loop and qmax

N is the
maximum deviatoric stress recorded after N strain-controlled loops. It can be observed
that the soil strength rapidly decreases with the number of cycles and with the increase of
the maximum axial strain, εmax

zz . The authors proposed to consider soil failure when the
strength degradation index, δ

q
N , is lower than 0.1. Moreover, it can be observed that the

almost linear degrading behavior of the strength before the soil fails.
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Figure 9. Cyclic Degradation Curves for the loose sand samples: (a) degradation of the soil strength;
(b) degradation of the soil stiffness expressed as the initial tangent shear modulus.

Figure 9b shows the Stiffness Degradation Index, δG
N , for the same results on loose

sand samples, defined as

δk
N =

Ginit
1

Ginit
N

, (22)

where Ginit
1 is the initial tangent shear modulus calculated at the first loop, and Ginit

N is the
initial tangent shear modulus at the current N loop. Similar to the strength degradation
index, the curves show the progressive degradation of the stiffness with the increase of the
number of cycles and strain level.

Figure 10a shows the Strength Degradation Index from the results of the medium-
dense sand samples. The failure due to the soil liquefaction (δq

N < 0.1) occurs at low strain
levels when the soil manifests a compressive behavior; this leads to a fast pore pressure
buildup and, consequently, a degradation of the soil strength. On the other hand, because
of the relevant dilative behavior that occurs at larger strain levels, the degradation of the
soil strength is limited, and the samples do not reach a failure condition. This phenomenon
affects the tangent stiffness value at each loop; at low strain levels, a softening behavior is
observed whilst cyclic hardening is manifested at a large strain with relevant increments,
as evidenced in Figure 10b.
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Figure 10. Cyclic Degradation Curves for the medium-dense sand samples: (a) degradation of the
soil strength; (b) degradation of the soil stiffness expressed as initial tangent shear modulus.

Finally, the results presented above are elaborated to obtain useful laws for soil damage
models. A linear degradation model could be used to capture the relation between the
Strength Degradation Index and the number of cycles, as depicted in Figure 11a,b, for
loose and medium-dense sand, respectively. Considering the samples in which the failure
occurred, the following relation is proposed:

δ
q
N = 1 + m(Nc − 1), (23)

where Nc is the current number of cycles, and m is an empirical coefficient depending on the
maximum level of strain, εmax

zz , which can be expressed through the following power law:

m = − 0.9

1− a(εmax
zz )b , (24)

in which a = 2.305−4 and b = −1.177 for loose sand, and a = 0.2241 and b = −0.59337 for
medium-dense sand.
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5. Concluding Remarks

The potential of the discrete element method in simulating the kinematics of an as-
sembly of particles has been exploited in this study to investigate the cyclic behavior of
two ideal soil samples representing uniform sand at two different levels of compaction,
a loose and a medium-dense state. Few parameters have been used to create the model; the
primary ones are the limiting rolling coefficient, which simulates the ability of a particle
to roll over the other and, hence, is somehow related to the texture of the soil grains, and
the void ratio of the packing; the secondary ones, such as particle density or interparticle
stiffness, are fixed according to few computational rules. First, the samples have been tested
to characterize the main geotechnical parameters, such as the peak and residual angle of
friction, as well as the shear modulus. Second, cyclic triaxial testing was carried out by
adopting a constant volume approach to replicate undrained conditions. The degradation
of the deviatoric stress and shear modulus has been monitored to obtain a relation with the
number of cycles applied to the sample. Briefly:

1. Geotechnical properties such as the peak and residual angle of friction, as well as the
shear modulus, are consistent with the values given in the literature from real soils.

2. The different volumetric behavior of loose sand and medium-dense sand has been sim-
ulated without resorting to complex constitutive models or the calibration of several
parameters. The same input parameters were used for both specimens, evidencing
how the distribution of the particles and, hence, the void ratio of the packing is the
main aspect affecting the soil behavior of the sands.

3. The cyclic contractive tendency of the loose soil under undrained conditions at small
values of strain observed during the monotonic triaxial testing leads to a cyclic
degradation of its strength and stiffness; this is compatible with the real phenomenon
of the liquefaction or cyclic mobility.

4. The cyclic tendency to dilate in medium-dense sands yields to a stabilization of the
soil degradation; this is compatible with the reduction of the excess pore pressure, as
occurred in the real medium-dense sands.

5. The coefficients to model a linear cyclic damage model were obtained as a function of
the maximum applied axial strain and soil consistency.

Whilst the results presented in this paper are limited to a simplified model of uniform
sands, the proposed investigation can be used to simulate a multitude of packing of soils at
different states of compaction and dispersion of the grains. Therefore, this approach can be
adopted to derive statistical relations between the cyclic soil degradation or hardening and
the number of cycles, to help with the calibration of geotechnical models at the meso- or
macro- scale.
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