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Abstract: The digital factory provides undoubtedly great potential for future production systems
in terms of efficiency and effectivity. A key aspect on the way to realize the digital copy of a real
factory is the understanding of complex indoor environments on the basis of three-dimensional (3D)
data. In order to generate an accurate factory model including the major components, i.e., building
parts, product assets, and process details, the 3D data that are collected during digitalization can be
processed with advanced methods of deep learning. For instance, the semantic segmentation of a
point cloud enables the identification of relevant objects within the environment. In this work, we
propose a fully Bayesian and an approximate Bayesian neural network for point cloud segmentation.
Both of the networks are used within a workflow in order to generate an environment model on the
basis of raw point clouds. The Bayesian and approximate Bayesian networks allow us to analyse
how different ways of estimating uncertainty in these networks improve segmentation results on raw
point clouds. We achieve superior model performance for both, the Bayesian and the approximate
Bayesian model compared to the frequentist one. This performance difference becomes even more
striking when incorporating the networks’ uncertainty in their predictions. For evaluation, we
use the scientific data set S3DIS as well as a data set, which was collected by the authors at a
German automotive production plant. The methods proposed in this work lead to more accurate
segmentation results and the incorporation of uncertainty information also makes this approach
especially applicable to safety critical applications aside from our factory planning use case.

Keywords: point clouds; 3D segmentation; Bayesian deep learning; dropout training; uncertainty
estimation; digital factory; factory planning

1. Introduction

A three-dimensional (3D) model of factory buildings and inventory, as well as the
simulation of process steps, play a major role in different planning domains. In general,
virtual planning has many advantages when compared to analogue planning. The most
stringent benefit is the detection of planning mistakes early on in the planning process. This
is favourable, as planning mistakes are detected well before implementation [1], i.e., before
factory ramp-up, before new machinery is ordered, before construction is under way, or
before the production process is detailed. This is due to the fact that the structure and
layout of the building influence several other domains. A changing building model can
entail changes in spatial availability for production or logistics assets. Thus, the layout of
production lines or the concept of machines may have to be adapted accordingly. Further,
virtual planning reduces travel efforts, as planners do not have to meet on-site to discuss
modifications or reorganizations. They can rather meet in a multi-user simulation model
or a virtual reality supported 3D environment, which saves a substantial amount of travel
time and cost. Digital 3D models are the basis for building reorganizations as well as the
introduction of completely new or modified manufacturing process steps.
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There are several challenges to tackle in order to determine the as-is state of a pro-
duction plant. First of all, the current data in the respective plant have to be collected.
In order to acquire 3D information, laser scanning and photogrammetry are useful digital-
ization techniques. After plant digitalization, the collected data have to be pre-processed,
including data fusion of inputs from different sources, as well as subsequent data cleaning
and labelling. The data fusion includes a registration step, where the point clouds from
different scans or different sources are fused in a common global coordinate system. How-
ever, simulating the factory or the assembly process on the basis of the pre-processed point
clouds alone is not possible. Generally, the point clouds generated by laser scanners and
photogrammetry techniques suffer from occlusions, i.e., a set of objects blocks the sight
to other objects, which results in holes within the point cloud. For instance, the outcomes
of collision checking are not reliable when the point cloud is not complete. Additionally,
a point cloud does not contain any information regarding how to separate different ob-
jects. Therefore, the introduction of new or the displacement of existing objects is time
consuming, as the respective set of points has to be selected manually. A segmentation step
can be introduced in order to separate different objects from one another automatically.
Finally, to generate an environment model, the poses of the relevant objects need to be
estimated and the point sets have to be replaced by computer-aided design (CAD) models.
Figure 1 summarizes the process for generating an environment model on the basis of a
point cloud, which was introduced in our previous work [2]. Each of the process steps can
be subdivided into further building blocks. This paper discusses the segmentation step in
more detail. The remaining process steps are described in our next contribution.

Point Cloud Data
Point Cloud
Registration

Data Cleaning
& Labelling

Segmentation Pose Estimation
Environment

Model

Data Collection Data Pre-Processing Data Processing

Figure 1. Process diagram of generating an environment model on the basis of a point cloud.
The segmentation step is highlighted as this is the focus of the remaining paper.

The semantic segmentation of a point cloud is widely solved using deep neural net-
works. Most of the existing deep learning architectures make use of the frequentist notion
of probability. However, these so-called frequentist neural networks suffer from two major
drawbacks. They do not quantify uncertainty in their predictions. Often, the softmax out-
put of frequentist neural networks is interpreted as network uncertainty, which is, however,
not a good measure. The softmax function only normalizes an input vector but cannot as
such be interpreted as network (un)certainty [3]. Especially for out of distribution samples,
the softmax output can give rise to misleading interpretations [4]. In the case of deep
learning frameworks being integrated into safety critical applications, like autonomous
driving, it is important to know what the network is uncertain about. There was one
infamous accident that was caused by a partly autonomous driving car that confused the
white trailer of a lorry with the sunlit sky or a bright overhead sign [5]. By considering
network uncertainties, similar scenarios could be mitigated. In frequentist neural networks,
the network parametersW are point estimates, whereas, in Bayesian neural networks, a
distribution is placed over all the network parameters. Conceptually, the network optimiza-
tion is more complex for Bayesian neural networks; however, they allow for additional
quantification of network uncertainty. Figure 2 summarizes the differences between a
single hidden layer frequentist and Bayesian neural network. Another shortcoming of
frequentist neural networks is their tendency to overfit on small data sets with a high
number of features. However, in this work, we focus on uncertainty estimation rather than
the challenge of feature selection.
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Figure 2. Frequentist vs. Bayesian neural network. In the frequentist neural network, the parameters
W1 andW2 correspond to point estimates. In the Bayesian neural network, a probability distribution
is placed over the parameters. While the frequentist network only outputs a prediction, the Bayesian
neural network additionally estimates the uncertainty in this prediction.

We present a novel Bayesian 3D point cloud segmentation framework that is based on
PointNet [6], which is able to capture uncertainty in network predictions. The network is
trained using variational inference with multivariate Gaussians with a diagonal covariance
matrix as variational distribution. This approach hardly adds any additional parameters
to be optimized during each backward pass [7]. Further, we formulate an approximate
Bayesian neural network by applying dropout training, as suggested in [3]. We use an en-
tropy based interpretation of uncertainty in the network outputs and distinguish between
overall, data related, and model related uncertainty. These types of uncertainty are called
predictive, aleatoric, and epistemic uncertainty, respectively [8]. It makes sense to consider
this differentiation, as it shows which predictions are uncertain and to what extent this
uncertainty can be reduced by further model refinement. The remaining uncertainty after
model optimization and training is then inherent to the underlying data set. Other notions
of uncertainty that are based on the variance or credible intervals of the predictive network
outputs are discussed and evaluated. To the best of our knowledge, no other work has
treated the topic of uncertainty estimation and Bayesian training of 3D segmentation net-
works that operate on raw and unordered point clouds without a previous transformation
into a regular format. We embed all of the proposed networks in an industrial prototype
for environment modelling in an automotive assembly plant. Aside from an automotive
data set that is collected by the authors at a German manufacturing plant, the proposed
networks are evaluated on a scientific data set in order to ensure the comparability with
other state-of-the-art frameworks. Summing up, the contributions of this paper are:

• Workflow: we describe how to quantify uncertainty in segmentation frameworks that
operate on raw and unstructured point clouds. Further, it is discussed how to use this
information for improving the generation of factory models.

• Framework: we formulate a 3D segmentation model that is trained in a fully Bayesian
way using variational inference and an approximate Bayesian model, which is derived
by the application of dropout training.

• Experiment: we evaluate how the different sources of uncertainty affect the neural
networks’ segmentation performance in terms of accuracy. Further, we outline how
the factory model can be improved by considering uncertainty information.

The remainder of this paper is organized in the following way. Section 2 conducts
a thorough literature review on 3D point cloud processing frameworks, including deep
neural networks, Bayesian neural networks, and uncertainty quantification. In the subse-
quent Section 3, the frequentist, the approximate Bayesian, and the fully Bayesian models
are described in more detail. Section 4 discusses the scientific and industrial data sets that
are used for the evaluation of our models and elaborates their characteristics. The models
are evaluated with respect to their performance in Section 5. Finally, Section 6 provides a
discussion, which describes the bigger scope of this work and concludes the paper.
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2. Literature Review

The following paragraphs cast light upon prior research in the areas of 3D point cloud
processing as well as Bayesian neural networks and uncertainty estimation. The neural
networks that are discussed in the first section are all based on the classical or frequentist
interpretation of probability. Bayesian neural networks, rather, take on the Bayesian
interpretation of probability, which views probability as a personal degree of belief.

2.1. 3D Point Cloud Processing

In contrast to images that have a regular pixel structure, point clouds are irregular
and unordered. Further, they do not have a homogeneous point density, due to occlusions
and reflections. Neural networks that process 3D point clouds have to tackle all of these
challenges. Most of the networks are based on the frequentist interpretation of probability
and they are divided into three classes based on the format of their input data. There
are deep learning frameworks that consume voxelized point clouds [9–12], collections
of two-dimensional (2D) images that are derived by transforming 3D point clouds to
the 2D space from different views [8,13,14], and raw unordered point clouds [6,15,16].
On the one hand, the voxelization of point clouds has the advantage of providing a
regular structure apt for the application of 3D convolutions. On the other hand, it renders
the data unnecessarily big, as unoccupied areas of the point cloud are still represented
by voxels. Generally, this format conversion introduces truncation errors [6]. Further,
voxelization reduces the resolution of the point cloud in dense areas, which leads to a loss
of information [17]. Transforming 3D point clouds to 2D images from different views allows
for the application of standard 2D convolutions having the advantage of elaborate kernel
optimizations. Yet, the transformation to a lower space can cause the loss of structural
information embedded in the higher dimensional space. Additionally, in complex scenes, a
high number of viewports have to be taken into account in order to describe the details of
the environment [17]. For this reason, the following work focuses on the segmentation of
raw point clouds.

In order to generate a factory model out of raw point clouds, the objects of interest
have to be detected and their pose needs to be estimated. One approach that extracts six
degrees-of-freedom (DoF) object poses, i.e., the translation and orientation with respect
to a predefined zero point, in order to generate a simulation scene is presented in [18].
The framework is called Scan2CAD, and it describes a frequentist deep neural network
that consumes voxelized point clouds as well as CAD models of eight household objects
and directly learns the 6DoF CAD model alignment within the point cloud. The system
that is presented in [19] has similar input data and estimates the 9DoF pose, i.e., translation,
rotation and scale, of the same household objects. A framework for the alignment of CAD
models, which is based on global descriptors computed by using the Viewpoint Feature
Histogram approach [20] rather than neural networks, is discussed in [21]. Generally,
direct 6DoF or 9DoF pose estimation on the basis of point clouds and CAD models can be
used to set up environment models and simulation scenes. However, these approaches
always require the availability of CAD models, which is not the case for many building
and inventory objects in real-world factories. Thus, we follow the approach of semantic
segmentation, instead of direct pose estimation. Semantic segmentation enables us to
extract reference point clouds of objects, for which no CAD model is available. These
objects can either be modelled in CAD automatically by using meshing techniques or by
hand if the geometry is too difficult to capture realistically. Further, the segmentation
approach enables us to part the point cloud into bigger contexts, i.e., subsets of points
belonging to the construction, assembly, or logistics domain. These smaller subsets of
points can be sent to the respective departments for further processing, which reduces
the computational burden of the point cloud to be processed. Mere pose estimation is not
sufficient for fulfilling this task. Aside from the semantic segmentation of point clouds,
this work focuses on the formulation of Bayesian neural networks and how to leverage the
uncertainty information that can be calculated in order to increase the models’ accuracy.
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2.2. Bayesian Deep Learning and Uncertainty Quantification

In contrast to frequentist neural networks, where the network parameters are point
estimates, Bayesian neural networks (BNNs) place a distribution over each of the network
parameters. For this reason, a prior distribution is defined over the parameters. After ob-
serving the training data, the aim is to calculate the respective posterior distribution, which
is difficult, as it requires the solution of a generally intractable integral. There exist several
approximation approaches, including variational inference (VI) [22,23], Markov Chain
Monte Carlo (MCMC) methods [24–26], Hamiltonian Monte Carlo (HMC) algorithms [27],
and Integrated Nested Laplace approximations (INLA) [28]. VI provides a fast approxima-
tion to the posterior distribution. However, it comes without any guaranteed quality of
approximation. MCMC methods in contrast are asymptotically correct, but they are com-
putationally much more expensive than VI. Even the generally faster HMC methods are
clearly more time consuming than VI [29]. We decide to apply VI due to efficiency reasons,
as the data sets used for evaluating this work are huge in size.

In the literature, there are several ways of how uncertainty can be quantified in BNNs.
It is possible to distinguish between data and model related uncertainty, which are referred
to as aleatoric and epistemic uncertainty, respectively [30]. The overall uncertainty inherent
to a prediction can be computed as the sum of aleatoric and epistemic uncertainty, and it
is called predictive uncertainty. Such a distinction is beneficial for practical applications
in order to determine to what extent model refinement can reduce predictive uncertainty
and to what extent uncertainty stems from the data set itself. One possibility of describing
predictive uncertainty Upred in a label y? belonging to an input x? with weights w is
based on entropy, i.e., Upred = H[y?|w, x?] [31]. Another way of quantifying uncertainty
in the network parameters of BNNs is presented in [7]. This approach only introduces
two uncertainty parameters per network layer, which allows us to grasp uncertainty
layer-wise, but it does not impair network convergence. The overall model uncertainty
is measured by estimating credible intervals of the predictive network outputs. This is
based on the notion that higher uncertainty in the network parameters results in higher
uncertainty in the network outputs. Further, the predictive variance can also be used for
uncertainty estimation.

3. Model Descriptions

In the following the frequentist, the approximate Bayesian and the fully Bayesian
models are explained. In order to formulate these models, let X = {x1, . . . , xn} be the
input data and Y = {y1, . . . , yn} the corresponding labels, where yi ∈ {1, . . . , m}, m ∈ N,
i ∈ {1, . . . , n}, n ∈ N. Further, letW and B denote all of the network parameters, including
the weights and biases, respectively. The network weights and biases of the i-th network
layer are denoted by Wi and Bi, i ∈ {1, . . . , d}, where d ∈ N is the network depth.
The described network architectures mainly apply convolutional layers, thus, we write
conv(i, j) for a convolutional layer with input dimension i ∈ N and output dimension j ∈ N.
In the following, σ(·) denotes a non-linear function. Note that the introduced variables and
parameters are used throughout the remaining work. In the sequel, uncertainty estimation
is explained in more detail and its practical implementation is discussed.

3.1. Frequentist PointNet

The baseline for the following derivations and evaluations is the PointNet segmenta-
tion architecture [6]. This framework consumes raw and unordered point sets in a block
structure. The number of points in each of the blocks is exactly 4096—either due to ran-
dom down-sampling or due to up-sampling by repeated drawing of points. Each input
point is represented by a vector x containing xyz-coordinates that are centred about the
origin and RGB values. For later illustration purposes, we add another three dimensions,
which hold the original point coordinates, i.e., dim(x) = 9. The actual network input is a
tensor of dimension bs× 4096× 6, where bs ∈ N represents the batch size. The batch size
corresponds to the number of input blocks being treated at a time. Each of these blocks
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consists of exactly 4096 points. Further, the centred point coordinates are rather used for
network training than the original ones, thus the last dimension is 6 instead of 9.

In this architecture, a symmetric input transformation network is applied first. It
is followed by a convolutional layer conv(6, 64) and a feature transformation network.
After the feature transformation, another two convolutional layers conv(64, 128, 1024) are
applied before extracting global point cloud features using a max pooling layer. These
global features are concatenated to the local features, which correspond to the direct output
of the feature transformation network. The resulting network scores are generated by four
convolutional layers conv(1088, 512, 256, 128, m), where m ∈ N is the number of classes.
The rectified linear unit (ReLU) is used as a non-linear activation function in this network.

3.2. Approximate Bayesian PointNet

For the approximate Bayesian PointNet segmentation network, we use the notion that
dropout training in neural networks corresponds to approximate Bayesian inference [3].
In the following, this network will be referred to as dropout PointNet. Dropout in a single
hidden layer neural network can be defined by sampling binary vectors c1 ∈ {0, 1}d1

and c2 ∈ {0, 1}d2 from a Bernoulli distribution, such that c1,q ∼ Be(p1) and c2,k ∼ Be(p2),
where q = 1, . . . , d1 and k = 1, . . . , d2. The variables d1 and d2 corresponds to the number
of weights in the respective layer and p1, p2 ∈ [0, 1]. Subsequently, the network prediction
ŷ reads

ŷ = σ(x(c1W1) + B1)(c2W2). (1)

The bias in the second layer is omitted, which corresponds to centring the output.
For n ∈ N network inputs and m ∈ N classes, the network output ŷ is normalized to obtain
p̂ using the softmax function

p̂ij =
exp(ŷij)

∑m
j′=1 exp(ŷij′)

, i = 1, . . . , n, j = 1, . . . , m. (2)

The log of this function results in the log-softmax loss. In order to improve the
generalization ability of the network, L2 regularization terms for the network weights and
biases can be added to the loss function. The optimization of such a neural network acts as
approximate Bayesian inference in deep Gaussian process models [3]. This approach neither
changes the model nor the optimization procedure, i.e., the computational complexity
during network training does not increase. It is suggested to apply dropout before every
weight layer in the network; however, empirical results with respect to convolutional
neural networks show inferior performance when doing so. Thus, we place dropout before
the last and the last three layers in the PointNet model for S3DIS and the automotive
factory data set, respectively. Other than that, the frequentist model is left unchanged.
Placing dropout within the input or feature transform network results in considerably
lower performance.

3.3. Bayesian PointNet

BNNs place a distribution over each of the network parameters, as already mentioned.
In Bayesian deep learning, all of the network parameters, including weights and biases, are
expressed as one single random vectorW . The prior knowledge regarding the parameters
W is captured by the a priori distribution p(w). After observing some data (X, Y), the a
posteriori distribution can be derived. Using Bayes’ Theorem, the posterior density reads

p(w|Y, X) =
p(Y|w, X)p(w)∫
p(Y|w, X)p(w)dw

. (3)

The likelihood p(Y|w, X) is given by ∏n
i=1 BNN(xi; w)yi , which corresponds to the

product of the BNN outputs for all of the training inputs under the assumption of stochastic
independence. However, the integral in the denominator is usually intractable, which
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makes the direct computation of the posterior difficult. In Section 2.2, different methods
for posterior approximation are discussed. We use VI, as it is most efficient in the case of
a huge amount of training data, as already mentioned. The idea of VI is to approximate
the posterior p(w|Y, X) by a parametric distribution qϕ(w) and ϕ represents the so-called
variational parameters. To this end, the Kullback–Leibler divergence (KL-divergence)
between the variational and posterior density is minimized, i.e.,

KL(qϕ(w)‖p(w|Y, X)) := Eqϕ(w)

(
ln

qϕ(w)

p(w|Y, X)

)
=

∫
qϕ(w) ln

qϕ(w)

p(w|Y, X)
dw. (4)

The KL-divergence does not describe a real distance metric, as the triangle inequality
and the property of symmetry are not fulfilled. Nevertheless, it is frequently used in
BNN literature in order to measure the distance between two distributions. Because of
the unknown posterior in the denominator of the KL-divergence, it cannot be optimized
directly. According to [32], the minimization of the KL-divergence is equivalent to the
minimization of the negative log evidence lower bound (ELBO), which reads

ELBO = −
∫

qϕ(w)lnp(Y|w, X)dw + KL(qϕ(w)‖p(w)). (5)

After the optimization of the variational distribution, it can be used to approximate
the posterior predictive distribution for unseen data. Let x? be an unseen input with
corresponding label y?. The posterior predictive distribution represents the belief in a label
y? for an input x?, and it is given by

p(y?|x?, Y, X) =
∫

p(y?|w, x?)p(w|Y, X)dw. (6)

The two factors under the integral correspond to the (future) likelihood and the
posterior. The intractable integral can be approximated by Monte Carlo integration with
K ∈ N terms and the posterior distribution is replaced by the variational distribution, i.e.,

p(y?|x?, Y, X) ≈ 1
K

K

∑
k=1

BNN(x?; ŵk)y? with ŵk ∼i.i.d.
qϕ(w), (7)

with BNN denoting a forward pass through the network and ŵk being the k-th weight
sample drawn from the variational distribution. Finally, the prediction ŷ? is given by
the index of the largest element in the mean of the posterior predictive distribution and,
thus, reads

ŷ? = arg max
j∈{1,...,m}

1
K

K

∑
k=1

BNN(x?; ŵk)j. (8)

After having discussed the theoretical background, we describe our Bayesian model
and the corresponding variational distribution. The model that we suggest has a similar
structure to the framework in [7]. In the remaining section, the subscript indices w and
b represent that a quantity is related to the network weights and biases, respectively.
The weightsWi and biases Bi of the i-th network layer i ∈ {1, . . . , d} are defined, as follows

τwi := log(1 + exp(δwi)) (9)

τbi := log(1 + exp(δbi)) (10)

Wi := µ
wi
� (1di

+ τwiεwi) (11)

Bi := µ
bi
� (1d′i

+ τbiεbi), (12)

where δwi ∈ R, δbi ∈ R, µ
wi
∈ Rdi and µ

bi
∈ Rd

′
i are the variational parameters. Further,

1d denotes the d-dimensional vector that consists of all ones, εwi ∈ Rdi as well as εbi ∈ Rd
′
i
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are multivariate standard normally distributed and � represents the Hadamard product.
Thus, the weights and biases follow a multivariate normal distribution with a diagonal
covariance matrix, i.e.,

Wi ∼ N (µ
wi

, τwidiag(µ
wi
)2) (13)

Bi ∼ N (µ
bi

, τbidiag(µ
bi
)2). (14)

For more detailed insights on the respective gradient updates, see [7]. We use the
leaky ReLU activation function in the Bayesian model with a negative slope of 0.01 due to
the dying ReLU problem. The mean of the weights is initialized using the Kaiming normal
initialization with the same negative slope as for the leaky ReLU activation.

3.4. Uncertainty Estimation

As already described, the estimated uncertainty can be split into predictive, aleatoric,
and epistemic uncertainty. In practice, predictive uncertainty Upred is approximated by
marginalization over the weights,

Upred ≈ − ∑
y?∈{1,...,m}

(
1
K

K

∑
k=1

p(y?|ŵk, x?)

)
· log

(
1
K

K

∑
k=1

p(y?|ŵk, x?)

)
. (15)

In Equation (15) p(y?|wk, x?) corresponds to the predictive network output of label
y? for an input data point x? and the k-th weight sample ŵk of the variational distribution.
The total number of Monte Carlo samples is given by K ∈ N. Aleatoric uncertainty Ualea is
interpreted as the average entropy H over all of the weight samples,

Ualea = Eqϕ(w)[H[y?|ŵk, x?]] ≈ − 1
K

K

∑
k=1

∑
y?∈{1,...,m}

p(y?|ŵk, x?) · log(p(y?|ŵk, x?)). (16)

Finally, epistemic uncertainty Uep is the difference between predictive uncertainty and
aleatoric uncertainty, i.e., Uep = Upred −Ualea. Further, uncertainty in network predictions
can be quantified by calculating the variance of the predictive network outputs. Another
way is to calculate a credible interval on the network outputs for each class. For instance,
the 95%-credible interval can be calculated for each class. The prediction is considered to
be uncertain in the case that the 95%-credible interval of the predicted class overlaps with
the 95%-credible interval of any other class.

4. Data Sets

Two different data sets are used in order to evaluate our Bayesian and the approximate
Bayesian segmentation approach, which forms the core contribution of this work. The first
one is the Stanford large-scale 3D indoor spaces data set that is open to scientific use and,
thus, ensures the comparability of our approach to other methods. The second data set is a
large-scale point cloud data set collected and pre-processed by the authors at a German
automotive OEM.

4.1. Stanford Large-Scale 3D Indoor Spaces Data Set

The Stanford large-scale 3D indoor spaces (S3DIS) data set [33] is an RGB-D data
set of six indoor areas. It features more than 215 million points that are collected over
an area totalling more than 6000 m2. The areas are spread across three buildings, includ-
ing educational facilities, offices, sanitary facilities, and hallways. The annotations are
provided on the instance level and they distinguish six structural elements from seven
furniture elements. This totals the 13 classes, including the building structures of ceil-
ing, floor, wall, beam, column, window, and door, as well as the furniture elements of
table, chair, sofa, bookcase, board, and clutter. The data set can be downloaded from
http://buildingparser.stanford.edu/dataset.html.

http://buildingparser.stanford.edu/dataset.html
http://buildingparser.stanford.edu/dataset.html
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4.2. Automotive Factory Data Set

This data set was collected using both the static Faro Focus3D X 130HDR laser scan-
ner [34] and two DSLR cameras. In more detail, a Nikon D5500 [35] camera with an 8 mm
fish-eye lens and a Sony Alpha 7R II [36] with a 25 mm fixed focal length lens were used.
We generate a global point cloud comprising 13 tacts of car body assembly by the regis-
tration of several smaller point clouds collected at each scanner position. The final point
cloud comprises more than one billion points before further pre-processing. The cleaning
process is achieved using noise filters for coarse cleaning and fine tuning is done by hand.
The resulting point set consists of 594,147,442 points. This accounts for a reduction of
approximately 40% of the points after point cloud cleaning. Most of the removed points
are noise points that are caused by reflections and the blur of moving objects, like people
walking by the laser scanner. The data set is divided into nine different classes, namely car,
hanger, floor, band, lineside, wall, column, ceiling, and clutter. The labelling is manually
done by the authors. The class clutter is a placeholder for all of the objects that cannot
be assigned to one of the other classes. All of the remaining classes are either building
structures or objects that can only be moved with high efforts; thus, they are essentially
immovable and have to be considered during the planning tasks. The resulting data set
is highly imbalanced with respect to the class distribution. Figure 3a depicts the class
distribution of this data set. Clearly, there is a notable excess of points that belong to the
class ceiling and relatively few points belong to the classes of wall and column. This is
mainly due to the layered architecture of the ceiling that results in points that belong to
the structure on various heights. Because walls and columns are mostly draped with other
objects, like tools, cables, fire extinguishers, posters, and information signs, there is only a
small number of points that truly belong to the classes of wall and column. This is also the
reason why especially these two classes suffer from a high degree of missing data, i.e., holes
in the point cloud. Any segmentation system has to cope with this class imbalance due to
this inhomogeneous class distribution. Figure 3b illustrates the point cloud of one tact of
car body assembly.
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Figure 3. Overview of the collected data set. (a) Total ratio of all points in the point cloud that belong
to each of the classes in %. (b) Illustration of a point cloud displaying one tact of car body assembly.

5. Results and Analysis

The proposed networks are evaluated on our custom automotive factory data set
as well as the scientific data set S3DIS. The segmentation performance is measured with
respect to their accuracy and the mean intersection over union. Further, the described
ways of uncertainty quantification are evaluated in terms of accuracy after disregarding
uncertain predictions. All of the considered models are implemented using Python’s
open source library PyTorch [37]. The input point clouds comprising rooms or assembly
tacts are cut into blocks and the number of points within these blocks is sampled to 4096.
These blocks serve as input for all networks. All of the models are trained using mini-
batch stochastic gradient descent with a batch size of 16 on the S3DIS and the automotive
factory data set for the frequentist and the proposed dropout and Bayesian networks.
The momentum parameter is set to 0.9 for all the models. A decaying learning rate lr is
used with an initial learning rate of lr = 0.001 in the frequentist and the dropout model,
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as well as lr = 0.01 in the Bayesian model. The learning rate is decayed every 10 epochs
by a factor of 0.7 during frequentist and dropout training, as well as 0.9 during Bayesian
training. The batch size and the learning rate are optimized by using grid search and
cross-validation. In the approximate Bayesian neural network, dropout is applied before
the last three convolutional layers and the dropout rate is set to 0.1 for the automotive
factory data set. In the case of the S3DIS data set, dropout is only applied before the last
convolutional layer with a dropout rate of 0.1. Because we do not have dedicated prior
information for the Bayesian model, the prior indicates that the parameter values should
not diverge. Thus, we choose a prior expectation of zero for all parameters and a standard
deviation of 4 and 8 for all weights and biases, respectively. In terms of approximating
the posterior predictive distribution, we draw K = 50 Monte Carlos samples. All of the
considered models converge and training is stopped after 100 epochs.

5.1. Segmentation Accuracy

The three architectures, i.e., the frequentist, dropout, and Bayesian PointNet, as de-
scribed in Section 3, are evaluated in the following. The accuracy and the mean Intersection
over Union (IoU) are the evaluation metrics used. The accuracy is calculated by the number
of correctly classified points divided by the total number of points. The IoU or Jaccard
coefficient describes the similarity between two sets with finite cardinality. It is defined by
the number of points of the intersection, divided by the number of points of the union of
the two sets. In this case, we evaluate the overlap between the points classified as class i by
the model and the points of class i in the ground truth. Thus, the IoU for class i reads

Ji =
# points correctly classified as i

# points classified as i + # number points in class i in ground truth
, (17)

where i ∈ {1, . . . , m} indicates the class label. The mean IoU is calculated as the mean
IoU value over all classes. Table 1 illustrates that Bayesian PointNet clearly surpasses the
performance of frequentist and dropout PointNet with respect to accuracy as well as mean
IoU on the test set of both the data sets. Bold table entries represent best model performance
in the respective setting and are used throughout the remainder of this section.

Table 1. Segmentation results of classical, dropout, and Bayesian PointNet on S3DIS and our automo-
tive factory data set. For every model, the training converges and it is stopped after 100 epochs.

Model Data Training Acc. Test Acc. Test mIoU

Classical PointNet S3DIS 95.44% 87.81% 0.6977
Dropout PointNet S3DIS 95.42% 87.71% 0.6921
Bayesian PointNet S3DIS 95.52% 88.57% 0.7042

Classical PointNet Automotive 97.66% 94.23% 0.7808
Dropout PointNet Automotive 98.01% 94.59% 0.7972
Bayesian PointNet Automotive 98.66% 95.47% 0.8263

For the S3DIS data set, we test the models on area 6 and, for the automotive factory
data set, we set aside two distinct assembly tacts. It is noticeable that all of the models have
a higher tendency to overfit on the S3DIS data set than on the automotive factory data set.
This is due to the nature of the data itself. While there is a considerable variability between
the different areas and room types in the S3DIS data set, there is less variability between
the tacts of an assembly plant. They are all designed in a similar way in order to ensure
the efficient execution of the assembly process. Even though distinct tacts are used for
model training and testing, the variability between the training and test set is much smaller
than in the case of the S3DIS data set. Figure 4 illustrates the qualitative segmentation
results for the two automotive tacts in the test set. Clearly, the network generates smooth
predictions, with most of the mistakes affecting the classes of column, wall, clutter, and
ceiling, which meets our assumption of Section 4.2. The prior information in the Bayesian
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model acts as additional observations and, thus, is able to reduce overfitting and increase
model performance. An even more striking difference in performance is illustrated in the
next section when the information that is provided by uncertainty estimation is considered.

(a)

(b)
Figure 4. Qualitative segmentation results for the two assembly tacts of the test set comprising
about 94,174,898 points after down-sampling. In (a,b) the top image represents the coloured in-
put point cloud. The bottom image illustrates the segmented output point cloud of the Bayesian
segmentation network.

5.2. Uncertainty Estimation

We estimate uncertainty using an entropy based approach, the predictive variance, as
well as an approach based on estimating credible intervals on the probabilistic network
outputs, as already mentioned. Predictive and aleatoric uncertainty are calculated, as
suggested in the Equations (15) and (16). Epistemic uncertainty is the difference of these
two quantities. The predictive variance is determined on the basis of K = 50 forward
passes of the input through the network using the unbiased estimator for the variance.
Based on the same sample, the 95%-confidence intervals of the network outputs for each
class are calculated. Table 2 contains the results of Bayesian PointNet for one room of each
room type in area 6 of S3DIS data set as well as one tact of car body assembly belonging
to the test data set. The leftmost column contains the accuracy of Bayesian PointNet.
The next column contains the accuracy when only considering predictions that have a
predictive uncertainty smaller or equal to the mean predictive uncertainty plus two sigma
of the predictive uncertainty. The same is displayed in the next columns with respect
to aleatoric and epistemic uncertainty, as well as the variance of the predictive network
outputs. In the last column, the predictions for which the 95%-credible interval of the
predicted class overlaps with no other class’ 95%-credible interval are considered certain
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and retained for generating a factory model. It can be seen that the accuracy increases
considerably when only looking at certain predictions with respect to any of the uncertainty
measures. Generally, the results for predictive and aleatoric uncertainty as well as the
credible interval based method are most promising. This confirms our notion that the
predictive uncertainty value is mainly determined by aleatoric uncertainty after thorough
network training. Table 3 displays the percentage of predictions, which are found to
be uncertain.

Table 2. Evaluation of different methods for uncertainty estimation and influence on model accuracy
in the Bayesian model.

Baseline Predictive Aleatoric Epistemic Variance Credible

Conf. Room 88.92% 92.56% 92.59% 91.03% 90.82% 91.01%
Copy Room 70.82% 72.56% 72.58% 72.37% 72.02% 74.85%

Hallway 81.13% 83.01% 82.98% 82.98% 83.20% 93.06%
Lounge 71.77% 73.31% 73.49% 73.09% 73.06% 77.16%
Office 90.77% 93.02% 93.01% 92.28% 92.37% 92.42%

Open Space 76.68% 79.45% 79.54% 77.96% 77.77% 80.38%
Pantry 76.21% 78.51% 78.58% 77.44% 77.24% 79.20%

Assemb. Tact 94.21% 96.63% 96.64% 95.54% 95.60% 94.99%

Table 3. Percentage of predictions dropped when excluding uncertain predictions in the
Bayesian model.

Baseline Predictive Aleatoric Epistemic Variance Credible

Conf. Room - 6.86% 6.90% 5.49% 5.50% 4.07%
Copy Room - 3.25% 3.28% 4.50% 4.81% 9.53%

Hallway - 4.64% 4.65% 5.08% 5.53% 4.54%
Lounge - 3.37% 3.64% 4.89% 5.22% 10.96%
Office - 5.94% 5.94% 4.70% 5.17% 3.73%

Open Space - 6.23% 6.41% 4.97% 5.05% 8.62%
Pantry - 4.75% 4.87% 4.58% 4.78% 7.00%

Assemb. Tact - 6.55% 6.56% 4.09% 3.70% 1.47%

Generally, approximately 3% to 11% of the predictions are dropped using the above
parameters. The number of dropped predictions decreases when predictions with a higher
uncertainty value are considered, e.g., all of the predictions with uncertainty greater or
equal to the mean uncertainty plus three sigma. Generally, it can be claimed that the lower
the threshold for uncertain predictions, i.e., the more predictions are dropped, the higher
the resulting accuracy. Thus, a trade-off between dropping uncertain predictions and
segmentation accuracy needs to be found. However, this is largely dependent on the
specific use case. Table 4 illustrates the results of dropout PointNet for one room of each
room type in area 6 of S3DIS data set, as well as one tact of car body assembly belonging
to the test data set. The accuracy of Bayesian PointNet surpasses the accuracy of dropout
PointNet for most of the evaluated rooms.The results are similar in terms of the percentage
of predictions dropped. Table 5 presents the percentage of disregarded predictions as
compared to the baseline containing all of the predictions. Again, approximately 2% to 11%
of the predictions are dropped by dropout PointNet using the same uncertainty threshold,
as before.
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Table 4. Evaluation of different methods for uncertainty estimation and influence on
model accuracy in the dropout model.

Baseline Predictive Aleatoric Epistemic Variance Credible

Conf. Room 87.61% 90.72% 90.72% 89.66% 89.51% 89.58%
Copy Room 71.07% 72.46% 72.55% 72.54% 72.37% 74.52%

Hallway 81.94% 83.99% 83.97% 83.95% 83.70% 84.87%
Lounge 70.45% 71.87% 71.89% 72.78% 72.77% 74.83%
Office 81.06% 82.90% 82.94% 82.46% 82.57% 83.71%

Open Space 75.97% 78.45% 78.47% 77.68% 77.59% 77.96%
Pantry 74.44% 76.48% 76.52% 76.87% 76.66% 77.71%

Assemb. Tact 94.41% 96.12% 96.15% 94.87% 95.00% 94.62%

Table 5. Percentage of predictions dropped when excluding uncertain predictions in the
dropout model.

Baseline Predictive Aleatoric Epistemic Variance Credible

Conf. Room - 6.43% 6.38% 5.48% 5.67% 4.30%
Copy Room - 2.96% 3.18% 4.87% 5.43% 8.67%

Hallway - 4.84% 4.89% 5.54% 5.68% 6.96%
Lounge - 2.94% 3.04% 5.22% 5.55% 10.19%
Office - 4.37% 4.45% 4.97% 5.24% 6.71%

Open Space - 6.09% 6.14% 5.92% 5.68% 5.21%
Pantry - 4.37% 4.45% 5.59% 5.84% 7.06%

Assemb. Tact - 8.44% 8.13% 2.01% 1.69% 9.89%

Dense point clouds are usually generated, when building up an environment model
of a factory in order to capture as many details as possible. Thus, it is important to keep a
high number point wise predictions after uncertainty estimation in order to generate a high
quality factory model. However, a higher prediction accuracy in the segmentation step
also increases the quality of the resulting environment model. A higher accuracy can be
achieved by dropping a higher number of uncertain predictions, as we already discussed.
In the case of environment modelling, it is vital to drop as few predictions as possible,
because, otherwise, building structures and their exact location that is necessary for model
generation can get lost.

Generally, we notice that the dropout model is more difficult to train than the Bayesian
one, which manifests in a higher epistemic uncertainty in the dropout model. Empirically,
it is shown that the application of dropout exhibits inferior performance in convolutional
architectures [3], which could lead to the increased epistemic uncertainty values. Further,
the impact of uncertainty on the segmentation performance is more striking in the Bayesian
model. However, for applications where one or two percent of accuracy can be sacrificed,
the dropout model is a good alternative to the Bayesian model, as users can take on a
frequentist network and just add dropout during training and test time, without having to
define and optimize a distribution over all the network parameters.

Overall, it can be concluded that Bayesian PointNet has superior performance and
dropout PointNet has similar performance to the frequentist model without considering
uncertainty information. When only considering certain predictions, Bayesian, as well
as dropout PointNet, clearly surpass the performance of the frequentist model. In terms
of uncertainty measure, the best results are achieved when using the approach using
confidence intervals as well as predictive or aleatoric uncertainty. However, the confidence
interval based method drops considerably more predictions in some of the examples.
Figure 5 displays one tact of car body assembly, where certain predictions are displayed
in black and uncertain predictions are displayed in red. The applied model corresponds
to Bayesian PointNet with the credible interval based uncertainty measure. It shows that
the network is certain about the majority of its predictions. Uncertain predictions are
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concentrated at the ceiling, wall, and columns, which is in line with our expectations
of Section 4.2. Because the ceiling, but especially the walls and columns, are hung with
clutter objects, this leads to uncertain predictions, as the point clouds of these classes are
incomplete due to holes.

Figure 5. Visualization of an assembly tact of the test set, where certain predictions are displayed
in black and uncertain predictions are displayed in red. In this case, the network (un)certainty is
evaluated by using the method based on credible interval estimation.

Figure 6 shows the boxplots of the predictive softmax outputs of the Bayesian model
for a correct and wrong prediction of two single points in the automotive factory data
set. In Figure 6a, it can be seen that the network is certain about its correct prediction,
i.e., all of the predictive softmax output values of the correct class are close to one, while the
network outputs for all other classes are close to zero. In the case of a wrong prediction, see
Figure 6b, the boxes of the true and predicted label overlap, which indicates an uncertain
prediction. The white box corresponds to the correct class and the shaded box corresponds
to the wrongly predicted class.
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Figure 6. Boxplot of the predictive softmax outputs of Bayesian PointNet: (a) Boxplot of a correct
prediction. The network is certain about its prediction as nearly all the probability mass is put on the
correct class. (b) Boxplot of a wrong prediction. The network is uncertain about its prediction as the
boxes of the true class and the predicted class overlap. The true class is represented by the white box
and the wrongly predicted class is illustrated by the shaded box.

6. Discussion and Conclusions

We describe how Bayesian segmentation can be applied in order to facilitate the
factory planning process in large-scale automotive assembly plants and how to make use
of the uncertainty information that is gained by the Bayesian approach. The described
use case focuses on the generation of an environment model on the basis of raw point
clouds in order to determine the as-is state of a production plant. Therefore, we present a
novel Bayesian neural network that is capable of 3D deep semantic segmentation of raw
point clouds. This approach allows for the estimation of the uncertainty in the network
predictions. Additionally, a network using dropout training to approximate Bayesian
variational inference in Gaussian processes is described and compared to the Bayesian
model, as well as to a frequentist baseline. In order to evaluate the models, the publicly
available S3DIS data set and a manually collected data set of an automotive assembly plant
are used.
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Different measures of uncertainty quantification are contrasted for the Bayesian as
well as the approximate Bayesian network. Three different entropy related uncertainty
measures are considered, which enable us to distinguish between overall, data and model
related uncertainty. Further, uncertainty quantification based on the variance and credible
intervals on the network outputs are investigated. The Bayesian and the dropout model
both effectively increase the network performance during test time when compared to
the frequentist framework when taking the information gained by any of the uncertainty
measures into account. The dropout model’s performance is on-par with the frequentist
baseline without taking network uncertainty into account. However, the Bayesian neural
network outperforms the frequentist baseline, even without considering uncertainty. It is
more robust against overfitting and allows us to work with fewer example data, due to
prior information acting like additional observations, while the computational complexity
basically stays the same.

The use of Bayesian neural networks instead of frequentist ones enables the quantifi-
cation of network uncertainty. On the one hand, this leads to more robust and accurate
models. On the other hand, in safety critical applications, uncertain predictions can be
identified and treated with special care. For instance, uncertain predictions can be handed
to a human operator for further treatment or trigger a pre-defined safety state. Autonomous
driving, collaborative robotics, and medical diagnosis are important example applications,
where uncertainty quantification plays a major role. However, many other domains with-
out safety criticality can profit from determining network uncertainty as well. For instance,
post offices sorting letters according to their ZIP code can process uncertain results with
more complex statistical methods that are too time consuming for regular application.
Similarly, Bayesian neural networks increase model accuracy in factory planning. However,
the formulation of such a Bayesian segmentation network requires in depth mathematical
knowledge and it is therefore more difficult to update. Thus, dropout training can be a
good alternative, as it enables the quantification of uncertainty, while the network structure
and optimization stay the same as in the frequentist model. The estimation of uncertainty
information in modelling production sites increases model accuracy and it can lead to more
accurate reconstructions of the real-world production system in a simulation engine or in
CAD software. However, there is a trade-off between increasing the network’s accuracy
by discarding uncertain predictions and having a less accurate model, because too many
predictions have been discarded. Therefore, we come to the conclusion that it is better to set
a higher threshold for dropping uncertain predictions, i.e., fewer predictions are discarded.
There is a slight loss in network accuracy; however, whole objects or building structures can
get lost, when too many predictions are discarded. While all of the discussed uncertainty
measures are apt for improving network performance, the most promising results are
achieved using predictive and aleatoric uncertainty as well as the credible interval based
method. Because the former methods allow us to set a distinct threshold for considering
predictions as uncertain, which is not possible in the credible interval based method, we
conclude that they are best suited for our factory planning use case.

A first methodology for systematic data collection and processing in a large-scale
industrial environment was presented in [2]. On the process side, all of the non-highlighted
steps that are illustrated in Figure 1 are described in more detail in future work, including
technology specifications and a mathematical concept for the placement of the segmented
objects in an environment model. Further, different digitalization strategies and registration
approaches are discussed. Pose estimation is achieved using a clustering based routine
paired with different point cloud registration strategies. Further, the economic potential
of this approach will be evaluated for an exemplary assembly plant. With respect to
mathematical concepts, the Bayesian neural network can be extended in a way that the
parameters of the prior distribution of the network weights and biases are not treated as
hyper parameters of the network. A separate prior can be placed over the prior parameters
in order to estimate these quantities in a Bayesian way. Further, the application of network
uncertainty for point cloud cleaning will be evaluated.
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Abbreviations
The following abbreviations are used in this manuscript:

2D Two-Dimensional
3D Three-Dimensional
BNN Bayesian Neural Network
CAD Computer-Aided Design
DoF Degrees-of-Freedom
ELBO Evidence Lower Bound
HMC Hamiltonian Monte Carlo
INLA Integrated Nested Laplace Approximation
IoU Intersection over Union
KL Kullback-Leibler
MCMC Markov Chain Monte Carlo
OEM Original Equipment Manufacturer
ReLU Rectified Linear Unit
RGB Red Green Blue (colour model)
RGB-D RGB-Depth
S3DIS Stanford Large-Scale 3D Indoor Spaces Data Set
VI Variational Inference
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