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Abstract: The spread of infectious diseases is a complex system in which pathogens, humans, the
environment, and sometimes vectors interact. Mathematical and simulation modelling is a suitable
approach to investigate the dynamics of such complex systems. The 2019 novel coronavirus (COVID-
19) pandemic reinforced the importance of agent-based simulation models to quickly and accurately
provide information about the disease spread that would be otherwise hard or risky to obtain, and
how this information can be used to support infectious disease control decisions. Due to the trade-offs
between complexity, time, and accuracy, many assumptions are frequently made in epidemiological
models. With respect to vector-borne diseases, these assumptions lead to epidemiological models
that are usually bounded to single-strain and single-vector scenarios, where human behavior is
modeled in a simplistic manner or ignored, and where data quality is usually not evaluated. In order
to leverage these models from theoretical tools to decision-making support tools, it is important to
understand how information quality, human behavior, multi-vector, and multi-strain affect the results.
For this, an agent-based simulation model with different parameter values and different scenarios
was considered. Its results were compared with the results of a traditional compartmental model
with respect to three outputs: total number of infected individuals, duration of the epidemic, and
number of epidemic waves. Paired t-test showed that, in most cases, data quality, human behavior,
multi-vector, and multi-strain were characteristics that lead to statistically different results, while
the computational costs to consider them were not high. Therefore, these characteristics should be
investigated in more detail and be accounted for in epidemiological models in order to obtain more
reliable results that can assist the decision-making process during epidemics.

Keywords: agent-based simulation; epidemiological model; infectious diseases; vector-borne disease;
information quality; human behavior; multi-vector; multi-strain

1. Introduction

Infectious disease outbreaks are among the largest and oldest challenges faced by
humanity. Although the theme is old, characteristics of the current globalized world, such
as interconnectivity and frequent movement of people, allow infectious diseases to spread
further and more quickly nowadays. Moreover, due to cross-species transmission, there is
also an increased risk for novel diseases to emerge.

Recently, the 2019 novel coronavirus (COVID-19) quickly spread around the globe,
leading countries to activate emergency plans, travel restrictions, and quarantine [1]. Apart
from the large number of cases and deaths, the outbreak led to anxiety, struggle in the health
systems, and global economic slowdown as restrictions were imposed [2]. As highlighted
by the World Health Organization [3], the year 2020 was the scenario we all had feared
for decades, “a virus that spread quickly around the world”. This scenario shows the
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importance of studies to investigate infectious disease spread. Despite the acknowledged
importance, investigating the problem and producing timely reliable information for an
ongoing epidemic remains a challenge due to the involved complexities [4].

Infectious disease dynamics are affected by multiple socioeconomic, behavioral, envi-
ronmental, and ecological factors. It is a complex system in which pathogens, humans, the
environment, and sometimes vectors interact. According to the World Health Organiza-
tion [5], the incidence and consequences of infectious diseases are not distributed randomly
among the population. Level of education, income, gender, relationships with friends and
family, culture, individual characteristics, behaviors, knowledge, and awareness play a key
role in human health, especially with respect to infectious disease transmission [6–17].

The lack of empirical data and the inaccuracy or uncertainty of existent data are
also major problems in studying the spread of infectious disease [4,6,7,18]. Conducting
empirical studies to collect data can be expensive or difficult, if not impossible, due to
the risks posed to the individuals. Moreover, information available at the early stages of
an outbreak is usually uncertain and under- or over-estimated due to being collected on
unrepresentative samples of the population [16].

Another challenge in studying infectious disease spread is that each epidemic alters the
risk perceived by the population and triggers different behavioral responses in individuals,
which, in turn, influence disease transmission [19]. According to the estimates of the World
Health Organization [20], 50% of patients do not follow fully prescribed medical treatment,
which extends the duration of treatment and increases drug resistance.

Many of the parameters that affect disease dynamics depend on the context and
change rapidly over time or according to the geographic region, climate, type of disease,
and various other factors [4]. An example of how the parameters change over time and
different regions is the existence of multi-strain and multi-vector. In the past, it was
common to have the circulation of only one strain of dengue virus and the existence of
only one vector in endemic areas. Lately, the simultaneous circulation of all four dengue
virus strains has become common and the adoption of innovative vector control population
strategies, such as the release of Wolbachia-carrier mosquitoes and genetically modified
mosquitoes, has introduced different disease vectors in endemic regions. The existence of
different vectors and different strains of pathogens may have a substantial effect on the
disease dynamics and, as such, it is another topic of investigation in this work.

Mathematical and simulation modelling is a suitable approach to investigate the
dynamics of complex systems such as infectious disease spread [4]. With respect to vector-
borne diseases, the majority of the studies include factors such as spatial/geographical
parameters, human movements, temperature, and precipitation. More recently, human
behavior has also been considered, but other factors such as multi-strain or new strategies
to control the vector population have not been widely investigated. This means that vector-
borne epidemiological models are usually bounded to single-strain and single-vector
scenarios, where human behavior is modeled in a simplistic manner or ignored, and where
data quality is usually not evaluated.

Considering the aforementioned background, investigating the possible impacts of
data quality, human behavior, multi-strain, and multi-vector on the results of a vector-borne
epidemiological model is, therefore, important. Researchers will be able to identify the
relevant parameters and weigh the computational costs of including these parameters
in the models. Within this context, the following research questions arise: (i) “What are
the impacts of data quality on the results of an epidemiological model?”; (ii) “How can
the spread of a vector-borne disease be affected by human behavior?”; (iii) “What are the
epidemic impacts of simultaneous circulation of multiple virus strains in one region?”; (iv)
“What are the epidemic impacts of different disease vectors cohabiting in one region?”; and
(v) “What are the computational costs of considering human behavior, multi-strain, and
multi-vector in epidemiological simulation models?”.

To provide a direction for these research questions, the present study aimed to develop
an exploratory epidemiological simulation model to evaluate how the results of this model
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vary according to changes in the parameter values and to different scenarios including
human behavior, multi-strain, and multi-vector. As a general goal, the study is expected
to provide a better understanding of the importance of data quality, human behavior,
multi-strain, and multi-vector in epidemiological simulation models. Such results can
be used to guide the improvement of epidemiological simulation models in the future,
increasing the value and accuracy of these models, and thus advancing these models from
a theoretical tool to a health policy decision support tool.

2. Materials and Methods

The model developed in this work is based on several premises that made it simple,
including the premise that the human population is homogeneous and closed. However, the
goals of this study include modelling different virus strains, different vector populations, as
well as human behavior. The agent-based simulation method allows for the representation
of different populations, different rules, and different behaviors in an effective way and,
therefore, is the method chosen in this work.

This work is based on infectious diseases transmitted by mosquitoes such as dengue
fever, yellow fever, chikungunya, and Zika. These diseases have similar transmission
dynamics when the mosquito bite is the means of transmission being considered. However,
some of these diseases have other means of transmission such as vertical transmission
from mother to fetus, transmission through sexual intercourse, and transmission through
blood transfusion [21,22]. In this study, the mosquito bite is the only means of transmission
considered because it is the primary means of transmission for all the aforementioned
diseases. The Aedes aegypti mosquito is known to be the main vector of the aforementioned
diseases and it is the vector species considered in this work.

Dengue fever is the disease chosen because besides being the mosquito-borne disease
that infects more people in the Americas [23], it also presents some characteristics in
comparison to yellow fever, chikungunya, and Zika, which makes it a more challenging
disease to be modeled. Four virus strains cause dengue (DENV1, DENV2, DENV3, and
DENV4). An individual that recovers from an infection is lifelong immune to that particular
virus strain, but he/she is only partially and temporarily immune to other strains [24].
Meanwhile, for chikungunya, there is only one strain and immunity is lifelong following
recovery. Moreover, in the case of dengue, subsequent infections by other dengue virus
strains increase the risk of developing a severe case. The issue of severe cases gets worse
because an individual may not even know he/she was infected in the past as the majority
of dengue cases are asymptomatic [25].

Due to the similarities among various diseases transmitted by mosquitoes, the value of
the parameters can be easily changed or new states can be added in the model to represent
other mosquito-borne diseases more accurately.

AnyLogic (University version 8.2.3) was the simulation software chosen to build the
simulation model. The simulation model involved 3 main agents: mosquito, human being,
and the environment, which is the place where mosquitoes and humans live. Humans
and mosquitoes are initiated in the model on the basis of their respective information on
population size and initial number of infectious individuals.

To verify the simulation model, we ran it in the interactive mode with deterministic
values and buttons added to test whether the states and parameters were being adequately
represented. A test protocol was developed and followed during the verification, where
each possible situation, that is, each possible state change, was tested in the model. For
example, if the latent period in humans was 10 days, a human in the exposed compartment
could not go into the infectious compartment within less or more than 10 days. Another
example was the reduction of latent periods and the increase in the infectivity rates. Such a
case should lead to a greater number of infected individuals more quickly. These cases and
other similar situations were tested to verify that the model was accurately representing
the disease dynamics.
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The overview, design concepts, and details (ODD) protocol proposed by Grimm et al. [26]
was used in this study to provide researchers with a rigorous structure and information
that would allow them to systematically replicate the experiments in different contexts.
The protocol is shown in Table 1.

Table 1. Overview, design concepts, and details protocol for the study.

Overview

Purpose

The model developed in this study, which represents a simplified abstraction of
reality, was designed to investigate and highlight the importance of three different
factors, namely, data quality, human behavior, and multi-strain, multi-vector,
when developing epidemiological models. Rather than developing a detailed
representation of an epidemic to predict the outcomes of future epidemics or to
understand past epidemics, the goal was to call the attention of the academic
community to the importance of investigating the aforementioned factors more in
depth when developing epidemiological models.

State variables and scales

Agents: (i) humans, (ii) mosquitoes, and (iii) the environment.
In this simplified abstraction, individuals and mosquitoes were randomly
distributed within the environment.
The epidemiological parameters, such as latent rate and recovery rate, were
considered independent of age, gender, time, or any other parameters.
Detailed information about the parameters used in each model is provided in
Section 2.1.

Process overview and
scheduling

In vector-borne diseases, there are generally three types of agents: (i) the pathogen,
which may be a virus or bacteria; (ii) the vector, in this work a mosquito that can be
either Aedes aegypti or Aedes albopictus; and, (iii) the final host, a human in this case.
The model was built based on the traditional susceptible, exposed, infectious, and
recovered (SEIR) and susceptible, exposed, and infectious (SEI) compartmental
models. The SEIR model was used to represent humans, while the SEI model was
used to represent the vector. The baseline conceptual model represented by the
SEIR-SEI compartmental model is shown in Figure 1, and Table 2 provides the
definition of the symbols presented in Figure 1.
The life cycle of the pathogen can be described in four stages:
(1) The pathogen is transmitted from an infectious mosquito (Mi) to a susceptible
host (Hs) when the mosquito feeds on human blood.
(2) The pathogen infects the exposed host (He), who still has no ability to transmit
the disease to another mosquito. After the latent period, the pathogen reaches
sufficiently high densities in the blood of the infectious host (Hi), who is now able
to infect another susceptible mosquito (Ms).
(3) Whenever a susceptible mosquito feeds on an infectious host, the susceptible
mosquito inoculates the pathogen and becomes an exposed mosquito (Me).
Similar to the host, the mosquito is not able to immediately transmit the disease to
other susceptible hosts.
(4) After the latent period, the pathogen develops in the mosquito to the point that
the pathogen becomes present in the salivary glands of the mosquito, who
becomes an infectious mosquito (Mi) and can now transmit the disease by biting a
susceptible host. After the recovery period, the host is considered to be recovered
(Hr) and immune to the pathogen (this is not true for all mosquito-borne diseases
but it is true for some of them, such as dengue with respect to the same virus
strain and chikungunya). An infectious mosquito never recovers from the disease
and will stay infectious until its death.
Three different models were developed in this work to meet the proposed goal.
Each model works slightly differently and they are described in detail in
Sections 2.1.1–2.1.4. The description provided above refers to the baseline model
(Model A). Figures 2–4 shows the simulation model snapshot of the human
population module and the mosquito population module of each one of these
modules.
The transition between each state is based on the epidemiological parameters as
shown in Figure 1 and described in Tables 2 and 3. The data were collected at the
end of each day on the basis of an event.
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Table 1. Cont.

Design
concepts Design concepts

Stochasticity was considered in all models through the infectious disease
parameters used as input. These data are provided in Tables 4–7.
Adaptation was considered in Model C when humans changed their behavior in
response to the total number of infected individuals, either instantaneously or
after a specific amount of time. This was considered at an individual and a
population level. In summary, human behavior was considered to change in four
different situations, as described in Section 2.1.3.

Details

Initialization
Humans and mosquitoes were uniformly randomly distributed in the continuous
space. The human and mosquito population size and the initial number of
infectious humans and mosquitoes are provided in Tables 4–7.

Input The input data used in the model were defined within the model and they are
provided in Tables 4–7.

Sub-models This consists of the “skeleton” of the model, as well as its description, which are
provided in Figures 1–4 and Section 2.
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Table 2. Definition of the conceptual model symbols.

# Symbol Definition

1 Th Human population size
2 Tm Mosquito population size
3 βh Infectivity rate from mosquito to human
4 βm Infectivity rate from human to mosquito
5 λh Human latent rate
6 λm Mosquito latent rate
7 γ Human recovery rate
8 µ Mosquito mortality rate
9 Hs Number of susceptible humans
10 He Number of exposed humans
11 Hi Number of infectious humans
12 Hr Number of recovered and immune humans
13 Ms Number of susceptible mosquitoes
14 Me Number of exposed mosquitoes
15 Mi Number of infectious mosquitoes
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2.1. Experiment Design

The input data used in this study was taken from the World Health Organization [27,28],
Araújo [29], and Yakob and Clements [30].

To answer the research questions discussed in the Introduction section, we considered
4 different models: (1) Model A or baseline (single-strain, single-vector dengue spread
model); (2) Model B, which is the baseline model with different parameter values to
investigate the impact of data quality; (3) Model C, coupling human behavior and dengue
spread model; and (4) Model D, a multi-strain, multi-vector dengue spread model. The
models were developed from modifications of the baseline model (Model A) in order to
answer the research questions discussed in Section 1. The required modifications of each
model are discussed in their respective sections.

The parameters used in each one of these models are presented in Table 3. Model
A is the baseline model and contains the parameters as described in Section 3. Model B
is also the baseline model with different parameter values to assess the impact of data
quality on the results of the epidemiological model. In other words, there is no logic
modification between Model A and Model B. Model C is the model where the impacts
of human behavior are investigated. The parameters related to human behavior, such as
population cautious factor and population time to switch behavior, are included. Finally,
Model D is the model where the impacts of multi-strain and multi-vector are investigated.
Parameters such as the daily human latent rate for DENV2 and the proportion of wild and
Wolbachia-carrier mosquitoes are included. A more detailed discussion about each model
and the number of parameters added in each model is presented below.

Table 3. Parameters used in each of the four models.

# Agent Parameter
If the Parameter is Used in the Model:

A B C D

1 Human Human population size X X X X

2 Human Daily human to mosquito infect
rate for DENV1 X X X X

3 Human Daily human latent rate for
DENV1 X X X X

4 Human Daily human recovery rate for
DENV1 X X X X

5 Mosquito Mosquito population size X X X X

6 Mosquito Daily wild mosquito to human
infect rate for DENV1 X X X X

7 Mosquito Daily wild mosquito latent rate
for DENV1 X X X X

8 Mosquito Daily wild mosquito
mortality/birth rate X X X X

9 Human Daily human to mosquito infect
rate for DENV2 X

10 Human Daily human latent rate for
DENV2 X

11 Human Daily human recovery rate for
DENV2 X

12 Mosquito Daily wild mosquito to human
infect rate for DENV2 X

13 Mosquito Daily wild mosquito latent rate
for DENV2 X
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Table 3. Cont.

# Agent Parameter
If the Parameter is Used in the Model:

A B C D

14 Mosquito Daily Wolbachia-carrier mosquito
latent rate for DENV1 X

15 Mosquito Daily Wolbachia-carrier mosquito
latent rate for DENV2 X

16 Mosquito Daily Wolbachia-carrier mosquito
mortality/birth rate X

17 Mosquito Mosquito type (wild or
Wolbachia-carrier) X

18 Mosquito Proportion of wild and
Wolbachia-carrier mosquitoes X

19 Human Initial number of DENV1
infectious humans X X X X

20 Human Initial number of DENV2
infectious humans X

21 Mosquito Initial number of wild DENV1
infectious mosquitoes X X X X

22 Mosquito Initial number of wild DENV2
infectious mosquitoes X

23 Human Exposed to DENV1 (0 or 1/no or
yes) X

24 Human Exposed to DENV2 (0 or 1/no or
yes) X

25 Human—
Population

Include same behavior for the
whole population [0—False,

1—True]
X

26 Human—
Individual

Include behavior for individual
[0—False, 1—True] X

27 Human Percent of infectious individuals
to trigger cautious behavior [%] X

28 Human—
Population Population cautious factor [%] X

29 Human—
Individual Individual cautious factor [%] X

30 Human Include time to switch behavior
[0—False, 1—True] X

31 Human—
Population

Population time to switch
behavior [days] X

32 Human—
Individual

Individual time to switch
behavior [days] X

Each model was run for 2 years (730 days), which was long enough for the epidemic
to die out in all iterations and replications of the experiment. A total of 50 replications were
performed and 3 output responses of interest were considered: (1) total number of infected
individuals, (2) duration of the epidemic in days, and (3) number of epidemic waves. Three
model measures were also collected: (1) runtime, (2) number of agents/entities, and (3)
number of states.

Paired t-test with α = 0.05 was applied to the results of the computational models to
investigate whether the results of Model A (baseline low-level versus baseline high-level)
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were statistically significantly different or not for each one of the three output responses
and runtime. Multi-way analysis of variance (ANOVA) with α-level of 0.05 was used to
investigate (i) in Model B, the impact of changing the values of the different inputs per
baseline level (low or B1 and high or B2) on the three responses and runtime; (ii) in Model C,
the impact of considering human behavior on the vector-borne disease model; and (iii) the
impact of considering multi-strain and multi-vector on the vector-borne disease model.
Next, the Tukey multiple comparison method was used to identify which pair of treatment
(or inputs values) was significantly different among the inputs. The tests were performed
using the software JMP.

2.1.1. Model A—Baseline (Single-Strain, Single-Vector Dengue Spread Model)

The baseline model was described in the process overview and scheduling row of
Table 1. The parameter values used in the model are given in Table 4.

Table 4. Input parameter values of the baseline model.

# Input Data Description Scenario #01 Scenario #02

1 Mosquito population size 200 2000
2 Initial number of infectious mosquitoes 10 100
3 Mosquito daily latent rate Uniform (0.083, 0.125)
4 Mosquito daily mortality rate Uniform (0.033, 0.05)
5 Daily infectivity rate from mosquito to human Uniform (0.1, 0.18)
6 Human population size 100 1000
7 Initial number of infectious humans 0
8 Human daily latent rate Uniform (0.1,0.25)
9 Human daily recovery rate Uniform (0.143, 0.45)

10 Daily infectivity rate from human to mosquito Uniform (0.36, 0.44)

The assumptions adopted in this study are based on the work of Ross and Thom-
son [31], Kermack and McKendrick [32], Dumont et al. [33], and Yakob and Clements [30].
Such assumptions lead to a simplified model compared to reality. However, such limita-
tion should not affect the objective of this work, since this study proposes to explore the
importance of data quality, human behavior, multi-strain, and multi-vector in the results of
disease spread models. Rather than foresee possible future epidemics or seek to understand
past epidemics, the goal here is to draw the attention of researchers and experts in the field
to the importance of these characteristics and to serve as a starting point for the elaboration
of more detailed and more realistic models.

2.1.2. Model B (Data Quality)

In order to assess the impact of data quality on the model’s results, we decided to
perform a sensitivity analysis on each of the factors of the baseline model. In the sensitivity
analysis, the factors were varied one at a time. By varying the parameters one at a time,
we were able to gain insight into the impact of the parameters on the model results, but
it was not possible to assess the impact of the interaction between the parameters on the
simulation responses.

Table 5 presents the parameter values used to assess the impact of the information
quality. For all scenarios, the parameters were varied one at a time. Therefore, the experi-
ment in this model had a total of 65 scenarios: (1) 3 different levels (C1, C2, and C3) for
each of the 10 parameters of Table 5 for low- and high-level baselines (B1 and B2), except
for level C3 of “initial number of infectious mosquitoes” for low-level baseline because it is
not feasible. This gives a total of 3 × 10 × 2 − 1 = 59 scenarios. (2) Low-level (B1) of param-
eters “mosquito population size”, “initial number of infectious mosquitoes”, and “human
population size” for high-level baseline (B2), which gives 3 scenarios. Finally, (3) high-level
(B2) of parameters “mosquito population size”, “initial number of infectious mosquitoes”,
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and “human population size” for low-level baseline (B1), which gives 3 iterations. The
justification for varying the value of each parameter is given below.

Table 5. Input parameter values of the simulation Model B.

# Input Data Description Parameter Level

B1 B2 C1 C2 C3

1 Mosquito population size 200 2000 100 500 5000

2 Initial number of infectious
mosquitoes 10 100 25 50 500

3 Mosquito daily latent rate Uniform (0.083, 0.125) Uniform (0.05, 0.500) Uniform (0.125, 0.500) Uniform (0.05, 0.083)

4 Mosquito daily mortality rate Uniform (0.033, 0.05) Uniform (0.020, 0.07) Uniform (0.05, 0.07) Uniform (0.020, 0.033)

5 Daily infectivity rate from
mosquito to human Uniform (0.1, 0.18) Uniform (0.07, 0.22) Uniform (0.18, 0.22) Uniform (0.07, 0.1)

6 Human population size 100 1000 500 2000 5000

7 Initial number of infectious
humans 0 10 50 100

8 Human daily latent rate Uniform (0.1,0.25) Uniform (0.05, 0.500) Uniform (0.25, 0.500) Uniform (0.05, 0.1)

9 Human daily recovery rate Uniform (0.143, 0.450) Uniform (0.070, 0.600) Uniform (0.450, 0.600) Uniform (0.070, 0.143)

10 Daily infectivity rate from human
to mosquito Uniform (0.36, 0.44) Uniform (0.20, 0.80) Uniform (0.44,0.80) Uniform (0.20,0.36)

• Mosquito population size: variation in mosquito population size may represent either
the adoption of control strategies (e.g., insecticide use), the elimination of mosquito
breeding sites (e.g., cleaning pots with standing water), climatic variation (e.g., in-
creased rainfall and temperature that favor the reproduction of mosquitoes), or errors
in estimating the mosquito population through techniques such as mosquito trap.

• Initial number of infectious mosquitoes: this parameter was varied to represent regions
in which the disease is imported by travelers who bring infectious mosquitoes to the
area and regions where the disease is endemic.

• Mosquito daily latent rate, mosquito daily mortality rate, human daily latent rate, and
human daily recovery rate: considered low and high rates, on the basis of the values
found in the literature, as well as low and high variation. The variations of these rates
represent the existence of several types of virus that can reproduce in mosquitoes and
humans more slowly or quickly and, consequently, also affect the human recovery
rate; the genetic and immune variation of humans and mosquitoes; the use of medical
treatment that affects the recovery rate of individuals; and climatic variations and use
of control measures, such as the use of screens in windows and insecticides, which
may alter the mortality rate of mosquitoes.

• Daily infectivity rate from mosquito to human: the variations of this rate are due to
reasons similar to mosquito daily latent rate, such as the existence of different types of
virus, and genetic and immune variation of mosquitoes.

• Human population size: the size was varied to represent different neighborhoods or
sizes of cities.

• Initial number of infectious humans: this parameter was varied for reasons similar to
mosquito population size and initial number of infectious mosquitoes. The scenarios
in Table 5 with initial number of infectious humans equal to 0 are equivalent to an
epidemic-free population where a new epidemic is normally carried by a mosquito
brought from an epidemic area. Besides representing an epidemic-free society and a
society in which the disease is endemic, the variation may also represent large events,
such as big sporting events, music events, or refugee entry into a region, which can
lead to several cases imported at a single time.

• Daily infectivity rate from human to mosquito: the variations of this rate were for
reasons similar to mosquito daily latent rate and daily infectivity rate from mosquito to
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human, such as the existence of different types of virus, genetic and immune variation
of humans, and use of medical treatment.

2.1.3. Model C (Coupled Human Behavior and Dengue Spread Model)

Despite the impacts of human behavior in the course of an outbreak, many disease
spread models still ignore the human behavior factor. Lack of data on human behavior
during outbreaks and the difficulty in quantifying some human behaviors may be one
of the primary reasons for not including human behavior in disease spread simulation
models. Moreover, to incorporate behavior in simulation models, it is necessary to have
a more detailed model that makes use of agents, which requires more processing power,
especially when the agent population is large.

Human behavior is considered in this study in 4 different situations: (1) situation 1,
where the whole population adopts the same cautious behavior after the epidemic has
reached a specific threshold; (2) situation 2, where each individual adopts his/her own
cautious behavior after the epidemic has reached a specific threshold; (3) situation 3, where
the whole population adopts the same cautious behavior after the epidemic has crossed the
specific threshold for a specific amount of time; and (4) situation 4, where each individual
adopts his/her own cautious behavior after the epidemic has crossed the specific threshold
for a specific amount of time.

Compared to the baseline, the population behavior model and the individual be-
havior models (situations 1 and 2 of Model C) have two extra varying parameters each,
namely, the percentage of infected individuals to trigger cautious behavior and the pop-
ulation/individual cautious factor. Compared to both previous situations, the inclusion
of time to change population or individual behavior adds 1 extra parameter in each case.
A total of 3 states had to be added to represent the change in human behavior. Table 6
presents the parameter values used to investigate the coupled human behavior.

Table 6. Input parameter values of the simulation Model C.

# Input Data Description Input Data Value

1 Mosquito population size 200 2000

2 Initial number of infectious
mosquitoes 10 100

3 Mosquito daily latent rate Uniform (0.083, 0.125)

4 Mosquito daily mortality
rate Uniform (0.033, 0.05)

5 Daily infectivity rate from
mosquito to human Uniform (0.1, 0.18)

6 Human population size 100 1000

7 Initial number of infectious
humans 0

8 Human daily latent rate Uniform (0.1,0.25)

9 Human daily recovery rate Uniform (0.143, 0.45)

10 Daily infectivity rate from
human to mosquito Uniform (0.36, 0.44)

11
Percent of infectious
individuals to trigger
cautious behavior [%]

5 15 5 15 5 15 5 15

12 Cautious factor [%] * Uniform (0.6, 0.9) Uniform (0.8, 0.9) Uniform (0.6, 0.9) Uniform (0.8, 0.9)

13 Time to switch behavior
[days] Uniform (1,3) Uniform (1,7) Uniform (1,3) Uniform (1,7)

* When the time to switch behavior is considered, the cautious factor is always Uniform (0.6, 0.9).
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2.1.4. Model D (Multi-Strain, Multi-Vector Dengue Spread Model)

Usually, dengue is modeled as a single-strain, single-vector disease. This can be
represented by the traditional SEIR-SEI compartmental model discussed in Model A—
baseline. This was realistic in the past when only one virus strain was encountered in
the endemic regions, and when multiple strains existed, they were not simultaneously
encountered. However, nowadays many countries, including Brazil, have 2 or more dengue
virus strains at the same time. Moreover, countries are investigating new vector control
methods, such as Wolbachia-carrier mosquitoes and genetically modified mosquitoes, as
possible alternatives to contain the spread of the disease. Wolbachia-carrier mosquitoes can
become infected by feeding on infectious humans, but they cannot further transmit the
disease to susceptible humans [34].

In this study, we consider the possibility that 2 virus strains coexist and the use of
Wolbachia-carrier mosquitoes as an alternative method for disease prevention. Currently,
Wolbachia-carrier mosquitoes are Aedes aegypti mosquitoes that have been altered in a
laboratory and are introduced into the environment on the basis of health policy decisions
made by government agencies. This altered mosquito has already been approved as a
safety Aedes aegypti control strategy in different countries after empirical studies have been
successfully conducted [35].

To represent this multi-strain, multi-vector context, some changes had to be made
in the baseline model. For the human population, 4 extra states were added and 1 of the
existent states was modified. Six states were added for the mosquito population. Table 7
presents the parameter values used to investigate the coupled human behavior.

Table 7. Input parameter values of the simulation Model D.

# Input Data Description Input Data Value

1

Multi-strain
only

Mosquito population size Wild 100 200 800 1000 2000 8000

Wolbachia-
carrier 0

2
Initial number of wild

infectious mosquitoes [%]
DENV1 2.5 2.5 2.5 2.5 2.5 2.5

DENV2 2.5 2.5 2.5 2.5 2.5 2.5

1

Multi-vector
only

Mosquito population size Wild 50 100 400 500 1000 4000

Wolbachia-
carrier 50 100 400 500 1000 4000

2
Initial number of wild

infectious mosquitoes [%]
DENV1 5 10 40 50 100 400

DENV2 0

1

Multi-strain-
multi-vector

Mosquito population size Wild 50 100 400 500 1000 4000

Wolbachia-
carrier 50 100 400 500 1000 4000

2
Initial number of wild

infectious mosquitoes [%]
DENV1 2.5 2.5 2.5 2.5 2.5 2.5

DENV2 2.5 2.5 2.5 2.5 2.5 2.5

3 Mosquito daily latent rate Uniform (0.083, 0.125)

4 Mosquito daily mortality rate Uniform (0.033, 0.05)

5 Daily infectivity rate from mosquito to human Uniform (0.1, 0.18)

6 Human population size 100 1000

7 Initial number of infectious humans 0

8 Human daily latent rate Uniform (0.1,0.25)

9 Human daily recovery rate Uniform (0.143, 0.45)

10 Daily infectivity rate from human to mosquito Uniform (0.36, 0.44)
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3. Results
3.1. Baseline

As discussed in Section 2.1, paired t-test with α = 0.05 based on the high-level baseline
(B2)—low-level baseline (B1) was applied to investigate whether the results of Model A
were statistically significantly different or not for each one of the three output responses
and runtime. The test results comparing the low- and high-levels of the baseline model
for each of the output responses and for runtime are presented in Table 8, followed by a
discussion of the results.

Table 8. Results of the paired t-test for the baseline model.

Output Response p-Value 95% Confidence Interval Conclusion

Total number of infected individuals <0.0001 [545.849, 564.511] Statistically different
Duration of epidemic in days <0.0001 [55.313, 82.127] Statistically different
Number of epidemic waves 0.1429 [−1.734, 0.254] Not statistically different

Runtime per replication in seconds <0.0001 [59.794, 62.100] Statistically different

As is expected, the total number of infected individuals was statistically different
due to the larger human population in the high-level baseline. The results also show
that in the larger population, the epidemics lasted longer, but the number of epidemic
waves was not statistically different than in the smaller population, which was the first
interesting observation from this study. As also expected, the runtime when modelling a
larger population was statistically greater due to the increase in the number of agents in
the agent-based model.

Figures 5 and 6 show the boxplot of the output responses. One can see that the
variability was greater for the total number of infected individuals on the high-level of
the baseline, while the opposite was observed for the number of epidemic waves. For the
response duration of the epidemic, the variability did not seem to change considerably in
terms of the human and mosquito population sizes. Figure 7 shows the evolution of the
epidemic on a large population. In Figure 7, it is possible to observe the total number of
humans and mosquitoes in each epidemiological state (susceptible, exposed, infectious,
and recovered).
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3.2. Impact of Data Quality

Multi-way analysis of variance (ANOVA) with an α-level of 0.05 was used to inves-
tigate the impact of changing the values of the different inputs per baseline level (low or
B1 and high or B2) on the three responses of interest and runtime. First, ANOVA was
used to identify whether there was a relationship between the output and the inputs, that
is, whether the model was statistically significant. Next, ANOVA was used to identify
which inputs were statistically significant for the model. Finally, for the inputs found to
be statistically significant, the Tukey multiple comparison method was used to identify,
among the inputs, which pair of treatment (or inputs values) was significantly different.
The ANOVA results can be found in Table 9 and the Tukey multiple comparison results
can be found in Table 10.

As shown in Table 9, in all the experiments performed, there was statistically sig-
nificant evidence of relationship of at least one of the inputs and each of the outputs at
α-level of 0.05. In general, the inputs were not statistically significant for the runtime
per replication when a low population (low number of agents) was considered. Human
population size and the initial number of infectious humans were the only inputs that
were shown to be statistically significant in this case. In a small population scenario, a few
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factors also appeared to not be significant for the number of epidemic waves, such as the
mosquito population size, the daily infectivity rate from mosquito to human, and the daily
infectivity rate from human to mosquito. Interestingly, mosquito population size was also
not significant for the responses total number of infected individuals and duration of the
epidemic in days on the small population baseline level. This can lead to discussion and
further investigation of the effectiveness of control measures, such as controlling mosquito
population by the elimination of mosquitoes’ habitats such as bottles, tires, and fountains
versus reducing the personal contact with mosquitoes by using window and door screens,
mosquito repellents, long sleeve clothes, etc.

A detailed discussion of the results is presented below.

Table 9. ANOVA results for Model B (data quality) per baseline level. Bold font denotes statistical significance at α-level of
0.05.

#

Input Data
Description

Total Number of Infected
Individuals

Number of Epidemic
Waves

Duration of the Epidemic
in Days

Runtime Per Replication
in Seconds

B1 B2 B1 B2 B1 B2 B1 B2

Model
p-Value

Model
p-Value

Model
p-Value

Model
p-Value

Model
p-Value

MODEL
P-VALUE

Model
p-Value

Model
p-Value

<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Input
p-Value

Input
p-Value

Input
p-Value

Input
p-Value

Input
p-Value

Input
p-Value

Input
p-Value

Input
p-Value

1 Mosquito
population size 0.9502 <0.0001 0.9747 <0.0001 0.9759 <0.0001 0.0504 <0.0001

2
Initial number of

infectious
mosquitoes

0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.8953 <0.0001

3 Mosquito daily
latent rate <0.0001 <0.0001 0.0008 0.0016 0.0249 <0.0001 0.0714 <0.0001

4 Mosquito daily
mortality rate <0.0001 <0.0001 <0.0001 0.0003 <0.0001 <0.0001 0.0767 <0.0001

5

Daily infectivity
rate from

mosquito to
human

<0.0001 <0.0001 0.2034 0.0306 0.0159 0.0191 0.0799 <0.0001

6 Human
population size <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

7
Initial number of

infectious
humans

<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

8 Human daily
latent rate 0.9893 0.1435 0.0001 0.0046 <0.0001 <0.0001 0.0626 <0.0001

9 Human daily
recovery rate <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0790 <0.0001

10
Daily infectivity
rate from human

to mosquito
0.0117 <0.0001 0.4050 0.3405 0.0891 0.0052 0.0829 <0.0001
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Table 10. Tukey multiple comparison results for Model B (data quality) per baseline level. Bold font denotes statistical
significance at α-level of 0.05.

Model Baseline
Level

Input
Pair Level Being Tested for the

Input

Total Number
of Infected
Individuals

Number of
Epidemic

Waves

Duration of
the Epidemic

in Days

Runtime Per
Replication in

Seconds

Level 1 Level 2 p-Value p-Value p-Value p-Value

B1 1

B1 B2 N/A N/A N/A N/A
B1 C1 N/A N/A N/A N/A
B1 C2 N/A N/A N/A N/A
B1 C3 N/A N/A N/A N/A
B2 C1 N/A N/A N/A N/A
B2 C2 N/A N/A N/A N/A
B2 C3 N/A N/A N/A N/A
C1 C2 N/A N/A N/A N/A
C1 C3 N/A N/A N/A N/A
C2 C3 N/A N/A N/A N/A

B2 1

B2 B1 <0.0001 0.0464 0.0758 0.0004
B2 C1 <0.0001 0.3639 0.4405 0.9997
B2 C2 <0.0001 0.2930 0.6252 0.0125
B2 C3 <0.0001 0.0013 0.0075 0.0002
B1 C1 <0.0001 <0.0001 0.0002 0.0008
B1 C2 0.0003 0.9273 0.7690 0.8825
B1 C3 0.9707 0.8216 0.9387 0.9998
C1 C2 <0.0001 0.0016 0.0171 0.0234
C1 C3 <0.0001 <0.0001 <0.0001 0.0004
C2 C3 <0.0001 0.3274 0.2960 0.7983

B1 2

B1 B2 0.0001 <0.0001 <0.0001 N/A
B1 C1 0.1160 0.0016 0.0328 N/A
B1 C2 0.0023 <0.0001 <0.0001 N/A
B1 C3 N/A N/A N/A N/A
B2 C1 0.1719 0.0051 0.0072 N/A
B2 C2 0.8837 0.3870 0.5617 N/A
B2 C3 N/A N/A N/A N/A
C1 C2 0.5554 0.3070 0.2213 N/A
C1 C3 N/A N/A N/A N/A
C2 C3 N/A N/A N/A N/A

B2 2

B2 B1 <0.0001 <0.0001 <0.0001 <0.0001
B2 C1 <0.0001 <0.0001 0.1921 0.1167
B2 C2 <0.0001 <0.0001 <0.0001 0.0678
B2 C3 <0.0001 <0.0001 <0.0001 0.9978
B1 C1 <0.0001 <0.0001 <0.0001 0.0055
B1 C2 <0.0001 0.9951 0.0076 0.0117
B1 C3 <0.0001 <0.0001 <0.0001 <0.0001
C1 C2 <0.0001 <0.0001 <0.0001 0.9995
C1 C3 <0.0001 <0.0001 <0.0001 0.0525
C2 C3 <0.0001 <0.0001 <0.0001 0.0280

B1 3

B1 C1 0.0499 0.1076 0.9168 N/A
B1 C2 0.0149 0.0084 0.8261 N/A
B1 C3 0.1882 0.0008 0.0201 N/A
C1 C2 0.9752 0.7993 0.9966 N/A
C1 C3 <0.0001 0.4040 0.1111 N/A
C2 C3 <0.0001 0.9169 0.1755 N/A

B2 3

B2 C1 <0.0001 0.0836 0.0402 <0.0001
B2 C2 <0.0001 0.0053 0.0003 <0.0001
B2 C3 <0.0001 0.9882 <0.0001 <0.0001
C1 C2 0.0506 0.7828 0.4941 0.9996
C1 C3 <0.0001 0.1723 0.0456 0.0035
C2 C3 <0.0001 0.0152 0.6288 0.0025
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Table 10. Cont.

Model Baseline
Level

Input
Pair Level Being Tested for the

Input

Total Number
of Infected
Individuals

Number of
Epidemic

Waves

Duration of
the Epidemic

in Days

Runtime Per
Replication in

Seconds

Level 1 Level 2 p-Value p-Value p-Value p-Value

B1 4

B1 C1 0.5157 0.8834 0.2250 N/A
B1 C2 0.0140 <0.0001 <0.0001 N/A
B1 C3 0.0011 0.6797 0.6794 N/A
C1 C2 <0.0001 <0.0001 <0.0001 N/A
C1 C3 0.0837 0.2503 0.8584 N/A
C2 C3 <0.0001 0.0006 <0.0001 N/A

B2 4

B2 C1 <0.0001 0.9159 0.4339 <0.0001
B2 C2 <0.0001 0.0014 <0.0001 <0.0001
B2 C3 <0.0001 0.0124 0.0700 <0.0001
C1 C2 <0.0001 0.0138 <0.0001 0.0048
C1 C3 <0.0001 0.0772 0.0005 0.5340
C2 C3 <0.0001 0.9269 <0.0001 <0.0001

B1 5

B1 C1 0.9636 N/A 0.9985 N/A
B1 C2 0.0703 N/A 0.9970 N/A
B1 C3 0.0319 N/A 0.0433 N/A
C1 C2 0.2040 N/A 0.9833 N/A
C1 C3 0.0072 N/A 0.0275 N/A
C2 C3 <0.0001 N/A 0.0733 N/A

B2 5

B2 C1 0.6224 0.5644 0.7787 <0.0001
B2 C2 <0.0001 0.0836 0.0292 <0.0001
B2 C3 <0.0001 0.9939 0.0755 <0.0001
C1 C2 <0.0001 0.7075 0.2652 0.6238
C1 C3 <0.0001 0.4035 0.4608 0.0728
C2 C3 <0.0001 0.0429 0.9846 0.0017

B1 6

B1 B2 <0.0001 <0.0001 <0.0001 <0.0001
B1 C1 <0.0001 <0.0001 <0.0001 <0.0001
B1 C2 <0.0001 <0.0001 <0.0001 <0.0001
B1 C3 <0.0001 <0.0001 <0.0001 <0.0001
B2 C1 <0.0001 0.0040 <0.0001 <0.0001
B2 C2 <0.0001 0.5257 <0.0001 <0.0001
B2 C3 <0.0001 0.0061 <0.0001 <0.0001
C1 C2 <0.0001 <0.0001 <0.0001 <0.0001
C1 C3 <0.0001 <0.0001 <0.0001 <0.0001
C2 C3 0.0003 0.3451 0.0029 <0.0001

B2 6

B2 B1 <0.0001 <0.0001 <0.0001 <0.0001
B2 C1 <0.0001 <0.0001 <0.0001 0.0989
B2 C2 <0.0001 <0.0001 <0.0001 <0.0001
B2 C3 <0.0001 <0.0001 <0.0001 <0.0001
B1 C1 <0.0001 0.4023 <0.0001 <0.0001
B1 C2 <0.0001 0.9912 <0.0001 <0.0001
B1 C3 <0.0001 <0.0001 <0.0001 <0.0001
C1 C2 <0.0001 0.1777 <0.0001 <0.0001
C1 C3 <0.0001 <0.0001 <0.0001 <0.0001
C2 C3 <0.0001 <0.0001 <0.0001 <0.0001

B1 7

B1 C1 0.7241 0.9610 0.9407 0.0573
B1 C2 <0.0001 <0.0001 <0.0001 0.0317
B1 C3 <0.0001 <0.0001 <0.0001 0.0657
C1 C2 <0.0001 <0.0001 <0.0001 <0.0001
C1 C3 <0.0001 <0.0001 <0.0001 0.9999
C2 C3 <0.0001 <0.0001 <0.0001 <0.0001

B2 7

B2 C1 <0.0001 <0.0001 <0.0001 <0.0001
B2 C2 0.0037 0.2318 0.0897 <0.0001
B2 C3 0.0083 0.6037 0.0651 <0.0001
C1 C2 <0.0001 <0.0001 <0.0001 0.3773
C1 C3 <0.0001 <0.0001 <0.0001 0.0786
C2 C3 <0.0001 0.0008 <0.0001 0.8586



Modelling 2021, 2 183

Table 10. Cont.

Model Baseline
Level

Input
Pair Level Being Tested for the

Input

Total Number
of Infected
Individuals

Number of
Epidemic

Waves

Duration of
the Epidemic

in Days

Runtime Per
Replication in

Seconds

Level 1 Level 2 p-Value p-Value p-Value p-Value

B1 8

B1 C1 N/A 0.6430 0.8663 N/A
B1 C2 N/A 0.0297 0.0932 N/A
B1 C3 N/A 0.3702 0.1223 N/A
C1 C2 N/A 0.3870 0.4082 N/A
C1 C3 N/A 0.0273 0.0155 N/A
C2 C3 N/A <0.0001 <0.0001 N/A

B2 8

B2 C1 N/A 0.4620 0.3110 <0.0001
B2 C2 N/A 0.3307 0.0008 <0.0001
B2 C3 N/A 0.4422 0.0060 <0.0001
C1 C2 N/A 0.9959 0.1515 0.9987
C1 C3 N/A 0.0168 <0.0001 0.9998
C2 C3 N/A 0.0082 <0.0001 0.9999

B1 9

B1 C1 0.9598 0.8577 0.9324 N/A
B1 C2 0.4592 0.6978 0.0010 N/A
B1 C3 0.0007 <0.0001 0.2521 N/A
C1 C2 0.2031 0.2372 <0.0001 N/A
C1 C3 0.0043 <0.0001 0.5968 N/A
C2 C3 <0.0001 <0.0001 <0.0001 N/A

B2 9

B2 C1 0.3465 0.4822 0.8990 <0.0001
B2 C2 <0.0001 0.0042 <0.0001 <0.0001
B2 C3 <0.0001 <0.0001 0.4452 <0.0001
C1 C2 <0.0001 <0.0001 <0.0001 0.2078
C1 C3 <0.0001 <0.0001 0.1284 0.3175
C2 C3 <0.0001 <0.0001 <0.0001 0.0015

B1 10

B1 C1 0.7481 N/A N/A N/A
B1 C2 0.0981 N/A N/A N/A
B1 C3 0.8307 N/A N/A N/A
C1 C2 0.5636 N/A N/A N/A
C1 C3 0.2495 N/A N/A N/A
C2 C3 0.0090 N/A N/A N/A

B2 10

B2 C1 <0.0001 N/A 0.9998 <0.0001
B2 C2 <0.0001 N/A 1.0000 <0.0001
B2 C3 <0.0001 N/A 0.0171 <0.0001
C1 C2 <0.0001 N/A 0.9998 0.8493
C1 C3 <0.0001 N/A 0.0220 0.4090
C2 C3 <0.0001 N/A 0.0173 0.0855

1. Mosquito population size:

The mosquito population size appeared to have a higher impact on the epidemic
responses for larger human population size. While in the low-level baseline, the mosquito
population size was not a significant input for any of the responses considered, in the
high-level baseline, 9 out of 10 comparisons were statistically different with respect to the
total number of infected individuals, and at least 4 comparisons were also statistically
different for duration of the epidemic in days and number of epidemic waves. The output
response “total number of infected individuals” appeared to be the most sensitive to the
size of the mosquito population, followed by runtime per replication, number of epidemic
waves, and last by the duration of the epidemic in days.

The mosquito population size had an opposite impact on the pair of output responses
“total number of infected individuals” and “duration of the epidemic”—an increase in the
mosquito population size increased the total number of infected individuals, but it reduced
the duration of the epidemic in days. A similar characteristic was observed for the pair of
output responses “total number of infected individuals” and “number of epidemic waves”.
This was possibly due to the herd immunity effect, where the majority of the population
has more quickly become infected and immune to the disease, shortening the duration of
the epidemic and the number of epidemic waves.
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With respect to runtime, by increasing the mosquito population size, there was an
increase in runtime. An average increase of 10.87 s per replication from the baseline was
observed when the human population size was large.

2. Initial number of infectious mosquitoes:

The initial number of infectious mosquitoes appeared to have a great impact on
the results of epidemiological models, especially for the high-level baseline. The input
appeared to not be as significant for runtime, wherein the low-level baseline was not
considered significant, and in the high-level baseline, only a few pairs (5 out of 10) were
found to be significant. The input also appeared to be less significant for the total number
of infected individuals in small populations, where only two pairs were found to be
significant. For larger populations, with the exception of one pair for the output response
“duration of the epidemic in days” and one pair for “number of epidemic waves”, both
in the high-level baseline, all pairs were statistically different for the output responses
“total number of infected individuals”, “number of epidemic waves”, and “duration of the
epidemic in days”. The impact of this parameter was similar to parameter #1—an increase
in the initial number of infectious mosquitoes led to an increase in the total number of
infected individuals, but in a reduction of the duration of the epidemic and in the number
of epidemic waves.

An average increase of 7.50 s per replication from the baseline was observed when
the human population size was large. This increase in runtime is probably explained by
the increase in the number of state changes in the simulation model—with the increase
in the initial number of infectious mosquitoes, there was an increase in the total number
of infected individuals and, hence, the humans went through more state changes (from
susceptible to exposed to infectious to recovered).

3. Mosquito daily latent rate:

This parameter appears to impact all three output responses, with the output response
“total number of infected individuals” being the one most sensitive to variations in the
mosquito daily latent rate and the “number of epidemic waves” the least sensitive. The
output response “duration of the epidemic” did not appear to be as sensitive in the low-
level baseline as it was in the high level. The runtime decreased with the increase in the
mosquito daily latent rate. The reduction in runtime can be explained following similar
logic to parameter #2—there was a lower number of state changes in the simulation model
and consequently a reduction in runtime.

It is worth pointing out that, contrary to parameters #1 and #2, a reduction in this
parameter led to a decrease in all three output responses. This indicates the need to direct
research on reducing the mosquito daily latent rate (i.e., increasing the latent period),
because contrary to what happened when reducing the mosquito population size, reducing
the mosquito daily latent rate had a positive effect, that is, reduces all three output responses
being investigated.

4. Mosquito daily mortality rate:

This parameter impacted the epidemiological model results similar to parameter
#3 above. First, the mosquito daily mortality rate appeared to impact all three output
responses, with the output response “total number of infected individuals” being the one
most sensitive to variations in the parameter and the “number of epidemic waves” the
least sensitive. Similar to parameter #3, the output response “duration of the epidemic”
did not appear to be as sensitive in the low-level baseline as it was in the high level. The
runtime also decreased with the increase in the mosquito daily mortality rate. Finally, an
increase in the mosquito mortality rate led to a reduction in all three output responses. This
may indicate that more important than controlling the birth of new mosquitoes is assuring
that the mosquito lifetime is shortened, which has been the focus of some new strategies
such as the release of genetically modified mosquitoes.

The results of this parameter also agree with what is known about mosquito-borne
diseases. For instance, it is known that temperature, rainfall, and mosquito density in the
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environment are factors that have a considerable impact on the lifetime of mosquitoes and,
therefore, disease epidemics such as dengue are stronger in summer months and weaker in
winter months, when the mosquito lifetime is shorter. Using this finding, it is important
that researchers, especially entomologists, conduct more empirical experiments to know
more accurately the mosquito mortality rate and how this parameter varies int erms of
climatic and population factors. The variability of the parameter also seems important,
because tests that compared scenarios with less variability (e.g., B1-C2) resulted in larger
statistical differences.

5. Daily infectivity rate from mosquito to human:

This parameter impacts the epidemiological model results similar to parameter #3. It
is important to mention that for small population size, this parameter was not significant
for the output response “number of epidemics waves” and there were only one or two pair
comparisons where the parameter was shown to be significant for the output response
“number of epidemic waves” for large population sizes and the response “duration of the
epidemic in days” in both small and large population sizes.

6. Human population size:

Contrary to parameter #1, an increase in the human population size led to an increase
in all three output responses and vice versa. This is expected and, unfortunately, it was
not as useful in terms of control strategies. However, it indicates the need for research
that investigates the impact of quarantine and isolation in controlling dengue. These
strategies have been discussed at length during the investigation of airborne and direct
contact transmitted diseases, such as influenza, but the strategies have not been extensively
explored in terms of mosquito-borne diseases.

The runtime was highly affected by the number of humans or agents in the model.
Human population size affected runtime regardless of the population size, and there was
only one pair comparison that was not statistically significant, which indicates that runtime
was very sensitive to this parameter.

Another result was that larger populations prolonged the epidemic (since more indi-
viduals are transmitting the pathogen). However, it is important to investigate whether
these results remain in epidemics in which the pathogen is transmitted more slowly or
more rapidly. With epidemics that spread too quickly, the total number of infected individ-
uals will most likely still increase with the increase in the human population size, but the
duration may decrease because all individuals will quickly become infected, as discussed
in parameter #1. On the other hand, with epidemics that spread slowly, the epidemic may
end before it infects many individuals, which would lead to a decrease in the total number
of infected individuals, as well as the duration of the epidemic.

7. Initial number of infectious humans:

As expected, an increase in the initial number of infectious humans led to an increase
in the total number of infected individuals for large population size. However, the increase
in the initial number of infectious humans led to a decrease in the duration of the epidemic
and the number of epidemic waves for large population size. For a small population,
initially, an increase in the parameter led to an increase in the total number of infected
individuals, duration of the epidemic, and the number of epidemic waves. However, a
further increase of the parameter led to a reduction of all three output responses. This
was likely due to the disease spreading more quickly over all the population and it may
also indicate an interaction among the parameters. This also highlights the importance
of investigating the quality of parameters values because the output responses do not
monotonically increase or decrease as a function of the parameter. The output response
“total number of infected individuals” appeared to be the most sensitive to this parameter.

8. Human daily latent rate:

This parameter had a similar impact on the model results as parameter #3. However,
it is important to highlight two main differences. First, this parameter was not found
to be significant for the total number of infected individuals, while parameter #3 was
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considered significant for the total number of infected individuals. The second difference
is that conversely to parameter #3, where an increase in the parameter led to an increase
of the total number of infected individuals only and a reduction in the duration of the
epidemic and number of waves. Here, an increase in this parameter led to a decrease
in the total number of infected individuals, but also to an increase in the duration of
the epidemic and the number of waves. This can be intuitively explained—since the
individuals become infectious faster, the total duration of the epidemic for one individual
is shorter, and, therefore, there may not be enough time to infect many mosquitoes and,
consequently, other humans. However, the epidemic may last longer and have more waves
due to sporadic cases here and there. This parameter is another important factor for future
control actions.

9. Human daily recovery rate:

Similar to parameter #4, an increase in the human daily recovery rate led to a re-
duction in the total number of infected individuals and in the duration of the epidemic.
However, in this case, the number of epidemic waves increased. According to the Tukey
multiple comparison test, in a large population, the human daily recovery rate resulted in a
different number of infected individuals, different duration of the epidemic, and different
number of epidemic waves in almost every test performed. For small population size, the
output responses appeared to not be as sensitive to the variation in the parameter, but
the parameter was still found to be significant in many pair comparisons. Thus, due to
the impacts of this parameter on the epidemiological model results, health agencies must
investigate the recovery rate of each disease to provide accurate information to researchers
working on disease spread models. Likewise, due to the impact of the human recovery
rate on the epidemic responses, the population must follow the treatment prescribed by
doctors and health agents to maximize the recovery rate. During the recovery period, it is
also important to follow the guidelines in adopting control measures, such as protecting
against mosquito bites, in order to avoid infecting new mosquitoes.

10. Daily infectivity from human to mosquito:

The results were similar to parameters #3 and #5 with respect to the total number of
individuals infected. However, the duration of the epidemic and the number of epidemic
waves were not as sensitive to this parameter, with only 3 comparisons out of 24 being
statistically different.

Overall, initial number of infectious mosquitoes (#2), mosquito daily latent rate (#3),
mosquito daily mortality rate (#4), human population size (#6), initial number of infectious
humans (#7), and human daily recovery rate (#9) were the parameters that appeared to
have a greater impact on the three output responses considered simultaneously. However,
it is worth noting that initial number of infectious mosquitoes had an opposite impact on
the output responses—an increase in the parameter increased the “total number of infected
individuals” and decreased the “duration of the epidemic in days” and the “number of
epidemic waves”.

The mosquito population size (#1) for small population size, the human daily recovery
rate (#8), and the daily infectivity rate from human to mosquito (#10) were the parameters
that appeared to have less impact on the three output responses considered simultaneously.

Figure 8 shows the results discussed above in a succinct way. It is possible to identify
that parameters #1 and #10 were the ones that led to less variation in the results when
compared to other parameters in the low-level baseline, while parameter #8 was the one
that led to less variation in the high-level baseline. On the other hand, parameter #6 was
the one that led to the highest variation in both levels, followed by parameters #2, #3, #4,
#7, and #9.
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3.3. Impact of Human Behavior

Multi-way analysis of variance (ANOVA) with an α-level of 0.05 was used to investi-
gate the impact of considering human behavior on the vector-borne disease model. The
human behavior was considered through different scenarios: (i) individual versus popula-
tion level, (ii) with and without time to switch behavior, (iii) with different thresholds of
the total number of infectious individuals to trigger cautious behavior, and (iv) different
human cautious behaviors. The ANOVA results can be found in Table 11. A discussion of
the results is presented below.

From the results shown in Table 11, it is observed that including human behavior in
epidemiological models did not impact the runtime for small population sizes. However, in
any of the cases, the difference was not greater than 20 s per replication, which is a reason-
able increase when considering the trade-off between accuracy and computational needs.

For the parameter values used in the experiments of this work, all three output
responses were not found to be sensitive to the different coupled human behavior and
dengue spread models investigated when the population was large. When the population
was small, all the output responses were found to be sensitive to the coupled human
behavior, with the total number of infected individuals appearing to the most sensitive
response, followed by the duration of the epidemic in days, and lastly by the number
of epidemic waves. Although the number of results that were statistically different was
not large, the existence of a few differences already shows the importance of human
behavior in the results of epidemiological models. Moreover, this is just one model with
specific parameters.

A work of [36] also investigated the impacts of human behavior on the results of the
epidemiological model. The authors tested the same scenarios mentioned in this work,
but the model mimicked the spread of the chikungunya disease and, hence, the parameter
values were slightly different. In that work, Scheidegger and Banerjee [36] found that the
total number of infected individuals and the duration of the epidemic were statistically
different in every comparison of the coupled human behavior disease spread model against
the baseline model with a larger population. The authors also found a few differences in
the low-level baseline.

Tukey multiple comparison test was used to investigate whether the results from the
population-based Model C were statistically different from the individual-based Model C.
With a few exceptions (three scenarios for the total number of infected individuals, one
scenario for the duration of the epidemic, and one scenario for the number of epidemic
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waves), the results of the population-based Model C were not statistically different from the
results of the individual-based Model C. This indicates that in some cases and depending
on the parameter values and the response of interest, human behavior may be accurately
represented at the population level, instead of at the individual level.

The differences found in this work and the work of Scheidegger and Banerjee [36]
may indicate an interaction between the disease parameter values and human behavior.
This highlights the importance of considering the impacts of both data quality and human
behavior on the results of epidemiological models—while including human behavior may
improve the accuracy of the results, the improvement may be compromised if the disease
data are not accurate. More investigation in this area is needed to better understand the
impacts of human behavior on vector-borne disease dynamics.

Table 11. ANOVA results for Model C (coupled human behavior and dengue spread model) per baseline level. Bold font
denotes statistical significance at α-level of 0.05.

Factor

Total Number of
Infected Individuals

Number of Epidemic
Waves

Duration of the
Epidemic in Days

Runtime per Replication
in Seconds

Low
Baseline

(B1)

High
Baseline

(B2)

Low
Baseline

(B1)

High
Baseline

(B2)

Low
Baseline

(B1)

High
Baseline

(B2)

Low
Baseline

(B1)

High
Baseline

(B2)

Model
p-value

Model
p-value

Model
p-value

Model
p-value

Model
p-value

Model
p-value

Model
p-value

Model
p-value

0.0002 0.0837 0.0398 0.5439 0.0441 0.5621 0.9999 <0.0001

Factor
p-value Factor

p-value
Factor

p-value
Factor

p-value
Factor

p-value
Factor

p-value
Factor

p-value
Factor

p-value

Individual behavior, no time
to switch behavior, low
percentage of infectious

individuals to trigger
behavior, low cautious factor

0.3478 N/A 0.3251 N/A 0.3412 N/A N/A 0.0954

Individual behavior, no time
to switch behavior, high
percentage of infectious

individuals to trigger
behavior, low cautious factor

0.0398 N/A 0.7511 N/A 0.6404 N/A N/A 0.5011

Individual behavior, no time
to switch behavior, low
percentage of infectious

individuals to trigger
behavior, large cautious factor

0.0123 N/A 0.3251 N/A 0.2149 N/A N/A 0.4266

Individual behavior, no time
to switch behavior, high
percentage of infectious

individuals to trigger
behavior, large cautious factor

0.0604 N/A 0.2421 N/A 0.5538 N/A N/A 0.0541

Individual behavior, low time
switch behavior, low

percentage of infectious
individuals to trigger

behavior

0.7592 N/A 0.8468 N/A 0.5492 N/A N/A <0.0001

Individual behavior, low time
switch behavior, high

percentage of infectious
individuals to trigger

behavior

0.5851 N/A 0.0114 N/A 0.2764 N/A N/A 0.3715
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Table 11. Cont.

Factor

Total Number of
Infected Individuals

Number of Epidemic
Waves

Duration of the
Epidemic in Days

Runtime per Replication
in Seconds

Low
Baseline

(B1)

High
Baseline

(B2)

Low
Baseline

(B1)

High
Baseline

(B2)

Low
Baseline

(B1)

High
Baseline

(B2)

Low
Baseline

(B1)

High
Baseline

(B2)

Model
p-value

Model
p-value

Model
p-value

Model
p-value

Model
p-value

Model
p-value

Model
p-value

Model
p-value

0.0002 0.0837 0.0398 0.5439 0.0441 0.5621 0.9999 <0.0001

Factor
p-value Factor

p-value
Factor

p-value
Factor

p-value
Factor

p-value
Factor

p-value
Factor

p-value
Factor

p-value

Individual behavior, large
time switch behavior, low
percentage of infectious

individuals to trigger
behavior

0.6930 N/A 0.8582 N/A 0.0358 N/A N/A <0.0001

Individual behavior, large
time switch behavior, high

percentage of infectious
individuals to trigger

behavior

0.3519 N/A 0.2956 N/A 0.5883 N/A N/A 0.0326

Population behavior, no time
to switch behavior, low
percentage of infectious

individuals to trigger
behavior, low cautious factor

0.0005 N/A 0.3565 N/A 0.3951 N/A N/A 0.5968

Population behavior, no time
to switch behavior, high
percentage of infectious

individuals to trigger
behavior, low cautious factor

0.0567 N/A 0.6591 N/A 0.0147 N/A N/A <0.0001

Population behavior, no time
to switch behavior, low
percentage of infectious

individuals to trigger
behavior, large cautious factor

0.2410 N/A 0.0131 N/A 0.0287 N/A N/A 0.0779

Population behavior, no time
to switch behavior, high
percentage of infectious

individuals to trigger
behavior, large cautious factor

0.5890 N/A 0.8099 N/A 0.5041 N/A N/A 0.0873

Population behavior, low
time switch behavior, low
percentage of infectious

individuals to trigger
behavior

0.6930 N/A 0.6591 N/A 0.9993 N/A N/A <0.0001

Population behavior, low
time switch behavior, high

percentage of infectious
individuals to trigger

behavior

0.0011 N/A 0.2127 N/A 0.6046 N/A N/A <0.0001

Population behavior, large
time switch behavior, low
percentage of infectious

individuals to trigger
behavior

0.8657 N/A 0.9942 N/A 0.5766 N/A N/A <0.0001

Population behavior, large
time switch behavior, high

percentage of infectious
individuals to trigger

behavior

0.6871 N/A 0.1352 N/A 0.2518 N/A N/A 0.9207
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3.4. Impact of Multi-Vector and Multi-Strain

Multi-way analysis of variance (ANOVA) with an α-level of 0.05 was used to investi-
gate the impact of considering multi-strain and multi-vector on the vector-borne disease
model. Multi-strain and multi-vector were considered through different scenarios: (i) multi-
strain model versus baseline model, (ii) multi-vector model versus baseline model, and (iii)
multi-strain and multi-vector model versus baseline. The ANOVA results can be found in
Table 12. A discussion of the results is presented below.

Table 12. ANOVA results for Model D (multi-strain, multi-vector dengue spread model) per baseline level. Bold font
denotes statistical significance at α-level of 0.05.

Factor

Total Number of Infected
Individuals

Number of Epidemic
Waves

Duration of the Epidemic
in Days

Runtime Per Replication
in Seconds

Low
Baseline

(B1)

High
Baseline

(B2)

Low
Baseline

(B1)

High
Baseline

(B2)

Low
Baseline

(B1)

High
Baseline

(B2)

Low
Baseline

(B1)

High
Baseline

(B2)

Model
p-value

Model
p-value

Model
p-value

Model
p-value

Model
p-value

Model
p-value

Model
p-value

Model
p-value

<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0429

Factor
p-value

Factor
p-value

Factor
p-value

Factor
p-value

Factor
p-value

Factor
p-value

Factor
p-value

Factor
p-value

Multi-strain model <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.4606

Multi-vector model <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.2959

Multi-strain,
multi-vector model <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0334

The multi-strain, multi-vector model against the baseline had a statistically different
total number of infected individuals, duration of the epidemic in days, number of epidemic
waves, and runtime for all the scenarios investigated: multi-strain only, multi-vector only,
and multi-strain and multi-vector for both small and large populations.

From the results, one can observe that in terms of runtime the differences decrease
when the population increase. For a large population, a significant difference was only
observed among the high-level baseline and the multi-strain, multi-vector model, but no
difference was observed when considering multi-strain only or multi-vector only. This
indicates that in large populations, the increase in runtime caused by adding these charac-
teristics in the model may not be as big as the increase in runtime caused by the increase in
the number of agents, as discussed in Section 3.2. Moreover, in any case, the increase in
runtime was not greater than 18 s, which is a reasonable increase considering the significant
differences in the other three output responses.

As the ANOVA results showed, every scenario considering multi-strain and multi-
vector, or multi-strain or multi-vector individually was statistically different than the
baseline model at either low or high level. Including multi-strain and/or multi-strain and
multi-vector led to an increase in the total number of infected individuals and duration of
the epidemic, but a decrease in the number of epidemic waves. The increase in the total
number of infected individuals and duration of the epidemic was expected as there were
different strains of virus circulating simultaneously and people are immune to specific
strains only.

As previously discussed, Wolbachia-carrier mosquitoes are laboratory-modified
mosquitoes that can be infected by the dengue virus but cannot transmit the disease
to other humans. Contrary to what one would expect from such a disease control strategy,
the introduction of the Wolbachia-carrier mosquitoes led to a reduction in the duration of
the epidemic and in the number of waves, but it increased the total number of infected
individuals in comparison to the baseline. However, using Tukey multiple comparison
test, we could check that using multi-vector strategy was significantly capable to lower the
total number of infected individuals and the duration of the epidemic in scenarios with



Modelling 2021, 2 191

multi-strain, although there was no evidence to reduce the number of epidemic waves
in comparison to the multi-strain scenario. This may indicate that the Wolbachia-carrier
mosquitoes may not be a good strategy for regions where there is the circulation of only
one strain of the dengue virus, but it may be a promising strategy for regions with a
simultaneous circulation of multiple virus strains. We recognize that this is one model
with specific parameters. Therefore, more studies must be performed to check whether this
recommendation is valid for different contexts.

4. Discussion

From the discussion of the above results, some general inferences can be made. First,
it was possible to observe that the variation of the parameter values had a greater impact
on the total infected individuals than on the total duration of the epidemic or the number
of epidemic waves. While 94 out of 140 comparisons led to statistically different results for
the total number of infected individuals, 76 were statistically different for the duration of
the epidemic, and 66 for the number of epidemic waves.

Parameters #1 and #8 were the ones that had the least impact on the total number of
infected individuals, while parameters #1, #5, and #10 on the duration of the epidemic, and
parameters #1 and #10 on the number of epidemic waves. On the other hand, parameters
#6, followed by different parameters such as #2 and #7 were the most impactful for the
output responses.

This allows us to emphasize two findings: first, the importance of defining the re-
sponse of interest in epidemiological models, and second, the importance of accurately
estimating the parameters. While some parameters may lead to little to no change to one
output response, that same parameter may cause large changes in another output response.

Moreover, as discussed in Section 3.2, in some cases, a change in the parameter led to
a decrease in the total number of infected individuals and an increase in the duration of
the epidemic and/or in the number of epidemic waves. Thus, before implementing control
measures, it is important to clearly define the priority for the population and the health
system: reducing the total number of infected individuals, reducing the duration of the
epidemic, or reducing the number of epidemic waves. In general, it is believed that the
total number of infected individuals is more important than the duration of the epidemic.
However, a long epidemic can generate greater rumors and fear among the population,
as well as it potentially leading to a lower awareness of the population over time, which
can reduce adherence to control measures and, consequently, increase the total number of
infected individuals later. Depending on the control measures adopted, a longer epidemic
may also have other long-term and unexpected consequences, such as economic losses
and psychological impacts. The contrary results that the same input parameter has on the
output responses highlight the importance of adequately estimating disease parameters
such as the disease latent rate and the infectivity rate, which have a positive effect on all
three output responses discussed in this work. Although important, many epidemiological
models use estimates for these parameters without relying on empirical studies or some
scientific support. It is recognized that it is difficult to perform experiments to define these
parameters, but we call for more multidisciplinary attention to these parameters and for
greater investment in the area.

Figures 9 and 10 show the relationship between the output responses per parameter.
According to Figure 9, it is possible to verify that, with exception of parameters #6 and
#7, there was no apparent correlation between the total number of infected individuals
and the duration of the epidemic, and between the total number of infected individuals
and the number of epidemic waves. On the other hand, according to Figure 10, except for
parameter #9, there appeared to exist a positive correlation between the duration of the
epidemic and the number of epidemic waves.
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Figure 11 shows the relation between the output responses as well, but the response
total number of infected mosquitoes was included. As it can be seen, the total number of
infected mosquitoes was highly correlated with the total number of infected individuals
and slightly correlated with the duration of the epidemic. The runtime did not seem to be
correlated with any of the output responses.



Modelling 2021, 2 193

Modelling 2021, 2, FOR PEER REVIEW 29 
 

 

Figure 10. The relation between the number of waves vs. the duration of the epidemic per parame-
ter. 

 
Figure 11. The relation between the output responses. 

5. Conclusions 
The main conclusions that can be derived from this work are as follows: 
(i) The data quality is indeed an important factor and must be investigated in more 

detail by researchers and simulation specialists modelling disease spread. In fact, we sug-
gest that a data quality impact analysis should be included as a section of any rigorous 
epidemiological simulation model study to acknowledge the uncertainties that might un-
derly the model responses. 

(ii) Variations in the parameters were shown to have a greater impact on the total 
number of infected individuals than on the duration of the epidemic or the number of 
epidemic waves. 

(iii) Variations in the parameters may lead to divergent results of what is desired in 
an epidemic, i.e., a variation may lead to a reduction in the total number of infected indi-
viduals and an increase in the duration of the epidemic and the number of epidemic waves 
or vice versa. 

(iv) Some parameters were shown to be significant in low population size, while oth-
ers were shown to be significant in large population size only. This reinforces the im-
portance of investigating the accuracy of data in epidemiological studies and considering 
the different contexts that exist, such as different population sizes, different geographies, 
different human behavior, how disease parameters change over time, etc. 

(v) Similar to the item (iv), the responses appeared to not monotonically increase or 
decrease as a function of some of the parameters. This also reflects the importance of in-
vestigating the data accuracy on epidemiological studies, as a slight change in the value 
of the parameters may bring opposite effects on the responses of interest. 

(vi) Human behavior appears to be appropriately mimicked in either the individual-
based level or in the population-based level, which could save some computational re-
sources. 

(vii) Human behavior appears to present a strong interaction with the parameter val-
ues, which indicates that although in some cases it may not impact the results, it must be 
investigated to make the appropriate modelling decision. 

(viii) Wolbachia-carrier mosquitoes, which is a recent control strategy being investi-
gated, appear to be a promising control strategy to regions with a simultaneous circulation 
of multiple virus strains, but it may increase the total number of infected individuals in 
regions with a single virus strain. 

Figure 11. The relation between the output responses.

5. Conclusions

The main conclusions that can be derived from this work are as follows:
(i) The data quality is indeed an important factor and must be investigated in more

detail by researchers and simulation specialists modelling disease spread. In fact, we
suggest that a data quality impact analysis should be included as a section of any rigorous
epidemiological simulation model study to acknowledge the uncertainties that might
underly the model responses.

(ii) Variations in the parameters were shown to have a greater impact on the total
number of infected individuals than on the duration of the epidemic or the number of
epidemic waves.

(iii) Variations in the parameters may lead to divergent results of what is desired
in an epidemic, i.e., a variation may lead to a reduction in the total number of infected
individuals and an increase in the duration of the epidemic and the number of epidemic
waves or vice versa.

(iv) Some parameters were shown to be significant in low population size, while others
were shown to be significant in large population size only. This reinforces the importance of
investigating the accuracy of data in epidemiological studies and considering the different
contexts that exist, such as different population sizes, different geographies, different
human behavior, how disease parameters change over time, etc.

(v) Similar to the item (iv), the responses appeared to not monotonically increase
or decrease as a function of some of the parameters. This also reflects the importance of
investigating the data accuracy on epidemiological studies, as a slight change in the value
of the parameters may bring opposite effects on the responses of interest.

(vi) Human behavior appears to be appropriately mimicked in either the individual-
based level or in the population-based level, which could save some computational re-
sources.

(vii) Human behavior appears to present a strong interaction with the parameter
values, which indicates that although in some cases it may not impact the results, it must
be investigated to make the appropriate modelling decision.

(viii) Wolbachia-carrier mosquitoes, which is a recent control strategy being investi-
gated, appear to be a promising control strategy to regions with a simultaneous circulation
of multiple virus strains, but it may increase the total number of infected individuals in
regions with a single virus strain.

While discussing mosquito-borne diseases, one of the first recommendations given by
health agencies is to control the mosquito population growth. As discussed here, although
reducing the mosquito population size reduces the total number of infected individuals,
it increases the duration of the epidemic and the number of epidemic waves. Therefore,
a recommendation that seems more important is to ensure humans follow the proper
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treatment to make the recovery process from the disease faster in order to reduce the
life span of the mosquitoes, as well as to search for strategies that would increase the
latent period of the disease in mosquitoes. These three parameters, for instance, lead to
positive changes in all three output responses discussed here. Following this suggestion,
the introduction of genetically modified mosquitoes that have a shorter lifecycle should be
further investigated in epidemiological models. Contrary to what one expects for mosquito-
borne diseases, quarantine and isolation that would make the human population size of
the endemic region temporarily smaller appears to be useful, due to the positive effects on
all three output responses, and should also be further investigated.

We recognize that the model developed in this work is a large simplification of the real
world. However, the focus of this work was not to develop a model for epidemic prediction.
Instead, we wanted to illustrate the possible impacts of data quality, human behavior,
multi-strain, and multi-vector on epidemiological results, and to attract the attention of
the academic community to the importance of not overlooking these characteristics when
modelling disease spread.

We also wanted to assess the trade-off between model accuracy and the required
computational power. As the results indicate, due to the impacts on the results and the
generally low to no increase in runtime when considering human behavior, multi-vector, or
multi-strain, it appears beneficial to include those characteristics in the models. Although
the model developed in this work is simple, the results align with what is known in
this field of research, which indicates that modelling is a suitable tool for exploratory
research and it is a good start point for showing the cost–effect of mimicking the reality
more accurately.

Due to the simplicity of the model, further investigation is needed to evaluate whether
these results would persist for larger human populations, for different values of the param-
eters, and for more detailed models. Therefore, several suggestions for future research can
be made, such as (i) to repeat the same analyses, but using a larger number of replications
to verify whether with a larger sample and consequently greater accuracy, the results will
be similar or not; (ii) to repeat the same analyses for other human population sizes and
other variations of the parameters and verify whether the results are similar; (iii) to carry
out more experiments, possibly with complete or at least fractional factorial planning to
evaluate the interaction between factors; (iv) to increase the level of detail of the model
to more accurately represent reality; (v) to include genetically modified mosquitoes; and
(vi) to perform similar analysis on different rules for behavior inclusion, such as change
in behavior in terms of the number of infected individuals within a specific distance or in
terms of the number of infected individuals in a social network (emotional proximity).

Author Contributions: Conceptualization, A.P.G.S. and H.d.S.M.; methodology, A.P.G.S., H.d.S.M.
and A.B.; software, A.P.G.S.; validation, A.P.G.S., H.d.S.M. and A.B.; formal analysis, A.P.G.S.;
investigation, A.P.G.S., H.d.S.M. and A.B.; data curation, A.P.G.S.; writing—original draft preparation,
A.P.G.S. and H.d.S.M.; writing—review and editing, A.P.G.S. and A.B.; supervision, A.B. All authors
have read and agreed to the published version of the manuscript.

Funding: The A.P.G.S. was funded by the Science without Borders program through CAPES (Co-
ordenação de Aperfeiçoamento de Pessoal de Nível Superior)—Brazil, and by PECEGE—Luiz de
Queiroz College of Agriculture—University of São Paulo.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. This study also used data available in previously published studies as
appropriately cited.

Acknowledgments: The authors would like to thank the editors and the reviewers for the suggestions
given to improve the work and the quality of this paper.



Modelling 2021, 2 195

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Santos, C.F. Reflections about the impact of the SARS-COV-2/COVID-19 pandemic on mental health. Braz. J. Psychiatry 2020,

42, 329. [CrossRef]
2. Landry, M.D.; Geddes, L.; Moseman, A.P.; Lefler, J.P.; Raman, S.R.; van Wijchen, J. Early reflection on the global impact of

COVID19, and implications for physiotherapy. Physiotherapy 2020, 107, A1–A3. [CrossRef]
3. World Health Organization. A Year without Precedent: WHO’s COVID-19 Response. Available online: https://www.who.int/

news-room/spotlight/a-year-without-precedent-who-s-covid-19-response (accessed on 18 January 2021).
4. Venkatramanan, S.; Lewis, B.; Chen, J.; Higdon, D.; Vullikanti, A.; Marathe, M. Using data-driven agent-based models for

forecasting emerging infectious diseases. Epidemics 2018, 22, 43–49. [CrossRef] [PubMed]
5. World Health Organization. Health in 2015: From MDGs, Millennium Development Goals to SDGs, Sustainable Development

Goals. Available online: https://apps.who.int/iris/bitstream/handle/10665/200009/9789241565110_eng.pdf?sequence=1&
isAllowed=y (accessed on 17 November 2020).

6. Lamb, A.; Paul, M.J.; Dredze, M. Investigating Twitter as a Source for Studying Behavioral Responses to Epidemics. In Proceedings
of the AAAI Fall Symposium: Information Retrieval and Knowledge Discovery in Biomedical Text, Arlington, VA, USA, 2–4
November 2012; Citeseer: Princeton, NJ, USA, 2012.

7. Gozzi, N.; Perrotta, D.; Paolotti, D.; Perra, N. Towards a data-driven characterization of behavioral changes induced by the
seasonal flu. PLoS Comput. Biol. 2020, 16, e1007879. [CrossRef]

8. World Health Organization. Sierra Leone: A Traditional Healer and a Funeral. Available online: https://www.who.int/csr/
disease/ebola/ebola-6-months/sierra-leone/en/ (accessed on 18 January 2021).

9. vom Steeg, L.G.; Klein, S.L. SeXX matters in infectious disease pathogenesis. PLoS Pathog. 2016, 12, e1005374. [CrossRef]
[PubMed]

10. Tolhurst, R.; De Koning, K.; Price, J.; Kemp, J.; Theobald, S.; Squire, S.B. The challenge of infectious disease: Time to take gender
into account. J. Health Manag. 2002, 4, 135–151. [CrossRef]

11. Stemple, L.; Karegeya, P.; Gruskin, S. Human rights, gender, and infectious disease: From HIV/AIDS to Ebola. Hum. Rights Q.
2016, 38, 993–1021. [CrossRef]

12. Zhou, M.; Zhang, N.; Zhang, M.; Ma, G. Culture, eating behavior, and infectious disease control and prevention. J. Ethn. Foods
2020, 7, 1–7.

13. Evans, J.C.; Silk, M.J.; Boogert, N.J.; Hodgson, D.J. Infected or informed? Social structure and the simultaneous transmission of
information and infectious disease. Oikos 2020, 129, 1271–1288. [CrossRef]

14. Agaba, G.O.; Kyrychko, Y.N.; Blyuss, K.B. Mathematical model for the impact of awareness on the dynamics of infectious diseases.
Math. Biosci. 2017, 286, 22–30. [CrossRef] [PubMed]

15. Greenhalgh, D.; Rana, S.; Samanta, S.; Sardar, T.; Bhattacharya, S.; Chattopadhyay, J. Awareness programs control infectious
disease–multiple delay induced mathematical model. Appl. Math. Comput. 2015, 251, 539–563. [CrossRef]

16. Lipsitch, M.; Santillana, M. Enhancing Situational Awareness to Prevent Infectious Disease Outbreaks from Becoming Catastrophic.
In Global Catastrophic Biological Risks; Inglesby, T.V., Adalja, A.A., Eds.; Springer International Publishing: Cham, Switzerland,
2019; pp. 59–74.

17. Huaman, M.A.; Araujo-Castillo, R.V.; Soto, G.; Neyra, J.M.; Quispe, J.A.; Fernandez, M.F.; Mundaca, C.C.; Blazes, D.L. Impact of
two interventions on timeliness and data quality of an electronic disease surveillance system in a resource limited setting (Peru):
A prospective evaluation. BMC Med. Inform. Decis. Mak. 2009, 9, 16. [CrossRef] [PubMed]

18. Thomas, J.C.; Sampson, L.A. High rates of incarceration as a social force associated with community rates of sexually transmitted
infection. J. Infect. Dis. 2005, 191, S55–S60. [CrossRef]

19. Marathe, M.V.; Ramakrishnan, N. Recent advances in computational epidemiology. IEEE Intell. Syst. 2013, 28, 96–101. [CrossRef]
[PubMed]

20. World Health Organization. Medicines in Health Systems: Advancing Access, Affordability and Appropriate Use. Available on-
line: https://apps.who.int/iris/bitstream/handle/10665/179197/9789241507622_eng.pdf?sequence=1&isAllowed=y (accessed
on 15 November 2020).

21. Centers for Disease Control and Prevention. Epidemiology: Transmission of the Dengue Virus. Available online: https:
//www.cdc.gov/dengue/epidemiology/index.html (accessed on 9 September 2017).

22. European Centre for Disease Prevention and Control. How is Zika Virus Transmitted? Available online: https://ecdc.europa.eu/
en/publications-data/how-zika-virus-transmitted (accessed on 10 September 2017).

23. Pan American Health Organization. Tool for the Diagnosis and Care of Patients with Suspected Arboviral Diseases. Available
online: https://iris.paho.org/handle/10665.2/33895 (accessed on 12 November 2017).

24. Aguiar, M.; Stollenwerk, N.; Halstead, S.B. The risks behind Dengvaxia recommendation. Lancet Infect. Dis. 2016, 16, 882–883.
[CrossRef]

http://doi.org/10.1590/1516-4446-2020-0981
http://doi.org/10.1016/j.physio.2020.03.003
https://www.who.int/news-room/spotlight/a-year-without-precedent-who-s-covid-19-response
https://www.who.int/news-room/spotlight/a-year-without-precedent-who-s-covid-19-response
http://doi.org/10.1016/j.epidem.2017.02.010
http://www.ncbi.nlm.nih.gov/pubmed/28256420
https://apps.who.int/iris/bitstream/handle/10665/200009/9789241565110_eng.pdf?sequence=1&isAllowed=y
https://apps.who.int/iris/bitstream/handle/10665/200009/9789241565110_eng.pdf?sequence=1&isAllowed=y
http://doi.org/10.1371/journal.pcbi.1007879
https://www.who.int/csr/disease/ebola/ebola-6-months/sierra-leone/en/
https://www.who.int/csr/disease/ebola/ebola-6-months/sierra-leone/en/
http://doi.org/10.1371/journal.ppat.1005374
http://www.ncbi.nlm.nih.gov/pubmed/26891052
http://doi.org/10.1177/097206340200400204
http://doi.org/10.1353/hrq.2016.0054
http://doi.org/10.1111/oik.07148
http://doi.org/10.1016/j.mbs.2017.01.009
http://www.ncbi.nlm.nih.gov/pubmed/28161305
http://doi.org/10.1016/j.amc.2014.11.091
http://doi.org/10.1186/1472-6947-9-16
http://www.ncbi.nlm.nih.gov/pubmed/19272165
http://doi.org/10.1086/425278
http://doi.org/10.1109/MIS.2013.114
http://www.ncbi.nlm.nih.gov/pubmed/25505373
https://apps.who.int/iris/bitstream/handle/10665/179197/9789241507622_eng.pdf?sequence=1&isAllowed=y
https://www.cdc.gov/dengue/epidemiology/index.html
https://www.cdc.gov/dengue/epidemiology/index.html
https://ecdc.europa.eu/en/publications-data/how-zika-virus-transmitted
https://ecdc.europa.eu/en/publications-data/how-zika-virus-transmitted
https://iris.paho.org/handle/10665.2/33895
http://doi.org/10.1016/S1473-3099(16)30168-2


Modelling 2021, 2 196

25. Ferguson, N.M.; Rodríguez-Barraquer, I.; Dorigatti, I.; Mier-y-Teran-Romero, L.; Laydon, D.J.; Cummings, D.A.T. Benefits and
risks of the Sanofi-Pasteur dengue vaccine: Modeling optimal deployment. Science 2016, 353, 1033–1036. [CrossRef]

26. Grimm, V.; Berger, U.; Bastiansen, F.; Eliassen, S.; Ginot, V.; Giske, J.; Goss-Custard, J.; Grand, T.; Heinz, S.K.; Huse, G.; et al. A
standard protocol for describing individual-based and agent-based models. Ecol. Model. 2006, 198, 115–126. [CrossRef]

27. World Health Organization. Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control. Available online: https://
apps.who.int/iris/bitstream/handle/10665/44188/9789241547871_eng.pdf?sequence=1&isAllowed=y (accessed on 15 Novem-
ber 2020).

28. World Health Organization. Dengue Control. Available online: http://www.who.int/denguecontrol/human/en/ (accessed on
20 November 2017).

29. Araújo, H.R.C.D. Caracterização Morfológica dos Hemócitos do Aedes Aegypti e do Aedes Albopictus e a Resposta Imune dos
Hemócitos do Aedes Aegypti Após a Infecção pelo Dengue Virus. Ph.D. Thesis, Fundação Oswaldo Cruz, Centro de Pesquisas
René Rachou, Belo Horizonte/MG, Brazil, 2011.

30. Yakob, L.; Clements, A.C. A mathematical model of chikungunya dynamics and control: The major epidemic on Reunion Island.
PLoS ONE 2013, 8, e57448. [CrossRef] [PubMed]

31. Ross, R.; Thomson, D. Some enumerative studies on malarial fever. Proc. R. Soc. Lond. 1910, 83, 159–173. [CrossRef]
32. Kermack, W.O.; McKendrick, A.G. A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. A Math. Phys. Eng.

Sci. 1927, 115, 700–721.
33. Dumont, Y.; Chiroleu, F.; Domerg, C. On a temporal model for the Chikungunya disease: Modeling, theory and numerics. Math.

Biosci. 2008, 213, 80–91. [CrossRef] [PubMed]
34. World Mosquito Program. Wolbachia. Available online: http://www.eliminatedengue.com/our-research/wolbachia (accessed

on 10 October 2017).
35. Murray, J.V.; Jansen, C.C.; De Barro, P. Risk Associated with the Release of Wolbachia-Infected Aedes aegypti Mosquitoes into the

Environment in an Effort to Control Dengue. Front. Public Health 2016, 4, 1–12. [CrossRef] [PubMed]
36. Scheidegger, A.P.G.; Banerjee, A. An agent-based model to investigate behavior impacts on vector-borne disease spread. In

Proceedings of the 2017 Winter Simulation Conference (WSC), Las Vegas, NV, USA, 3–6 December 2017; IEEE: Piscataway, NJ,
USA, 2017. [CrossRef]

http://doi.org/10.1126/science.aaf9590
http://doi.org/10.1016/j.ecolmodel.2006.04.023
https://apps.who.int/iris/bitstream/handle/10665/44188/9789241547871_eng.pdf?sequence=1&isAllowed=y
https://apps.who.int/iris/bitstream/handle/10665/44188/9789241547871_eng.pdf?sequence=1&isAllowed=y
http://www.who.int/denguecontrol/human/en/
http://doi.org/10.1371/journal.pone.0057448
http://www.ncbi.nlm.nih.gov/pubmed/23554860
http://doi.org/10.1080/00034983.1910.11685718
http://doi.org/10.1016/j.mbs.2008.02.008
http://www.ncbi.nlm.nih.gov/pubmed/18394655
http://www.eliminatedengue.com/our-research/wolbachia
http://doi.org/10.3389/fpubh.2016.00043
http://www.ncbi.nlm.nih.gov/pubmed/27047911
http://doi.org/10.1109/WSC.2017.8248007

	Introduction 
	Materials and Methods 
	Experiment Design 
	Model A—Baseline (Single-Strain, Single-Vector Dengue Spread Model) 
	Model B (Data Quality) 
	Model C (Coupled Human Behavior and Dengue Spread Model) 
	Model D (Multi-Strain, Multi-Vector Dengue Spread Model) 


	Results 
	Baseline 
	Impact of Data Quality 
	Impact of Human Behavior 
	Impact of Multi-Vector and Multi-Strain 

	Discussion 
	Conclusions 
	References

