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without Derivatives
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Abstract: In this paper, we study a reformulation of the Economic Production Quantity (EPQ)
problem. We study a more general version of the problem first and derive the conditions for an
optimal solution, as well as the optimal solution itself, all without using derivatives. Then, we
apply the approach to the reformulated EPQ problem. This version of the EPQ problem has been
tackled by a number of researchers, wherein they have derived the conditions for the optimal solution
and proposed algebraic derivations. However, their derivations for the conditions, as well as the
optimal solution, have been shown to be questionable. Other than being questionable, the existing
approaches are so complicated that they defeat the purpose of simplifying the optimization by using
a derivative-free approach. We propose a correct and more succinct, much less complicated approach
to derive the conditions and the optimal solution without using derivatives.

Keywords: inventory; EPQ; economic production quantity; cost comparisons; derivative-free
methods

1. Introduction

The basic EOQ model was developed by Harris [1]. In this pioneering work, he states
that “the solution to this problem requires higher mathematics.” Grübbstrom and Erdem [2]
show that the EOQ problem (and its backordering extension) can be solved algebraically.
Cárdenas-Barrón [3] extends the same approach to the Economic Production Quantity
(EPQ) model with backorders, and Wee et al. [4] extend it to the EOQ problem with a
one-time discount offer. Huang [5] extends it to planned backorders and defective items.
Ronald et al. [6] use analytic geometry, and Chang et al. [7] simplify the algebraic approach
for both the EOQ and EPQ models in the former articles.

Sphicas [8] diverges from the former approaches and develops what he calls the
“completing the perfect square” approach in solving the EOQ problem with linear and
fixed backordering costs. Omar [9] generalizes this new approach. Cárdenas-Barrón [10]
combines it with analytic geometry. Wee and Chung [11] extend it to a two-echelon
inventory ordering problem. Chung [12] improves the approach of Wee and Chung [11].

Teng [13] introduces the arithmetic mean–geometric mean inequality approach.
Lung [14] and Cárdenas-Barrón [15] show that this approach is not general. Cárdenas-
Barrón [15] lists three conditions for this approach to work correctly, and Cárdenas-Barrón [16]
extends it to the EOQ and EPQ problems with backorders. Ouyang et al. [17] use it for the
EOQ problem with defective items and partially permissible delay in payments. Cárdenas-
Barrón [18] uses it for a two-echelon problem similar to the one in Wee and Chung [11].
Cárdenas-Barrón [19] uses analytic geometry in conjunction with this approach for the EOQ
and EPQ problems. Lin [20] modifies the approach in Cárdenas-Barrón [16]. Teng et al. [21]
combine the completing the perfect square and the arithmetic mean–geometric mean in-
equality approaches and apply them to the vendor–buyer inventory problem. Sphicas [22]
algebraically determines the solution to the EOQ problem with fixed and linear backorder-
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ing costs and calls it the generalized EOQ formula. Luo [23] points out some issues in
Sphicas [22].

Minner [24] proposes the cost comparisons approach to find the optimal order interval
in the EOQ and EPQ problems (and in their backordering extensions). Wee et al. [25]
optimize the order quantity as opposed to the order interval using a similar approach.
Cárdenas-Barrón [26] compares the earlier algebraic approaches and the cost comparison ap-
proach and derives the optimal backorder quantity in the EOQ and EPQ models. Chung [27]
extends the cost comparisons approach to the vendor–buyer production–inventory model.
Widyadana et al. [28] extend it to the deteriorating items model.

Chang et al. [7] pose an open question in the context of their derivation for the EPQ
problem with planned backorders: solving a reformulation of the problem without using
derivatives. The reformulated problem has the backorder quantity as the only decision
variable because the order quantity has been eliminated based on the relationship between
the optimal order and backorder quantities. The literature studying this open question
is summarized in Table 1. Lau et al. [29] determine the conditions for the existence and
uniqueness of the optimal solution for the posed problem. Chiu et al. [30] analyze the
approach of Lau et al. [29] and point out questionable results and make corrections and
improvements. Luo and Chou [31] point out questionable results in both Lau et al. [29]
and Chiu et al. [30], complete their analyses, and propose a purely algebraic approach,
as opposed to the former, which uses differential calculus. Çalışkan [32] shows that the
algebraic derivation in Luo and Chou [31] is also questionable because important steps of
the process have been left out and there are some incorrect conclusions along the process,
so the open question has not been answered yet. We propose a correct and much simpler,
easy to understand, and succinct approach for both the derivation of the optimal solution
and the derivation of the necessary conditions for the problem. Our derivation is based on
the method proposed in Çalışkan [33].

Table 1. Summary of the previous literature most related to the present paper.

Article Contribution

Chang et al. [7] Open question: deriving the optimal solution for a reformulation of the
EPQ problem with backorders

Lau et al. [29] The conditions for the existence and uniqueness of the optimal solution
for the posed problem

Chiu et al. [30] Analysis of Lau et al. [29] and corrections and improvements of
the former

Luo and Chou [31] Analysis of both Lau et al. [29] and Chiu et al. [30], a purely algebraic
approach as opposed to the former

Çalışkan [32] Proof that Luo and Chou [31] is also partially incorrect and incomplete;
correction and completion of the former

Çalışkan [33] A general approach to optimize objective functions without derivatives

This paper Definitively answering the open question in Chang et al. [7]; correction of
the former approaches; analysis of the general problem in Lau et al. [29]

2. Description of the Problem

We use the same notation as in Cárdenas-Barrón [3], Chang et al. [7], and Luo and
Chou [31] to represent the parameters and variables:

D the demand per unit time

K the cost of setup per production batch

h the cost of inventory holding per unit per unit time

b the cost of backordering per unit per unit time

c the cost of production per unit of the item

Q the batch size to use in each production cycle

B the number of units to backorder in each production cycle
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The total cost function for the EPQ problem with backorders that is used by Cárdenas-
Barrón [3] and slightly revised later by Ronald et al. [6] and Chang et al. [7] is as follows:

C(Q, B) =
b + h
2ρQ

B2 − hB +
hρ

2
Q +

KD
Q

+ cD (1)

where ρ = 1− D
P . Chang et al. [7] reformulate Equation (1) by considering the following

relationship between Q and B for the optimal solution:

Q(B) =

√
2

hρ

(
KD +

b + h
2ρ

B2
)

(2)

and by substituting Equation (2) into Equation (1), we obtain the following total cost
function in only B:

C(B) = cD + h
[√

(1 + α)B2 + β− B
]

(3)

where α = b
h , and β = 2ρKD

h . The question is to minimize Equation (3) without using
derivatives, under the conditions that α > 0, β > 0 and 0 < B < ∞, which is equivalent
to minimizing

f (B) =
√
(1 + α)B2 + β− B. (4)

Lau et al. [29] extend the problem of minimizing Equation (4) to a more general problem
of minimizing

f (x) =
√

ax2 + bx + c− x (5)

Both Equations (4) and (5) contain square roots but we have to consider the positive square
roots. Since the underlying problem is the total cost for an inventory model, negative
total cost is not possible. Furthermore, f (B) and f (x) technically would not be considered
functions if both negative and positive square roots are considered, resulting in a one-to-two
mapping between x and f (x).

3. The Optimal Solution and Its Conditions

We will first derive the conditions for Equation (5) to have a unique interior point
minimum x∗, i.e., where f (x) has zero slope, as opposed to a boundary solution where f (x)
has nonzero slope. First, we observe that Equation (5) can take on different shapes, it could
be convex or concave, and its range may be entirely in R or it may be partially or entirely in
C. f (x) does not have to be convex to have a unique interior minimum. However, if f (x) is
convex and has a finite minimum that corresponds to a finite x, then it will be unique. We
will derive the conditions for a unique interior minimum by studying f (x) and its shape
with regard to when it is convex vs. when it is concave and when it has no real values.

Lemma 1. Equation (5) has a unique interior minimum x∗ < ∞ only if g(x) = ax2 + bx + c has
at most one real root.

Proof. To be convex, f (x) has to satisfy Jensen’s inequality (Jensen [34]):

λ f (x1) + (1− λ) f (x2) ≥ f (λx1 + (1− λ)x2) (6)

for x1, x2 ∈ R, x1 6= x2, and 0 < λ < 1. Because f (x) is complex-valued when g(x) < 0, we
assume that both g(x1) ≥ 0 and g(x2) ≥ 0. Therefore, the following should hold:
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λ
√

ax2
1 + bx1 + c− λx1 + (1− λ)

√
ax2

2 + bx2 + c− (1− λ)x2 ≥√
a(λx1 + (1− λ)x2)2 + b(λx1 + (1− λ)x2) + c− λx1 − (1− λ)x2

After cancelling the identical terms on both sides, we obtain:

λ
√

ax2
1 + bx1 + c + (1− λ)

√
ax2

2 + bx2 + c ≥√
a(λx1 + (1− λ)x2)2 + b(λx1 + (1− λ)x2) + c

We can square both sides and the equality will still hold because both sides are non-negative.
We then obtain:

λ2(ax2
1 + bx1 + c) + (1− λ)2(ax2

2 + bx2 + c)

+2λ(1− λ)
√
(ax2

1 + bx1 + c)(ax2
2 + bx2 + c) ≥

a(λ2x2
1 + 2λ(1− λ)x1x2 + (1− λ)2x2

2) + λbx1 + (1− λ)bx2 + c

This can further be simplified as:

λ(λ− 1)bx1 + λ(λ− 1)bx2 + 2λ(λ− 1)c

−2λ(λ− 1)
√
(ax2

1 + bx1 + c)(ax2
2 + bx2 + c) ≥ −2λ(λ− 1)ax1x2

Dividing both sides by λ(λ− 1) < 0 will change the direction of the inequality. Rearranging
the terms after cancelling λ(λ− 1), we obtain:

2ax1x2 + b(x1 + x2) + 2c ≤ 2
√
(ax2

1 + bx1 + c)(ax2
2 + bx2 + c) (7)

If the left-hand side of Equation (7), call it h(x1, x2), is non-negative, we can again square
both sides and the inequality will still hold. We assume for now that h(x1, x2) ≥ 0 and
square both sides of Equation (7) to obtain:

4a2x2
1x2

2 + 4ax1x2[b(x1 + x2) + 2c] + [b(x1 + x2) + 2c]2 ≤
4(ax2

1 + bx1 + c)(ax2
2 + bx2 + c)

This can further be simplified as follows:

2(4ac− b2)x1x2 + (b2 − 4ac)x2
1 + (b2 − 4ac)x2

2 ≤ 0

(b2 − 4ac)(x1 − x2)
2 ≤ 0

b2 − 4ac ≤ 0 (8)

We will now show that h(x1, x2) ≥ 0 for every x1 and x2 for which f (x1), f (x2) ∈ R and
f (x1), f (x2) ≥ 0. We know that bx1 + c ≥ −ax2

1 and bx2 + c ≥ −ax2
2. Then, the following

inequality should hold in general:

h(x1, x2) = 2ax1x2 + (bx1 + c) + (bx2 + c) ≥ 2ax1x2 − ax2
1 − ax2

2

= −a(x1 − x2)
2 (9)

1. When a ≤ 0, h(x1, x2) ≥ 0 and therefore Equation (8) is applicable. Then, the following
is true for f (x):

(a) If a < 0 and b2 − 4ac < 0, f (x) ∈ C for all x.
(b) If a < 0 and b2 − 4ac = 0, f (x) consists of a single point at x = − b

2a ; f (x) ∈ C
elsewhere.
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(c) If a < 0 and b2 − 4ac > 0, then f (x) is concave between the roots of g(x);
f (x) ∈ C elsewhere.

(d) If a = 0, f (x) is concave where g(x) ≥ 0 and f (x) ∈ C elsewhere.

2. When a > 0 and b2 − 4ac > 0, g(x) has two real roots and f (x) ∈ C between the
roots. Therefore, we simply need to show that h(x1, x2) ≥ 0 for x2 ≤ x1 and x2 ≥ x1.
h(x1, x2) ≥ 0 for x2 = x1. Without loss of generality, we fix x1 at the smaller root. We
will now show that h(x1, x2) ≥ 0 for every x2 < x1. Substituting the smaller root for
x1 in h(x1, x2) results in:

h(x1, x2) = 2ax2

(
−b−

√
b2 − 4ac

2a

)
+ b

(
−b−

√
b2 − 4ac

2a

)
+ bx2 + 2c

=
√

b2 − 4ac
(
−x2 −

b
2a

)
− b2

2a
+ 2c (10)

Because x2 < x1 =
(
− b

2a −
√

b2−4ac
2a

)
, the following holds:

h(x1, x2) >
√

b2 − 4ac

(
b

2a
+

√
b2 − 4ac

2a
− b

2a

)
− b2

2a
+ 2c = 0 (11)

Therefore, h(x1, x2) ≥ 0 for x2 < x1 and Equation (8) is applicable. Similarly, we can
fix x1 at the greater root and, using a similar process, we can prove that h(x1, x2) ≥ 0
for x2 > x1 and Equation (8) is again applicable. Consequently, when a > 0 and
b2 − 4ac > 0, f (x) ∈ C between the roots and concave outside of the roots.

3. When a > 0 and b2 − 4ac ≤ 0, g(x) has, at most, one real root and f (x) ∈ R for all x.
When b2 − 4ac = 0, x = − b

2a is the only root. Again, without loss of generality, we fix
x1 at this root. Substituting the root for x1 in h(x1, x2) results in:

h(x1, x2) = 2ax2

(
− b

2a

)
− b2

2a
+ bx2 + 2c = − b2

2a
+ 2c (12)

Because b2 ≤ 4ac, the following holds:

h(x1, x2) > −
4ac
2a

+ 2c = 0 (13)

Therefore, h(x1, x2) ≥ 0 for x1 6= x2 and the simplification is valid, and thus, f (x) is
convex per Equation (8).

We observe that g(x) having at most one real root is necessary for a unique interior
solution that is finite valued, but not sufficient. The following lemma further establishes
the sufficiency conditions.

Lemma 2. Equation (5) has a unique interior minimum ∞ > x∗ > 0 if and only if:

1. b2 − 4ac ≤ 0
2. a > 1

Proof. (1) is already established by Lemma 1. In order to prove (2), we will derive the
closed-form equation for x∗. Let

xu = x∗ + ∆x (14)

xl = x∗ − ∆x (15)



Modelling 2022, 3 59

for some ∆x > 0. Then, the following will hold for x∗ and f (x):

f (xu)− f (x∗) ≥ 0 (16)

f (xl)− f (x∗) ≥ 0 (17)

Substituting Equation (5) into Equation (16), we obtain:√
ax2

u + bxu + c− xu −
√

a(x∗)2 + bx∗ + c + x∗ ≥ 0√
ax2

u + bxu + c−
√

a(x∗)2 + bx∗ + c− (xu − x∗) ≥ 0√
ax2

u + bxu + c−
√

a(x∗)2 + bx∗ + c
(xu − x∗)

− 1 ≥ 0

Expanding the fraction by
√

ax2
u + bxu + c +

√
a(x∗)2 + bx∗ + c and simplifying,

we obtain:

a(x2
u − (x∗)2) + b(xu − x∗)

(xu − x∗)(
√

ax2
u + bxu + c +

√
a(x∗)2 + bx∗ + c)

− 1 ≥ 0

a(xu + x∗) + b√
ax2

u + bxu + c +
√

a(x∗)2 + bx∗ + c
≥ 1 (18)

A similar analysis of Equation (17) will result in the following inequality:

a(xl + x∗) + b√
ax2

l + bxl + c +
√

a(x∗)2 + bx∗ + c
≤ 1 (19)

Combining Equations (18) and (19), we obtain:

a(xu + x∗) + b√
ax2

u + bxu + c +
√

a(x∗)2 + bx∗ + c
≥ 1 ≥ a(xl + x∗) + b√

ax2
l + bxl + c +

√
a(x∗)2 + bx∗ + c

(20)

Let ∆x become gradually smaller and approach zero. Then, both sides of Equation (20) will
approach one another and therefore they will both approach 1 as well. It then follows that:

2ax∗ + b
2
√

a(x∗)2 + bx∗ + c
= 1 (21)

Note that Equation (21) is equivalent to

f ′(x) =
2ax∗ + b

2
√

a(x∗)2 + bx∗ + c
− 1 = 0 (22)

However, we have not used knowledge of the derivative of any functional form to obtain
this result. Equation (21) yields:

2ax∗ + b = 2
√

a(x∗)2 + bx∗ + c (23)

We will now take the square of both sides to obtain a quadratic equation. Both negative
and positive square roots of

√
a(x∗)2 + bx∗ + c satisfy the resulting Equation (24). Hence,

we obtain two solutions, one that corresponds to a slope of 0 for f (x), and another that
corresponds to a slope of −2 for f (x). The one that corresponds to zero slope is the interior
minimum point and it is required to be positive. We know that f (x) is required to be convex
for a unique minimum, which means that its slope is negative to the left of the minimum
point. Therefore, the larger of the two solutions of Equation (24) is the one that corresponds
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to the interior minimum point x∗. Taking the square of both sides and rearranging the
terms, we obtain:

4(a− a2)(x∗)2 + 4(b− ab)x∗ + (4c− b2) = 0 (24)

The discriminant of Equation (24) could be calculated as follows:

∆ = [4(b− ab)]2 − 16(a− a2)(4c− b2)

= 16(1− a)(b2 − 4ac) (25)

Then, the solution to Equation (24) will be the larger of the two roots:

x∗ =
−4b(1− a) + 4

√
(1− a)(b2 − 4ac)

2[4a(1− a)]
=

1
2a

−b +

√
b2 − 4ac

1− a

 (26)

From (1), we know that 4ac ≥ b2. Equation (26) requires a > 1 in order to have a positive
value inside the square root so that x∗ ∈ R, and it requires a 6= 1 to ensure that x∗ < ∞.
Therefore, we need a > 1. It then follows that c ≥ 0 because 4ac ≥ b2 (this is not a separate
condition, but a consequence of a > 1 and 4ac ≥ b2).

We also need to establish conditions for x∗ > 0 and f (x) > 0 because the underlying
problem is the EPQ problem with backorders, where the problem is defined on x > 0 and
f (x) > 0 for all x > 0.

Lemma 3. f (x) > 0 for all x ∈ R if and only if 4(a− 1)c > b2 and a > 1.

Proof. The condition f (x) > 0 can be simplified as follows:√
ax2 + bx + c− x > 0⇒ ax2 + bx + c > x2 ⇒ (a− 1)x2 + bx + c > 0 (27)

Equation (27) will be satisfied for all x ∈ R if and only if its graph entirely lies above
the x axis—in other words, if it has no real roots and a − 1 > 0 or a > 1. Therefore,
∆ = b2 − 4(a− 1)c < 0, or 4(a− 1)c > b2.

Lemma 4. If b ≥ 0, then x∗ > 0 if and only if 4c > b2.

Proof. If b ≥ 0, x∗ > 0 requires:√
b2 − 4ac

1− a
> b⇒ b2 − 4ac

1− a
> b2 ⇒ 4c > b2 (28)

and if b ≤ 0, there is no additional condition for guaranteeing that x∗ > 0.

We can now combine and summarize all of the necessary and sufficient conditions in
the following theorem, as in Luo and Chou [31].

Theorem 1. f (x) is positive, convex, and has a unique positive finite valued non-boundary
minimum if and only if a > 1 and one of the following two conditions is satisfied:

1. b < 0 and 4(a− 1)c > b2

2. b ≥ 0 and 4c > b2

Proof. Immediate from Lemmas 1–4: if a > 1, then 4ac > 4(a − 1)c > b2 as well as
4ac > 4c > b2, which means, for case 1, we can drop b2 − 4ac ≤ 0 and keep 4(a− 1)c > b2;
and for case 2, we can drop b2 − 4ac ≤ 0 and keep 4c > b2
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4. The Original Inventory Problem

In the original EPQ with the backordering problem of Equation (4), a = 1 + α; b = 0,
and c = β. Clearly, a = 1 + b

h > 1; therefore, the only remaining requirement is 4β > 0 and
this is also satisfied because β = 2ρKD

h > 0. Therefore, we can substitute these values of a,
b, and c in Equation (26) and obtain the optimal solution:

B∗ =

√
β

α(1 + α)
, and f (B∗) = αB (29)

Contrary to the approach of Luo and Chou [31], our approach can directly be applied to
Equation (4) as well. Let B∗ be the minimum point of f (B) that is not a boundary solution
and let

Bu = B∗ + ∆B (30)

Bl = B∗ − ∆B (31)

for some ∆B > 0. Then, the following will hold due to B∗ being a non-boundary mini-
mum point:

f (Bu)− f (B∗) ≥ 0 (32)

f (Bl)− f (B∗) ≥ 0 (33)

Equation (32) can further be simplified as follows:√
(1 + α)B2

u + β− Bu −
√
(1 + α)(B∗)2 + β + B∗ ≥ 0√

(1 + α)B2
u + β−

√
(1 + α)(B∗)2 + β

Bu − B∗
− 1 ≥ 0

Expanding the fraction by
√
(1 + α)B2

u + β +
√
(1 + α)(B∗)2 + β results in

(1 + α)(B2
u − (B∗)2)

(Bu − B∗)(
√
(1 + α)B2

u + β +
√
(1 + α)(B∗)2 + β)

− 1 ≥ 0

(1 + α)(Bu + B∗)√
(1 + α)B2

u + β +
√
(1 + α)(B∗)2 + β

≥ 1 (34)

Applying the same approach to Equation (33) will result in:

(1 + α)(Bl + B∗)√
(1 + α)B2

l + β +
√
(1 + α)(B∗)2 + β

≤ 1 (35)

Again, combining Equations (34) and (35), we obtain:

(1 + α)(Bu + B∗)√
(1 + α)B2

u + β +
√
(1 + α)(B∗)2 + β

≥ 1 ≥ (1 + α)(Bl + B∗)√
(1 + α)B2

l + β +
√
(1 + α)(B∗)2 + β

(36)

Let ∆B become gradually smaller and approach zero. Then, both sides of Equation (36) will
approach one another and therefore they will both approach 1 as well. It then follows that:

2(1 + α)B∗

2
√
(1 + α)(B∗)2 + β

= 1 (37)
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Therefore, the solution to Equation (37) is:

B∗ =

√
β

α(1 + α)
(38)

f (B) is strictly convex if and only if the following holds for B1, B2 ∈ R, B1 6= B2 and
0 < λ < 1:

λ f (B1) + (1− λ) f (B2) > f (λB1 + (1− λ)B2) (39)

Equation (39) can be simplified further as follows:

λ
√
(1 + α)B2

1 + β− λB1 + (1− λ)
√
(1 + α)B2

2 + β− (1− λ)B2 >√
(1 + α)(λB1 + (1− λ)B2)2 + β− λB1 − (1− λ)B2 (40)

− 2λ(1− λ)β + 2λ(1− λ)
√
[(1 + α)B2

1 + β][(1 + α)B2
2 + β] >

2λ(1− λ)(1 + α)B1B2

Dividing both sides by the positive term 2λ(1− λ), we obtain:√
[(1 + α)B2

1 + β][(1 + α)B2
2 + β] > (1 + α)B1B2 + β

(1 + α)β(B2
1 + B2

2 − 2B1B2) > 0⇒ (B1 − B2)
2 > 0

Therefore, B∗ > 0 is a unique non-boundary finite valued optimal solution that also satisfies
f (B∗) > 0.

5. Limitations and Further Research

The proposed method does not explicitly use the derivative of any function and,
instead, derives the optimal solution using only algebraic manipulations. It is simple,
succinct, and intuitive, which makes it a useful pedagogical tool to teach inventory models
to students with limited skills in differential calculus. On the other hand, it implicitly uses
the first derivative of the total cost function, by obtaining it through algebraic operations,
as shown in Çalışkan [33]. It implicitly assumes that the total cost function is continuous
and continuously differentiable. When this is not the case, it will require further steps
and will become more complicated. However, the same is true for any other approach
when the total cost function is not continuous. Further research may apply the proposed
method to total cost functions that are not continuous, and to other problems in inventory
management and operations research. It may also be adapted to situations in which there
are constraints and/or more decision variables in the problem.

6. Conclusions

In this paper, we answer the open question posed in Chang et al. [7]: deriving the
optimal solution for a reformulation of the EPQ problem with backorders using an approach
that does not require derivatives. The earlier approach proposed by Luo and Chou [31]
is not entirely correct and complete, as shown in Çalışkan [32], so the open question is
still outstanding. We also point out that the approach in Luo and Chou [31] is far too
complicated that it defeats the purpose, which is simplifying the optimization by not using
differential calculus so that undergraduate or even high school students, or practitioners
without a working knowledge of differential calculus, can understand it. Our approach, on
the other hand, is simple, succinct, and easy to follow. We consider the generalized version
of the open question proposed by Lau et al. [29] and derive the necessary and sufficient
conditions for the problem to have an acceptable optimal solution for the underlying EPQ
problem, as well as the optimal solution itself. We also show that our approach could be
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applied directly to the original inventory problem with ease. Finally, we study the general
problem to provide more insights and show that it can assume different characteristics
depending on its parameters (Appendix A).
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Appendix A. General Properties of f (x)

In Section 3, we established the conditions for f (x) to be positive and to have a unique
interior point minimum that is positive so that f (x) makes sense as the total cost function
of an inventory model. In its general form, f (x) takes on different shapes depending on
the parameters a, b, and c. This section is not a part of the answer to the open question
challenge of solving the EPQ problem with backordering in Chang et al. [7] without using
derivatives, as we have already addressed this in Sections 3 and 4. This section provides
further insights into the function f (x). Therefore, we freely use differential calculus in this
section. We first analyze the limiting behavior of f (x). In order to calculate the limits of
f (x) as x → −∞ or x → ∞, we can transform f (x) into the following form:

f (x) =
√

ax2 + bx + c− x =

√
x2
(

a +
b
x
+

c
x2

)
− x = |x|

√
a +

b
x
+

c
x2 − x

f (x) =


−
√

a+ b
x +

c
x2−1

1
x

, x < 0√
a+ b

x +
c

x2−1
1
x

, x ≥ 0
(A1)

Lemma A1. The following limits are valid for f (x):

1. if a = 1 then limx→−∞ f (x) = ∞ and limx→∞ f (x) = b
2

2. if 1 > a > 0 then limx→−∞ f (x) = ∞ and limx→∞ f (x) = −∞
3. if a > 1 then limx→−∞ f (x) = limx→∞ f (x) = ∞
4. if a = 0 and b > 0 then limx→−∞ f (x) ∈ C and limx→∞ f (x) = −∞
5. if a = 0 and b < 0 then limx→−∞ f (x) = ∞ and limx→∞ f (x) ∈ C
6. if a < 0 then limx→−∞ f (x) ∈ C and limx→∞ f (x) ∈ C

Proof.

1. For x → −∞, we simply evaluate Equation (A1) for x < 0, which results in ∞ as
both the numerator and denominator are negative and they approach −2 and 0,
respectively. For x → ∞, we have to apply L’óspital’s rule because evaluating the
integral results in 0

0 indeterminacy:

lim
x→∞

√
a + b

x −
c

x2 − 1
1
x

= lim
x→∞

− b
x2 +

2c
x3

2
√

a+ b
x +

c
x2

− 1
x2

= lim
x→∞

b− 2c
x

2
√

a + b
x + c

x2

=
b

2
√

a
=

b
2

2. For x → −∞, evaluating Equation (A1) for x < 0 results in ∞, as both the numerator
and denominator are negative. As for x → ∞, evaluating Equation (A1) for x > 0
results in −∞ because the numerator is negative but the denominator is positive.
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3. For x → −∞, evaluating Equation (A1) for x < 0 results in ∞, as both the numerator
and denominator are negative. As for x → ∞, evaluating Equation (A1) for x > 0
results in ∞ because both the numerator and denominator are positive.

4. If a = 0 and b > 0, then limx→−∞ f (x) ∈ C because g(x) < 0 for x < − c
b . Addition-

ally, limx→∞ f (x) = −1
0 = −∞ because the denominator is positive.

5. If a = 0 and b < 0, then limx→−∞ f (x) = −1
0 = ∞ because the denominator is

negative. Additionally, limx→∞ f (x) ∈ C because g(x) < 0 for x > − c
b .

6. If a < 0, then g(x) < 0 as x → ∞ as well as x → −∞ and therefore limx→−∞ f (x) ∈ C
and limx→∞ f (x) ∈ C.

We can now summarize the general results regarding the shape and the minimum
point x∗ of f (x). The following theorem lists all of the possibilities for the shape, range,
and the minimum point of f (x).

Theorem A1. Let the range of f (x) be Y. If g(x) has two real roots, let xl
o and xu

o be the roots.
Then, the following statements hold for f(x):

1. If b2 − 4ac < 0 and a > 0, f(x) is strictly convex and Y ∈ R. Furthermore:

(a) If a < 1, x∗ = ∞
(b) If a = 1, x∗ = ∞

(c) If a > 1, x∗ = 1
2a

[
−b±

√
b2−4ac

1−a

]
2. If b2 − 4ac < 0 and a < 0, f(x) is neither convex nor concave and Y ∈ C
3. If b2 − 4ac = 0 and a > 0, f(x) is convex but not strictly convex and Y ∈ R (piecewise

linear). Furthermore:

(a) If a < 1, x∗ = ∞
(b) If a = 1, x∗ = (− b

2 , ∞)

(c) If a > 1, x∗ = − b
2a

4. If b2 − 4ac = 0 and a < 0, f(x) is both convex and concave because f (x) is a single point;
x∗ = − b

2a , and Y = { b
2a} for x = − b

2a , and Y ∈ C for x 6= − b
2a

5. If b2 − 4ac > 0, f (x) is strictly concave and x∗ = argminx{ f (xl
o), f (xu

o )} and furthermore:

(a) if a > 0, Y ∈ C for xu
o ≥ x ≥ xl

o and Y ∈ R for x < xl and x > xu

(b) if a < 0, Y ∈ R for xu
o ≥ x ≥ xl

o, and Y ∈ C for x < xl and x > xu

6. If a = 0, f (x) is strictly concave and furthermore:

(a) if b > 0, x∗ = ∞, and Y ∈ R for x ≥ xo and Y ∈ C for x < xo
(b) if b < 0, x∗ = −c

b , and Y ∈ R for x ≤ xo and Y ∈ C for x > xo

Proof.

1. By Lemma 1, f (x) is strictly convex when b2 − 4ac < 0 and a > 0. Furthermore,
g(x) > 0 for all x ∈ R and therefore Y ∈ R.

(a) If a < 1, x∗ = ∞ because f (x) is strictly monotone decreasing and limx→∞ f (x) =
−∞ by Lemma A1 (2).

(b) If a = 1, x∗ = ∞ because f (x) is strictly monotone decreasing and limx→∞ f (x) =
b
2 by Lemma A1 (1).

(c) If a > 1, x∗ = 1
2a

[
−b±

√
b2−4ac

1−a

]
by Lemma 2.

2. If b2 − 4ac < 0 and a < 0, g(x) < 0 for all x ∈ R and has no real roots. Therefore, f (x)
is neither convex nor concave and Y ∈ C
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3. If b2 − 4ac = 0 and a > 0, f (x) is convex but not strictly convex by Lemma 1. Because

∆ = b2 − 4ac = 0 for g(x), c = b2

4a and g(x) can be expressed as a perfect square:

g(x) = (
√

ax + b
√

a
2a )2. Therefore, f (x) can be expressed as follows:

f (x) =

√(√
ax +

b
√

a
2a

)2

− x =

∣∣∣∣√ax +
b
√

a
2a

∣∣∣∣− x

=

{
−(
√

a + 1)x− b
√

a
2a , x < −b

2a
(
√

a− 1)x + b
√

a
2a , x ≥ −b

2a

which is obviously piecewise linear with a corner point of x = −b
2a and Y ∈ R. Furthermore:

(a) If a < 1, x∗ = ∞ because f (x) is strictly monotone decreasing and limx→∞ f (x) =
−∞.

(b) If a = 1, x∗ =
(
− b

2 , ∞
)

, which means infinitely many optimal solutions along

the horizontal line of f (x) = b
2 .

(c) If a > 1, the unique minimum occurs at the corner point: x∗ = − b
2a .

4. If b2 − 4ac = 0, f (x) is convex but not strictly convex by Lemma 1; and if a < 0,
g(x) has a single real root x = − b

2a and g(x) < 0 for all x ∈ R, x 6= − b
2a . Therefore,

x∗ = − b
2a and Y = { b

2a} for x = − b
2a , and Y ∈ C for x 6= − b

2a
5. If b2 − 4ac > 0, f (x) is strictly concave by Lemma 1 and g(x) has two real roots.

Therefore, x∗ = argminx{ f (xl
o), f (xu

o )}.
(a) if a > 0, g(x) < 0 between its roots. Therefore, Y ∈ C for xu

o ≥ x ≥ xl
o, and

Y ∈ R for x < xl and x > xu.
(b) if a < 0, g(x) < 0 outside the interval between the two roots. Therefore, Y ∈ R

for xu
o ≥ x ≥ xl

o, and Y ∈ C for x < xl and x > xu.

6. If a = 0, f (x) is strictly concave by Lemma 1 and g(x) has a single real root x = −c
b .

(a) if b > 0, g(x) < 0 for all x ∈ R x < −c
b . Therefore, Y ∈ R for x ≥ −c

b and
Y ∈ C for x < −c

b . In addition, x∗ = ∞ because limx→∞ f (x) = −∞.
(b) if b < 0, g(x) < 0, for all x ∈ R x > −c

b . Therefore, Y ∈ R for x ≤ −c
b and

Y ∈ C for x > −c
b . In addition, x∗ = −c

b because f (x) is strictly monotone
decreasing.

Figures A1–A3 demonstrate the various shapes of f (x) that correspond to the 12 cases
that are listed in Theorem A1. As we can see from the graphs, only Case 1c satisfies the
requirements of ∞ > f (x∗) > 0, f (x) > 0 for x ∈ R, and f ′(x∗) = 0, which essentially is
the only case that satisfies all of the conditions in Theorem 1.



Modelling 2022, 3 66

-5

0

5

10

15

20

25

30

35

-20 -15 -10 -5 0 5 10 15 20

1 (a): a = 0.5, b = 4, c = 20

f(x)

x

0

2

4

6

8

10

12

14

16

18

20

-10 -8 -6 -4 -2 0 2 4 6 8 10

1 (b): a = 1, b = 2, c = 4

f(x)

x

0

5

10

15

20

25

-10 -8 -6 -4 -2 0 2 4 6 8 10

1 (c): a = 2, b = 2, c = 4

f(x)

x 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-10 -8 -6 -4 -2 0 2 4 6 8 10

2: a = -1, b = 2, c = -2

f(x)

x

Figure A1. The graph of f (x) for Case 1(a) through Case 2 from Theorem A1.
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Figure A3. The graph of f (x) for Case 5(a) through Case 6(b) from Theorem A1.
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