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Abstract: The behaviour of steel structures is affected by two nonlinearities—the geometric and
material nonlinearity—and by the unavoidable presence of imperfections. To evaluate the ultimate
capacity of a structure, these effects should be taken into consideration during the design process,
either explicitly in the analysis or implicitly through the verification checks. In this context, Eurocode 3
provides several design approaches of different complexity and accuracy. The advantages and
disadvantages of these approaches are discussed. Five different methods in conformity with the
Eurocode provisions are applied for the design of four moment resisting steel frames of varying
slenderness. The influence of nonlinearities and imperfections in respect to the slenderness of the
structure is illustrated. The examined methods are compared in terms of the predicted ultimate
capacity and their efficiency is assessed against the most accurate between them, i.e., an advanced
geometrically and materially nonlinear analysis. It is shown that considerable differences arise
between the methods. Nevertheless, except for the commonly used 2nd order analysis followed by
cross-section verifications, the remaining methods are mostly on the safe side.

Keywords: design of steel frames; nonlinear analysis; imperfections; general method; buckling
length; Eurocode 3

1. Introduction

One of the major challenges when designing a structure is to strike a balance between
safety and economy. Concerning steel structures, the European Standard dedicated to their
design, Eurocode 3 [1], as well as the American Standard AISC 360 [2], do not impose a
single design method but provide several alternatives instead. Hence, the selection of the
most suitable design method for the problem at hand is an important issue, demanding
guidance. The various design methods differ in the analysis theory employed and the
design checks subsequently required. Each method results in a different level of safety
and economy, since it approaches the behaviour of the structure with varying degree
of accuracy.

1.1. Nonlinear Behaviour of Steel Structures

The behaviour (resistance, stiffness) of steel structures is affected mainly by two non-
linearities, i.e., the material and geometric nonlinearity. The collapse may be due to an
exceedance of the material strength in one or more cross-sections (material nonlinearity) or
due to instability of individual members or of the whole structure (geometric nonlinearity).
The collapse of rigid structures is typically associated with the material nonlinearity, while
in slender structures the geometric nonlinearity becomes critical. Structures of intermediate
stiffness usually collapse due to an interaction of the two types of nonlinearity (inelastic
buckling). Both nonlinearities have to be considered for the design, either directly during
the analysis or implicitly through resistance and stability verification checks. Material
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nonlinearity should always be taken into account, while geometric nonlinearity can, under
specific conditions, be neglected.

In framed structures, geometrically nonlinear or 2nd order effects involve P-∆ effects
associated with the global instability of the frame and P-δ effects associated with the local
instability of its members. Both of them result in additional moments or forces from the
global horizontal displacements of the frame (P-∆) and the deflection of its members from
their initial straight geometry (P-δ) [3]. Eurocode 3 [1] specifies that P-∆ effects can be
neglected if they increase 1st order internal forces and deformations less than 10%. Similarly,
consideration of P-δ effects is not mandatory if the compression force in a member is lower
than 25% of the critical Euler load assuming that both ends of the member are pinned.

1.2. Imperfections

Beside nonlinearities, imperfections, being inevitable in real structures, may affect
intensely the behaviour of steel structures. Even though imperfections are not always
unfavourable, their most adverse shape, which results in a structure with lower stiffness
and resistance compared to the perfect one, has to be considered for the design. Main
sources of imperfections are the deviation of the realised geometry from the perfect one
(geometrical imperfections), the accidental eccentricity of the applied loads and the residual
stresses due to manufacturing processes (structural imperfections). For design purposes,
all types of imperfections can be merged into equivalent geometrical imperfections for the
sake of simplicity. Two types of imperfections are relevant to framed structures: a global
initial inclination of the frame (out-of-plumbness) and an initial curvature of its members
(out-of-straightness). Global imperfections (associated with P-∆ effects) should always
be considered in the analysis, regardless of its type, unless high horizontal loads coexist
making their influence negligible. On the other hand, member imperfections (associated
with P-δ effects) having already been incorporated in the European buckling curves, can
be taken into account either via member design or by direct modelling, provided that a
geometrically nonlinear analysis is performed.

1.3. Modelling–Analysis–Verification

As it has already been mentioned, during the design process, nonlinearities and
imperfections should be considered either explicitly in the analysis or implicitly through
verification checks. Any effect on the structure that cannot be captured in the analysis,
either due to the model or the analysis theory employed, should be accounted for with
subsequent design checks. Generally, cross-section resistance checks are required when
the material nonlinearity is not taken into account in the analysis, while member stability
checks are used when the geometric nonlinearity is not considered accordingly. However,
even if a geometrically nonlinear analysis is carried out, buckling checks are necessary
against the instability modes which may not be able to be captured by the model. This
may be due to approximative simulation or not including all the necessary imperfections
to trigger a critical instability mode.

Concerning hot-rolled steel framed structures, three types of instability may occur in
members subjected to compression or combined compression and bending, i.e., flexural
buckling (FB), flexural-torsional buckling (FTB) and local buckling (LB). Amongst these
only FB can be captured by conventional 6 degrees-of-freedom (d.o.f.) beam elements.
For FTB to be captured shell elements or 7 d.o.f. beam elements, which include the first
derivative of twisting angle as an additional unknown, are required [4,5]. Shell elements
can additionally capture LB, while recently the Continuous Strength Method [6] has been
developed which, accompanied with appropriate strain limits, allows the consideration of
LB by using beam elements [7]. LB is beyond the scope of the present work and will not be
mentioned any further.

Apart from the appropriate model, the consideration of initial imperfections is also es-
sential in order for the various instability phenomena to be detectable when a geometrically
nonlinear analysis is carried out. An initial frame inclination is sufficient to give rise to
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global instability phenomena. Additionally, initial bow imperfections in both directions of
the main cross-sectional axes are necessary for the flexural buckling of individual members
to be captured, while imperfections combining an initial deflection towards the weak axis
of the section with an initial twist of the member are associated with the FTB. It should be
noted that both global and local imperfections should not be considered simultaneously in
two directions. Alternatively, to discrete frame and member imperfections, a unique initial
imperfection in the shape of the critical buckling mode of the frame may be used as firstly
proposed by [8] and has been further developed in [9].

Consequently, if the model of the structure can describe any possible failure mode,
appropriate initial imperfections are incorporated into it and a geometrically and materially
nonlinear analysis is performed, no further verification is required. Otherwise, if the
analysis is elastic, cross-section resistance verification (section design) should always
follow, while if a 1st order analysis is performed, stability verifications (member design)
against both flexural and flexural torsional buckling are required. Member design against
FB and FTB is also required even if the analysis is geometrically nonlinear but only initial
global imperfections are considered. In this case, the determination of the effective lengths
needed for the FB checks should be made considering the frame as non-sway, since the
P-∆ effects are already included in the internal forces. Finally, verification against FTB is
required if the structural members, although susceptible to FTB, are modelled with 6 d.o.f.
beam elements despite the execution of a geometrically nonlinear analysis including both
global and local imperfections.

1.4. Advantages and Disadvantages of Different Methods

In principle, the optimum method is the simplest one that integrates all significant
effects and leads to cost-effective structures. However, it generally holds that the more
simplified the model and analysis, the more demanding the subsequently required verifica-
tion checks. A geometrically and materially nonlinear analysis taking into account global
and local imperfections is, obviously, the most complex method in terms of modelling
and analysis. The foremost advantage of this method is that it approaches the real struc-
tural behaviour with the highest possible level of accuracy and therefore more economical
solutions can be achieved. Additionally, Code predicted design checks can be bypassed
rendering the design process more straightforward. On the other hand, GMNIA requires
advanced software available as well as deeper understanding and significant experience
of the Designer, not only to set up the model and adjust the algorithm parameters, but
also for the post-processing and interpretation of the results. A serious concern associated
with the advanced analysis is the correct consideration of imperfections. Beside the fact
that their most adverse shape is not always obvious [10], their magnitude is also a point
of debate [11–14]. A strategy for design by GMNI Analysis has been published in [15],
however the complexity of the method itself and the high computational cost it entails are
limiting factors preventing its wide application for common structures.

The common design practice follows a two-step procedure, involving a linear elastic
analysis in the first step followed by cross-sectional and member verifications according to
the Code design formulae in the second. The fast and relatively simple calculations for the
determination of the internal forces of this type of analysis, as well as the applicability of
the superposition principle are the main advantages of this method. Its major limitation, on
the other hand, is that the structure is not designed as a whole but its members are treated
individually. Since the evidence about the compatibility between the isolated member
and the member as part of the structure is deficient [16], this method offers scant insight
into the complete system behaviour. Additionally, in order to account for the various
effects neglected in the analysis, the design formulae contain many auxiliary coefficients
(effective length factor, interaction coefficients) the determination of which can be quite
complex, making the execution of the verification checks an excessively laborious process.
Moreover, even though extensive experimental and numerical research has been conducted
for the development of the design formulae, their calibration is based on the behaviour of
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individual members with simple boundary and loading conditions [17,18]. This implies
that the application of these formulae on members under different conditions or integrated
into frames may lead to unsafe or overconservative design.

A compromise between the advanced numerical methods and those that rely exclu-
sively on analytical formulae is the General Method of EN 1993-1-1 [1], which can be
used in cases that are not covered by the interaction formulae of [1]. Although potentially
promising, the mechanical background of this method is not very clear and the related
literature is rather scarce. In the current version of Eurocode 3, General Method is limited
only to in-plane loading and the determination of the proper buckling curve to be adopted
is still under discussion. A numerical validation of the method is given in [19], a possible
extension of its applicability for cases where both in-plane and out-of-plane loading coexist
is presented in [20], while a consistent buckling curve for the load case of combined axial
force and bending moment is derived in [21].

1.5. Literature Review

Comparisons between different methods of Eurocode 3 have been presented in several
works [19,20,22–25]. Most of them, however, deal with individual members and they are
not exhaustive rather than examine few of the possible methods each. Only [24,25] evaluate
many alternative design methods applying them on planar frames. Bernuzzi et al. [24] com-
pare four different methods based on elastic analyses. Their results indicate no significant
differences concerning the resistance of the frames except for the method that involves sec-
tion and member verifications against the internal forces of a 2nd order elastic analysis only
with global imperfections, being asserted as unsafe. On the other hand, Fieber et al. [25]
examine methods that involve both elastic and inelastic analyses. By comparing the re-
sults of the most accurate GMNI Analyses with those of the other methods of Eurocode 3
they conclude that all the methods of EC3 provide mostly safe results. Although quite
comprehensive, these two works are limited only to the in-plane behaviour of the frames
preventing any out-of-plane instability. Furthermore, in the opinion of the authors, there
are some inaccuracies in the calculations of [24] leading to questionable results.

1.6. Objectives and Outline

In the present work five different analysis and design methods compatible with
the Eurocode 3 provisions are applied on four frames of different slenderness in order
to evaluate their performance. In extension to the already published works, this paper
considers not only in-plane but also out-of-plane failure modes. Both elastic and plastic
design approaches are examined covering almost any possible alternative design method.
Guidance is provided on the application of the methods and the comparison between them
demonstrates the suitability of each method in respect to the slenderness of the examined
structure. The attention is given on slender frames sensitive to 2nd order effects. The
examined frames are moment resisting, braced in the out-of-plane direction, having rigid
joints and made of compact cross-sections. Only the columns of the frames are examined;
any possible failure of the beams is prevented.

Firstly, in Section 2 the key features of the examined methods are presented. The for-
mulae selected for the cross-sectional verification are justified by comparing the normative
expressions [1] and the analytical ones proposed in [26] with numerical results. Afterwards,
in Section 3 the examined structures and their loading as well as some modelling aspects
are discussed. In Section 4, the main results of the investigations regarding the most
unfavourable shape of the imperfections, the collapse mechanism of the structures and
the comparison between the examined methods are reported. A discussion on the results
and on the procedure employed for the determination of the effective lengths follows in
Section 5. Finally, the conclusions drawn through this study are presented in Section 6.
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2. Examined Analysis and Design Methods

The following five methods sorted in decreasing order regarding the complexity of the
analysis theory employed but in increasing order regarding the complexity of the required
verification checks are examined:

1. GMNIA: Geometrically and Materially Nonlinear Analysis with Imperfections
2. GNIA-SD: Geometrically Nonlinear Analysis with Imperfections—Section Design
3. GM: General Method
4. GNA-SMD: Geometrically Nonlinear Analysis—Section and Member Design
5. LA-SMD: Linear Analysis—Section and Member Design

The accuracy of the last four methods is evaluated with respect to the first one which is
the most accurate among them. At the first step, the ultimate loads of each frame according
to the GMNIA design method are calculated (i.e., the loads under which the ultimate
load factor of GMNIA is λGMNIA = 1, see Section 3.2). By applying these loads in the
remaining methods, their ultimate load factor (λmethod) is determined, i.e., the load factor
under which the most critical verification check of each method is marginally satisfied. A
result of λmethod > 1 indicates that the method is unsafe permitting higher loads than those
the frame can actually bear. The application of the methods is outlined in the following
paragraphs, while the key features of each method are summarized in Table 1.

Table 1. Key features of the examined methods.

Method Modelling—d.o.f.
of Beam Elements Analysis Modelled

Imperfections Section Design Member Design In Plane
Buckling Length

GMNIA 7 GMNIA Global & Local No No -

GNIA-SD 7 GNIA Global & Local Yes No -

GM 6 GNIA/LBA Global & in-plane local Yes General Method -

GNA-SMD 6 GNA Global Yes Yes Non-sway

LA-SMD 6 LA Global Yes Yes Sway

2.1. GMNIA

To apply the GMNIA method the frames are modelled with 7 d.o.f. beam elements,
both global (sway) and local (bow) imperfections are incorporated into the model and a
geometrically and materially nonlinear analysis is performed. Since any possible collapse
mode can be captured in the analysis, no verification checks are needed. The safety of
the structure is verified if having applied the design loads the corresponding peak load
factor is greater than one. The failure criterion of the method is the formation of a plastic
mechanism or the instability of the structure. The collapse mechanism is identified by
examining equilibrium paths accompanied by the stress distribution in the structure and
its deformed shape.

2.2. GNIA-SD

The application of GNIA-SD method involves modelling the structure with 7 d.o.f.
beam elements, performing an elastic geometrically nonlinear analysis taking into account
both global and local imperfections and verification of cross-sectional resistance. Since any
possible instability phenomenon can be detected in the analysis only cross-section checks
are required. These are executed according to the formulae Equations (1)–(3) proposed
in [26] considering the plastic resistance of the sections. The failure criterion of the method
is the formation of the first plastic hinge in the frame. The formulae of [26] are selected
over the equivalent ones of EN 1993-1-1 [1] due to their higher accuracy as demonstrated
through a preliminary investigation where both formulae were compared with numerical
results. The results concerning uniaxial and biaxial bending moment combined with axial
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force are presented in the form of interaction diagrams for a HEB 450 cross-section in
Figures 1 and 2.my·

(
1 + α f

)
− αw + n2/αw

2·α f

2

+ mz + mw ≤ 1.0, i f n ≤ αw (1)

[
my·
(

1 + α f

)]2
+ [2·(αw − n)]2(

2·α f

)2 + mz + mw ≤ 1.0, i f n > αw (2)

with the additional condition:
my ≤ 1 − n

1 − 0.5·αw
(3)

where n, my, mz and mw are the axial force, bending moments and bimoment, respectively,
divided by the relevant plastic section resistances and αf, αw are the ratios between the
cross-section areas of the flange and correspondingly the web to the total section area.

Figure 1. Comparison of interaction resistance diagrams n + my + mz of numerical analysis (fiber model) and analytic
formulae EC3 [1], Vayas (2000) [26] for a HEB 450 section.

Figure 2. Comparison of interaction resistance diagrams n + my of numerical analysis (fiber model) and analytic formulae
EC3 [1], Vayas (2000) [26] for a HEB 450 section.
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2.3. General Method

For the application of the General Method two types of analysis are executed: an elastic
geometrically nonlinear analysis with imperfections for the calculation of αult,k, where
global and in plane local imperfections are taken into account (GNIA) and a linearized
buckling analysis (LBA) for the calculation of αcr,op. The members of the frames are
modelled with 7 d.o.f. beam elements for both analyses, although for the purposes of GNIA
2D 3 d.o.f. beam elements would be sufficient. The αult,k coefficient is determined through
an iterative procedure, as the minimum amplifier of the design loads, for the most critical
cross-section of the frame to reach its characteristic plastic resistance. The plastic resistance
of cross-sections is calculated with the interaction formulae Equations (4) and (5) proposed
by [26] which are more accurate than the equivalent expressions of EN1993-1-1 [1] as can
be seen in Figure 2. The αcr,op coefficient, respectively, is taken equal to the eigenvalue of
the first buckling mode involving the out-of-plane buckling of the most stressed column,
from which the αult,k coefficient is determined.

my ≤
1 − α f

2 − n2

1 − α f
2 , i f n ≤ αw (4)

my ≤ 1 − n
1 − 0.5·αw

, i f n ≤ αw (5)

where n and my are the axial force and bending moment about the strong axis, respectively,
divided by the relevant plastic section resistances and αf, αw are the ratios between the
cross-section areas of the flange and correspondingly the web to the total section area.

According to General Method, both strength and stability are verified by satisfying
the condition:

χop·αult,k

γM1
≥ 1.0 (6)

where
χop = min(χz, χLT) (7)

is the buckling reduction factor taken as the minimum between the reduction factor for
the out-of-plane flexural buckling (χz) and the reduction factor for the lateral torsional
buckling (χLT).

2.4. GNA-SMD

For the GNA-SMD method the frames are modelled with 6 d.o.f. beam elements. An
elastic geometrically nonlinear analysis is carried out taking into account only the global
imperfections. Two alternatives are examined regarding the analysis: a rigorous geometri-
cally nonlinear analysis based on the exact 2nd order theory (GNA) and an approximate
one where the horizontal loads are multiplied by an amplification factor (Equatioin (8))
and the internal forces are calculated according to the 1st order theory (ASOA).

α =
1

1 − 1
αcr

(8)

Since the analysis is elastic and only global imperfections are incorporated into the
model, both section and member verifications are required. The failure criterion of the
method is the formation of the first plastic hinge or the stability loss of the most critical
column, whichever occurs first. The cross-sectional verification is performed according
to the expressions Equations (4) and (5), while the buckling verification according to the
interaction formulae (6.61) and (6.62) of EN1993-1-1 [1], which for exclusively in-plane
bending are written as:

NEd
χy·NRk/γM1

+ kyy·
My,Ed

χLT ·My,Rk/γM1
≤ 1.0 (9)
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NEd
χz·NRk/γM1

+ kzy·
My,Ed

χLT ·My,Rk/γM1
≤ 1.0 (10)

where χy, χz, and χLT are the reduction factors for flexural buckling about the strong and
weak axis of the cross-section and for lateral torsional buckling, respectively, NRk and My,Rk
are the characteristic resistances against axial force and bending moment about the strong
cross-sectional axis and kyy, kzy are the interaction factors for combination of axial force and
bending moment.

The interaction factors k are calculated according to Method 2 (German-Austrian
approach), where Cmy factor is taken equal to Cmy = 0.9, as the frames buckle in a sway
mode [18]. The effective lengths, however, are taken conservatively equal to the system
lengths according to [1], as P-∆ effects have already been accounted for in the internal forces.

2.5. LA-SMD

For the LA-SMD method the frames are modelled with 6 d.o.f. beam elements, sway
imperfections are included in the model and a linear elastic analysis is executed followed
by cross-sectional and stability verifications. The failure criterion of the method is the
formation of the first plastic hinge or the instability of the most critical member. The
resistance of the cross-sections is checked according to the Equations (4) and (5) and the
stability of the columns according to the interaction formulae Equations (9) and (10). Unless
the condition αcr > 10 holds, the frames are considered sway and the effective lengths
of their columns should be calculated accordingly. Here, for investigation reasons, the
performance of the method is examined considering both the sway (LA-SMDs) and non-
sway (LA-SMDns) in-plane buckling lengths of the columns, even if not permitted by
the Code for all frames. The non-sway buckling lengths are taken equal to the system
lengths, while the sway buckling lengths are calculated with the system buckling approach.
Specifically, a linearized buckling analysis is performed to obtain the critical load factor
(i.e., the eigenvalue of the critical sway buckling mode) which combined with the Euler’s
formula gives the effective length factor β (Equation (11)) [4] of each column. The out-of-
plane buckling length is taken, conservatively, equal to the system length assuming that
the frames are braced in that direction.

β =
1
L
·
√

π2·E·I
λi·Nre f

(11)

where λi is the eigenvalue of the critical (for each column) in-plane sway buckling mode, E
the modulus of elasticity, I the moment of inertia in the examined plane and Nref the design
axial force of the column.

3. Examined Frames
3.1. Geometry and Material

Four frames of different slenderness ranging from fairly rigid to very slender are
examined. In terms of Eurocode 3, the slenderness of a structure is expressed by the αcr
coefficient; the lower the αcr the slenderer the structure. The value of αcr is influenced
by the dimensions of the structure, the cross-sections of its members, the modulus of
elasticity of the material used, the boundary conditions and the magnitude of the vertical
loads acting on the structure. In order for the examined frames to be comparable, all of
the above-mentioned parameters, except for the applied loads, were kept constant for
all frames. Different values of αcr were achieved only by varying the ratio of vertical to
horizontal loads.

The examined frames are moment resisting, with pinned supports and assumed braced
in the out-of-plane direction. They have two storeys with three bays and all cross sections
are compact (class 1) with a S355 steel grade. Their configuration, dimensions and cross-
sections of their members are illustrated in Figure 3. The frames under consideration are in
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fact parts of a 2-, 3-, 5- and 7-storey building (named LS, MS, HS and VHS respectively).
However, only the bottom 2 storeys are modelled, for simplicity of analysis.

Figure 3. Configuration and load pattern of the examined frames and designation of their columns.

3.2. Loads

Both vertical and horizontal loads are imposed on the examined frames (Figure 3).
The vertical loads consist of uniformly distributed loads on the beams and concentrated
loads on the top of the columns of the 2nd floor. The horizontal loads are concentrated at
the levels of the floors. The loading magnitude is such that the ultimate load coefficient as
results from a GMNI Analysis is equal to 1 for all the frames and simultaneously the αcr
coefficient of each frame has a different value.

More specifically, the uniformly distributed vertical load has the same value in all
frames corresponding to the value arising under the ultimate limit state load combination
as specified by Eurocode 1 [27] for office buildings assuming that the beams have a 6 m
influence width. The concentrated vertical loads are assumed to come from additional
(not modelled) floors of the structure. For this reason, they are applied only on the top of
the 2nd floor columns, while the force on the internal columns is twice as much the one
on the external columns. The magnitude of these forces has been selected so that the αcr
coefficient of each frame has the desired value. As a result, LS, MS, HS and VHS frames
are assumed to have 0, 1, 3 and 5 additional floors, respectively. Finally, the horizontal
forces applied are such that the GMNIA ultimate load factor of each frame reaches unity.
They are assumed to have a triangular distribution over the height of the full frame. The
horizontal force at the level of the 1st floor is the same for both the full and the partial frame.
However, at the level of the 2nd floor, for the simulation of the effects of the floors which
are not modelled, the horizontal force applied on the partial frame is such that its base
moment is the same with that of the full frame. This assumption results in different base
shear between the two models; nevertheless, its influence on the structural behaviour and
results was deemed insignificant, for the purposes of this study. The derivation of the loads
applied on the examined frames is presented schematically in Figure 4, indicatively for the
MS frame. Table 2 summarises the applied loads on each frame and the corresponding
αcr coefficient.
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Figure 4. Derivation of loads for the examined frames (MS).

Table 2. Applied loads and αcr coefficients of the examined frames.

Frame Slenderness αcr

Vertical Loads
Horizontal Loads

Distributed
Concentrated

Internal Column External Column 1st Floor 2nd Floor

q [kN/m] Pint [kN] Pext [kN] H1 [kN] H2 [kN]

LS Low 10.04 70 0 0 256.5 436

MS Medium 6.66 70 576 288 89.5 456

HS High 4.05 70 1727 863.5 15 289

VHS Very High 2.86 70 2878 1439 0 0

3.3. Imperfections

Both global and member imperfections are considered in the form of equivalent
notional loads. The global imperfection, taken into account in all analyses conducted,
consists of an initial out-of-plumbness equal to 1/200 in the same direction with the
horizontal forces. In addition to global imperfection, local bow imperfections are integrated
into the model for the GMNI and GNI Analyses. Since their most unfavourable shape is
not a priori known, four different shapes, as illustrated in Figure 5, are examined, while
their magnitude is taken from the Table 5.1 of EN 1993-1-1 [1].
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Figure 5. Examined shapes of local bow imperfections.

3.4. Modelling

Beam elements of 6 or 7 d.o.f. are used to model the members of the frames, as
described in Section 2. Beam elements are sufficient for the purposes of this study, since
all the members have Class 1 cross-sections, so local buckling is irrelevant. The elements’
length, equal to 0.2 m, was selected after sensitivity analyses showing that by further
halving the length the improvement in accuracy was insignificant (differences less than 1%).

Regarding connection properties, the columns are pinned at their bases, while beam to
columns joints are considered fully rigid. Moreover, assuming that the frames are braced in
the out of plane direction and that the lateral torsional buckling of the beams is prevented
by the slabs and appropriate detailing, the out of plane displacements at the floor levels
are restricted.

For the materially nonlinear analyses, steel is represented by a linear elastic-linear hard-
ening plastic material model with input parameters: the modulus of elasticity E = 210 GPa,
the yield stress fy = 355 MPa, for the post-yield region a constant stiffness of ET = E·10−4

and the Poisson ratio v = 0.3. From a preliminary investigation, it was concluded that the
differences in the overall capacity of the frames considering elastic or elastoplastic beams
are very small, as shown in Figure 6. For this reason and because this study focuses on the
influence of 2nd order effects on the behaviour of the frames, the material of the beams
in the GMNI Analyses is considered elastic and the verification checks for all the other
methods concern only the columns.

Figure 6. Comparison of the behaviour of the frames considering elastic and elastoplastic beams.

For the analyses, two different finite element programs, i.e., ADINA [28] and SOFiSTiK [29],
were used, with the compatibility between them verified. More specifically, GMNI Analyses
were executed with ADINA which, having incorporated a very robust algorithm using the
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arc-length method, is able not only to achieve easily a fast convergence but also to capture
the unloading branch of the equilibrium path. All the other analyses were carried out with
SOFiSTiK, which, being more practice-oriented, provides easier processing of the internal
forces for the verification checks.

4. Results
4.1. Influence of Nonlinearities

It is known that the influence of geometric nonlinearity increases with the slenderness
of the structure, whereas material nonlinearity affects more the more rigid structures. For
the examined frames these influences are revealed in Figure 7, where the equilibrium paths
of the examined frames as derived from different types of analysis are presented.

Figure 7. Equilibrium paths of the examined frames as derived with different methods of analysis.

4.2. Influence of the Imperfection Pattern

As mentioned in Section 3.3, four possible imperfection patterns (Figure 5) are exam-
ined to identify the most adverse one. The corresponding ultimate load factor, as derived
from GMNIA and GNIA-SD methods is presented in Figure 8. More pronounced varia-
tions, increasing with the slenderness of the structure, are observed for GMNIA method,
which for the slenderest frame exceed 20%. On the other hand, the variations for GNIA-SD
method are moderate, less than 5% for all the frames. Consideration of out-of-plane imper-
fections leads to lower resistance for all frames according to GMNIA; the antisymmetric
shape is the most adverse for the slenderest frame and the symmetric shape for the other
ones. According to GNIA-SD, the symmetric out-of-plane imperfections are also the most
adverse for the two more rigid frames, however for the two more slender frames, the
in-plane ones turn to be more unfavourable.
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Figure 8. Variation of the ultimate load factor with the imperfection pattern for GMNIA and GNIA-SD methods.

4.3. Collapse Mechanism

GMNIA provides the most realistic estimation of the collapse mechanism. This is
identified by examining appropriate equilibrium paths in combination with the distribution
of the stresses and the deformed shape of the frame at the moment of collapse, presented
for the frames LS and VHS in Figures 9a–d and 10a–d. The behaviour of the other two
frames (MS and HS) is similar to the behaviour of LS. It may be observed that the collapse
of the frames is due to instability and it occurs in the plastic range. More specifically, in
the three more rigid frames the three right columns of the first floor buckle in a flexural
torsional buckling mode, while in the slenderest frame the internal columns of both floors
buckle also in the same mode. This can be verified by the equilibrium paths presented in
Figures 9b,c and 10b,c which display the out-of-plane displacements and rotations about
the members axis versus the applied loading for the most critical point of each column
(marked with red in Figures 9a and 10a). Also, it can be noticed that no plastic mechanism
has been formed in any frame before collapse (Figures 9d and 10d). Indeed, except for the
most rigid frame where the cross-sections at the top of the three columns that buckle form
a plastic hinge, all the others collapse without any of their cross-sections fully yielded. In
fact, the slenderer the frame the smaller the part of its most critical section that has been
plasticised at the moment of collapse.

Additionally, the utilisation level of the most rigid (LS) and most slender (VHS) frame
when the failure criterion of the GNIA-SD, GNA-SMD and LA-SMDs methods is fulfilled
is presented indicatively in Figures 9e–g and 10e–g. The utilization of the other two frames
is similar to the LS frame. It may be observed that only the GNA-SMD method can capture
the critical column in all frames. All the other methods correctly detect the critical column
in the three most rigid frames, but fail in the slenderest one.
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Figure 9. Collapse mechanism and utilization level of LS frame—(a) deformed shape (GMNIA); (b,c) equilibrium paths
(GMNIA); (d) stress distribution (GMNIA); (e) utilization level (GNIA-SD); (f) utilization level (GNA-SMD); (g) utilization
level (LA-SMDs).
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Figure 10. Collapse mechanism and utilization level of VHS frame—(a) deformed shape (GMNIA); (b,c) equilibrium paths
(GMNIA); (d) stress distribution (GMNIA); (e) utilization level (GNIA-SD); (f) utilization level (GNA-SMD); (g) utilization
level (LA-SMDs).

4.4. Ultimate Load Factors

The ultimate load factors of the frames as determined from each method are presented
in Table 3 and graphically illustrated in Figure 11, where a green marker indicates that
EC3 permits the use of the method for the specific frame and a red marker the opposite.
Moreover, a comparison between the equilibrium paths of the examined methods marked
at the point corresponds to the fulfilment of the failure criterion of each method is pre-
sented in Figure 12. The following observations may be made taking as reference the
GMNIA method:

• All methods are on the safe side for the most rigid frame LS, where αcr > 10.
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• All methods except for General Method are unsafe for the slenderest frame, where
αcr < 3.

• Only the General Method is on the safe side for all frames.
• The commonly used in practice GNIA-SD method is safe only for the LS frame.
• The least conservative method is the GNIA-SD, while the most conservative is the

ASOA-SMD, except for the VHS frame where the General Method is the most conservative.
• All methods become less conservative as the slenderness of the structure increases.
• Although for frames that αcr < 10, sway buckling lengths should be considered when

a 1st order analysis is executed, results show that by taking them equal to the system
lengths (method LA-SMDns) leads to safe results for the MS frame (αcr = 6.66) and
slightly (less than 5%) unsafe results for the HS frame (αcr = 4.05).

• The differences between the exact GNA-SMD and the approximate ASOA-SMD
method are very small. The approximate method is slightly more conservative for
the three more rigid frames, while for the slenderest one, where its application is not
permitted, the two methods lead to an identical ultimate load factor.

Table 3. Ultimate load factors.

Method
Ultimate Load Factor λcollapse

LS
(αcr = 10.04)

MS
(αcr = 6.66)

HS
(αcr = 4.05)

VHS
(αcr = 2.86)

GMNIA 1.000 1.000 1.000 1.000

GNIA-SD 0.963 1.010 1.088 1.167

GNA-SMD 0.820 0.853 0.896 1.009

ASOA-SMD 0.804 0.834 0.878 1.009

LA-SMDs 0.874 0.904 0.957 1.054

LA-SMDns 0.877 0.939 1.011 1.082

General Method 0.869 0.905 0.922 0.960

Figure 11. Ultimate load factors.
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Figure 12. Comparison between the equilibrium paths of the examined frames marked with the point corresponds
to collapse.

5. Discussion
5.1. Interaction of Nonlinearities

As identified in Section 4.3, the examined frames collapse due to inelastic buckling,
thus due to the interaction of the geometric and material nonlinearity. GNIA-SD method
neglects this interaction and for this reason is unsafe for the three slenderest frames. Indeed,
these frames collapse before the full plastification of any of their cross-sections, which is the
failure criterion of GNIA-SD method. Moreover, as ascertained in Section 4.3, the slenderer
the frame, the smaller the plastic zone of its most unfavourable cross-section at collapse
and for this reason the results of GNIA-SD become less safe as the slenderness of the frame
increases. On the other hand, GNIA-SD is on the safe side for the rigid frame, because this
frame collapses after its three more unfavourable cross-sections have been fully plasticised,
thus at higher loading level than that required for the fulfilment of the failure criterion of
the method.

5.2. Magnitude of Imperfections

The local imperfections for the analyses of the present study have been taken from the
Table 5.1 of EN 1993-1-1 [1] as mentioned in Section 3.3. However, as already reported in [14]
the values of that table are significantly higher than those extracted from the EC3 buckling
curves through the Ayrton-Perry formulation. For example, the magnitude of the bow
imperfection that Table 5.1 of EN 1993-1-1 proposes for a plastic analysis in the direction of
the weak axis of the most critical column (C2-1) is e0 = L/200. The corresponding value
derived from the Equation (12) is e0 = L/386. Therefore, the magnitude of the imperfection
taken into account through the buckling check is 93% lower than that considered for the
GMNIA analysis.

e0 = α·
(
λ − 0.2

)
·Wpl/A (12)

where α the imperfection factor, λ the non-dimensional slenderness, Wpl the plastic section
modulus and A the cross-section area.



Modelling 2021, 2 584

By repeating the GMNI Analyses taking into account local imperfections derived
from the Equation (12) the ultimate load factors (λGMNIA(bc)) shown in Figure 13 are
obtained. It may be observed that they are quite higher than those which correspond
to the imperfections of Table 5.1 of EN 1993-1-1 and that the differences increase with
the slenderness of the frame because the sensitivity to imperfections is also increasing.
Moreover, Figure 13 reveals that if the methods which involve buckling verifications are
compared to the GMNIA method where local imperfections from the Equation (12) are
considered, then they are all on the safe side for all the frames.

Figure 13. Comparison of the ultimate load factors of the methods that involve buckling verifications
with those of GMNI Analyses taking into account local imperfections either from Table 5.1 of EN
1993-1-1 [1] or from the Equation (12).

5.3. GNA-SMD

In contrast to the results of [24], where it was concluded that the GNA-SMD method
(or EC3-RAM according to the terminology therein) is the most economic among the other
Eurocode 3 methods, in the present study it was found that this method together with the
ASOA-SMD are the most conservative methods (except for the slenderest frame). This
disagreement may be due to various reasons. First and foremost, in [24] the out-of-plane
instability was not considered. In the present study, however, it was found to be the
dominant instability mode causing the collapse of the frames. Another reason could be the
value of Cmy coefficient. More specifically, although in both studies the stability verification
was performed with the same interaction formula (Equation (6.61) of EN 1993-1-1 [1]) and
the interaction coefficient kyy was evaluated according to the same method (Method 2), the
Cmy coefficient in [24] was not taken equal to 0.9 contrary to the calculations presented
here. However, both EN 1993-1-1 [1] and [18] clearly state that Cmy should be taken equal
to 0.9 when the examined members buckle in a sway mode.

5.4. General Method

Special attention should be paid on the implementation of the General method when
the first out-of-plane buckling mode does not involve the most stressed column from
which the αult,k coefficient is determined. Being that the case for the VHS frame, it was
demonstrated that the αcr,op coefficient should be taken equal to the eigenvalue of the first
out-of-plane buckling mode (see Figure 14c) that does involve the most stressed column
(see Figure 14a). Otherwise, i.e., if the first out-of-plane mode of the frame is considered,
but that mode does not engage the most stressed column (see Figure 14b), the General
method leads to very conservative results (the ultimate load factor of the method for the
VHS frame decreased from 0.959 to 0.882 (8%)).
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Figure 14. Implementation of the General method on the VHS frame: (a) utilization of the columns for the determination
of αutl,k; (b) first out-of-plane buckling mode of the frame; (c) first out-of-plane buckling mode that includes the most
stressed column.

5.5. Effective Buckling Length

The most demanding task involved in the otherwise simple LA-SMD method is
the determination of the buckling length. To this scope three methodologies have been
developed: (a) the isolated subassembly approach, (b) the storey-based approach and
(c) the system buckling approach [30,31]. As mentioned above, in this study the in-plane
buckling length is calculated according to the third approach through the Equation (11),
where λi is taken equal to the eigenvalue of the critical sway in plane buckling mode of
each column. More specifically, it was identified that the critical buckling mode for the
first-floor columns is the first sway mode of the frame (Figure 15a), while for the second-
floor columns the second one (Figure 15b). The buckling length factors obtained with this
assumption are depicted in Figure 16. As expected, all of them are greater than one, since
the examined frames are unbraced in the in-plane direction.

Figure 15. Two first in-plane sway buckling modes of the examined frames. (a)—1st sway buckling mode; (b)—2nd sway
buckling mode.

Figure 16. Buckling length factors determined from the 1st sway buckling mode for the 1st floor
columns and the 2nd sway buckling mode for the 2nd floor columns.

It may be observed that the distribution of the buckling length factors between the
columns of each storey correlates with that of the strut indexes of the columns (Figure 17).
Strut index, given by Equation (13), is a parameter expressing the stress in a member
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with respect to its stiffness. A similar statement has been made in [32], where the authors
affirmed that the buckling length factor is essentially a lateral stiffness coefficient.

ρ = L·
√

NEd/(E·I) (13)

where L the member length, NEd the design axial force and E I the flexural stiffness of the
member in the buckling plane under consideration.

Figure 17. Strut indexes of the examined columns.

By comparing Figures 16 and 17, it is clear that the higher the strut index of a column
in a storey the smaller its buckling length. Hence for both storeys of all frames, the internal
columns of each storey have the same buckling length, always lower than that of the less
stressed left external column, which has the highest buckling length among the columns of
the storey. The right external column, being more stressed than the internal ones in the first
storey has smaller buckling length than them, while the opposite applies for the second
storey. This association can be explained by the interstorey interaction of the columns. In
fact, sidesway buckling is a global phenomenon occurring not when the most stressed
column reaches its sidesway buckling resistance, but when the total vertical loading on
the frame becomes equal to the sum of the sidesway buckling resistances of the columns
that provide lateral stiffness. To achieve this mechanism, the less stressed columns act
as lateral restraints for the most stressed ones. So, even though they may have the same
geometric properties and boundary conditions, the less stressed columns result in having
higher buckling lengths than the most stressed ones in the storey. This mechanism, firstly
explained by [33], has been reported in many works [4,30,31,34,35].

Furthermore, it may be observed that the differences between the buckling lengths
within a storey decrease as the applied horizontal forces become smaller (from the LS to
VHS frame). This is because the distribution of the axial forces between the columns of
each storey becomes more uniform. The buckling length of the internal columns is almost
identical among the frames, confirming that it does not depend on the magnitude of the
axial force of a column, but on the distribution of the axial forces in the storey.

Finally, it has to be noticed that the bucklling lengths of the second storey columns are
smaller than those in the first storey. This is mainly due to the different rotational boundary
conditions. In fact, the first storey columns are pinned at their bases so their bottom ends
are free to rotate, whereas the rotations at the top ends of the second storey columns are
partially restrained by the adjoining beams.

The above observations give evidence that the buckling lengths calculated using the
eigenvalue of the first sway buckling mode for the first floor columns and of the second
one for the second floor columns are realistic. Usually, only the first buckling mode is
considered critical for the examined system. However, this can lead to excessively large
buckling lengths for the members that do not participate significantly in the buckling
mechanism corresponding to the considered critical mode, as has already been reported
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by [30–32]. This is the case for the examined frames as can be realized by the shape of the
two first sway buckling modes depicted in Figure 15. Actually, at the first mode only the
first floor columns buckle sidesways, while the ones at the second floor practically just
translate laterally. Conversely at the second mode, sidesway buckling takes place only in
the second storey.

To confirm the validity of the employed methodology, the buckling lengths calculated
according to it are compared to those obtained with the same approach but considering the
first sway buckling mode as the critical one for the whole system and to those obtained
with an analytical procedure [36] which is an improvement of the methodology provided
by EN 1993-1-1 [1]. This procedure follows the isolated subassembly approach, where each
column is examined individually and the contribution of the adjoining members to the
rotational stiffness of its ends is taken into account approximately with equivalent springs.

Figure 18 presents the comparison of the buckling lengths resulted from the above-
mentioned approaches. It is clear that the buckling lengths of the analytical procedure
are close to those of the system buckling approach that correspond to the first sway
buckling mode for the first storey and to the second one for the second storey. Actually,
for the internal columns the agreement is very good, while for the external columns some
discrepancies arise because the analytical procedure does not take into consideration the
interstorey interaction of the columns. Finally, it has to be noticed that the calculation of
the buckling lengths in both storeys based on the first sway buckling mode leads to two
inconsistencies. More specifically, in contrast to what is theoretically expected, the buckling
lengths in the second storey (a) are greater than those in the first one and (b) they seem to
depend on the magnitude of the axial force, since they decrease as the difference between
the axial forces in the two storeys decreases (from frame LS to VHS).

Figure 18. Comparison between effective lengths calculated with different approaches.

6. Conclusions

Five different methods of analysis and design which conform with EN 1993-1-1 provi-
sions were applied to four plane frames of different slenderness ranging from relatively
rigid (αcr > 10) to very slender (αcr < 3) structures. The accuracy of the methods was
evaluated taking as reference the most accurate between them (GMNIA). The conclusions
drawn from the investigations described in the previous paragraphs can be summarized
as following:

1. The out-of-plane buckling dominates the behaviour of the examined frames. Their
collapse mechanism involves inelastic flexural torsional buckling of their columns.

2. For the three more rigid frames (αcr > 3), all the EC3-permitted design methods,
except for the GNIA-SD, are on the safe side.

3. The examined methods become less conservative as the slenderness of the structure
increases. Hence, although they are all safe for the rigid frame, for the slenderest one
(αcr < 3) all of them except for the General method are unsafe.



Modelling 2021, 2 588

4. In slender structures (αcr < 10) the consideration of each type of nonlinearity sepa-
rately but neglecting their interaction, i.e., the geometric nonlinearity in the analysis
and the material nonlinearity through plastic cross-sectional verification, results in
unsafe design.

5. The imperfections incorporated in the buckling curves are much lower than those
proposed in Table 5.1 of EN 1993-1-1. If the imperfections extracted from the buckling
curves are considered in GMNI Analyses, then all the methods that involve buckling
verification are more conservative than GMNIA for all frames.

6. When the system buckling approach is adopted for the determination of the buckling
lengths, the calculations should be based on the critical buckling mode for the storey
that each column belongs to, namely the first buckling mode where this storey displays
large drift.

The development of the next generation of Eurocode 3 [37] is in progress and incor-
porates some changes regarding both resistance and stability verifications as well as the
magnitude of the imperfections to be considered for the design [38,39]. Thus, an extension
of the present study according to the provisions of the next generation of Eurocode 3 would
be an interesting update.
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Abbreviations

EC3 Eurocode 3
GMNIA Geometrically and Materially Nonlinear Imperfection Analysis

GMNIA (Lbc)
Geometrically and Materially Nonlinear Imperfection Analysis (Local
imperfections from buckling curves)

GNIA-SD Geometrically Nonlinear Imperfection Analysis–Section Design
GNA-SMD Geometrically Nonlinear Analysis–Section and Member Design
ASOA-SMD Approximate Second Order Analysis–Section and Member Design
LA-SMDs Linear Analysis-Section and Member Design (sway buckling length)
LA-SMDns Linear Analysis-Section and Member Design (non-sway buckling length)
FB Flexural Buckling
FTB Flexural Torsional Buckling
LB Local Buckling
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