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Abstract: Tissues of the brain, especially white matter, are extremely heterogeneous—with
constitutive responses varying spatially. In this paper, we implement a high-resolution Finite Element
(FE) head model where heterogeneities of white matter structures are introduced through Magnetic
Resonance Elastography (MRE) experiments. Displacement of white matter under shear wave
excitation is captured and the material properties determined through an inversion algorithm are
incorporated in the FE model via a two-term Ogden hyper-elastic material model. This approach
is found to improve model predictions when compared to experimental results. In the first
place, mechanical response in the cerebrum near stiff structures such as the corpus callosum and
corona radiata are markedly different compared with a homogenized material model. Additionally,
the heterogeneities introduce additional attenuation of the shear wave due to wave scattering within
the cerebrum.
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1. Introduction

With approximately 2.8 million cases reported annually in the United States [1], traumatic brain
injury (TBI)—commonly caused by a direct blow or impulse to the head—remains a pressing concern
for study. Clinical results show that damage to the brain in blunt head injuries has a tendency to
occur in regions with highly organized axon tracts such as the brainstem and corpus callosum [2–7].
These regions serve as pathways to other parts of the brain, meaning damage to them is potentially
more dangerous. In this work, we introduce a heterogeneous material description of white matter
structures to our high-resolution Finite Element (FE) model to account for the local differences in
mechanical response between different regions of the brain.

The FE method is commonly used to determine the mechanical response of brain tissue in
order to develop improved diagnostic tools and protective measures to reduce the prevalence of
TBI. The accuracy of these FE models is highly dependent on the accuracy of the material model.
To date, many finite element models have utilized mechanical properties homogenized over large
portions of the brain, as reviewed in [8], thus ignoring potentially significant effects of local structures.
In actuality, the tissues of the brain are heterogeneous, their constitutive response varying from
location to location. This is most noticeable for white matter due to the presence of axons with diverse
orientations. Overall, the shear stiffness of white matter is 1.2–2.6 times higher than that of gray
matter [9]. Locally, white matter tracts, with highly oriented fibers such as the corpus callosum and
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corona radiata, have material properties different from other regions. Johnson et al. [10] determined
that global—or averaged—white matter was softer on average than either the corpus callosum or
the corona radiata. This can be explained by considering the structure of these regions. The corpus
callosum provides more structural rigidity than the superficial white matter due to the presence of
highly aligned fibers. The fan-like structure of the corona radiata exhibits similar behavior, but to a
lesser degree as the fibers are not as highly aligned. As such, the corpus callosum was found to be
approximately 11% stiffer than the corona radiata [10]. The brainstem is another structure with a high
level of heterogeneity. Arbogast and Margulies [7] investigated the prevalence of trauma observed in
the brainstem after head injuries. They determined that the brainstem was 80–100% stiffer than the
cerebrum and concluded this regional stiffness—in addition to its anisotropic response and location
as a narrow bridge between CNS regions—as the main reasons for the selective vulnerability of this
region. FE models that utilize homogenized white matter material properties have no way to resolve
these local features.

A very useful tool to measure heterogeneity in-vivo is the Magnetic Resonance Elastography
(MRE) [11], where local mechanical properties of brain tissue are quantitatively determined by external
actuation of the head to generate shear waves. This technique has been successfully applied to a
variety of different applications: investigating decreases in whole-brain stiffness with age [12] and
in neurodegenerative diseases [13]; measurement of tumor stiffness [14]; and as a marker for TBI
severity [15]. MRE is applied as a three-step process beginning by first inducing shear waves in tissue
with frequencies ranging from 50 to 500 Hz using an external driver [11]. Second, the waves are
imaged using a phase-contrast MRI pulse sequence synchronized with the frequency of the applied
vibration. Finally, the mechanical properties of the tissue are estimated by performing an inversion
of the observed displacements using a viscoelastic material model, such as that presented by Van
Houten et al. [16].

In this work we utilize our previously homogeneous FE model—presented and validated in our
previous works [17–19]—and introduce a voxel-based heterogeneous material model using results
from Johnson et al. [10]. Our previous model was homogeneous in the sense that properties were
taken as location-independent within the white matter. The mechanical properties used in this work
are now reconstructed at the same spatial resolution as the displacement data captured during the
MRE process. The resulting finite element mesh has sufficient resolution to accurately capture the
dynamic shear wave propagation during impacts, a necessary feature of computational mechanics
models of TBI. To the best of our knowledge, this is the first attempt to include heterogeneity of brain
tissue via MRE in a high-resolution FE model.

2. Model Formulation

2.1. MRE Acquisition and Inversion

The heterogeneous properties of the white matter are taken from the work by Johnson et al. [10].
A brief overview of the acquisition and inversion is presented here. A more detailed discussion of
this process can be found in [20]. Shear waves are generated at a frequency of 50 Hz by placing the
subject’s head on a custom cradle attached to an electromagnetic shaker via a rigid rod. The actuator
imparts a nodding motion to the head, while the displacement data are captured via a Siemens 3T
Allegra head-only scanner (Siemens Medical Solutions; Erlangen, Germany). A multi-shot MRE
sequence utilizing spiral readout gradients [21] with periods matching that of the applied shear wave
is developed to reduce errors during the inversion step. In total, the imaging volume comprises twenty
axial slices of 2 mm thickness covering the ventricles, corpus callosum and corona radiata resulting in
a 2× 2× 2 mm3 isotropic spatial resolution for the reconstructed mechanical properties.
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A nonlinear inversion (NLI) algorithm [16] is applied to estimate the material properties from the
measured displacement data. The inversion is performed by minimizing the function

Φ(θ) =
N

∑
i=1

(uc
i (θ)− um

i )(u
c
i (θ)− um

i )
∗ (1)

by iteratively updating the material property description, given by θ. Here, um
i is the measured

displacement amplitude at the location i; uc
i (θ) is the computed displacement amplitude sampled at

the same point determined by a numerical model; and ∗ indicates the complex conjugate.
Following the development in [22], a Rayleigh damping model is used to represent the material

response of brain tissue under time-harmonic conditions. The motion amplitude field u is calculated
from Navier’s equation for an inhomogeneous, locally isotropic linear elastic medium

∇ · G(∇u +∇uT) +∇(λ∇ · u) = ρω2u, (2)

where λ is the first Lamé parameter; G is the second Lamé parameter, or shear modulus; ρ is the density;
and ω is the activation frequency. The Rayleigh damping model introduces the complex-valued shear
modulus and densityas out to account for attenuation related to both elastic and inertial forces,
where the imaginary shear modulus includes damping effects due to inertial forces. Including inertial
damping effects—something that commonly used viscoelastic models do not include—allows for
better characterization of material response when performing the inversion. We use the notation G′

and G′′ to denote the storage and loss shear moduli, respectively, which are the real and imaginary
part of the complex valued shear modulus

G = G′ + iG′′, (3)

i being the imaginary unit. Due to the nearly incompressible nature of brain tissue, we assume that λ

is very large compared to the shear modulus. The damping ratio

ξ := G′′/2G′ (4)

can be determined as well, which physically describes the level of motion attenuation in the tissue.
The distribution of storage and loss moduli within the white matter in the imaging resolution

(2 × 2 × 2 mm3) is presented in Figure 1 for the coronal, sagittal and horizontal planes. The relative
stiffness of both the corpus callosum and the corona radiata can be clearly observed. The average
values and the standard deviation for the global white and gray matter is presented in Table 1 as well
as those for the corpus callosum and corona radiata.

Table 1. Average values and standard deviations for different tissues within the model: Gray Matter
(GM), White Matter (WM), Corpus Callosum (CC), Corona Radiata (CR).

GM WM CC CR

G′ (kPa) 2.02± 0.09 2.66± 0.30 3.09± 0.39 2.78± 0.37

G′′ (kPa) 1.04± 0.12 1.54± 0.15 1.23± 0.26 1.97± 0.12

ξ 0.32± 0.03 0.31± 0.03 0.23± 0.07 0.37± 0.05
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Figure 1. Distribution of Loss (top) and Storage (bottom) modulus in the Finite Element (FE) model.
Darker regions indicate higher magnitude of shear modulus.

2.2. Finite Element Mesh Generation

In addition to the MRE image acquisition, T1-weighted anatomical images with a resolution
of 1× 1× 1 mm3 are generated for the purposes of mesh segmentation. Image voxels are directly
converted to eight-noded hexahedral elements through a custom code, thus preserving the same
spatial resolution as the MRI scans. The resulting mesh consists of approximately 2.2 million
elements. The mesh is segmented into the following tissue types: scalp, skull, cerebrospinal fluid
(CSF), gray matter and white matter, as depicted in Figure 2. Details of the segmentation can be
found in [10]. Each element is assigned a different material definition based on the results of
the segmentation, as detailed in Section 2.3. Features that are below the imaging resolution such
as membranes, blood vessels, bridging veins, and draining sinuses are excluded from the model.
Since T2-weighted scans are not collected, the segmentation of the interfaces between tissue types is
negatively affected. We perform a mesh smoothing operation at these interfaces to minimize this effect.
We utilize a volume-preserving Laplacian smoothing algorithm, as outlined in [17]. Smoothing has
the added benefit of eliminating numerical artifacts that may manifest from jagged edges along
interfaces. Reduced integration is used to improve the accuracy of the computed strains as well as to
reduce the cost of integration. The integral viscoelastic form of hourglass control is used to suppress
hourglass modes.

Our MRI voxel-based approach produces meshes, which realistically model the complicated
folding structure of the cerebral cortex (i.e., gyri and sulci) as well as the differentiation of gray and
white matter of brain tissues. Additionally, in order to accurately resolve the shear wave motion within
the brain, the mesh must be sufficiently refined [8]. For example, using the typical speeds of shear
wave propagation in brain tissue, cT ≈ 5 m/s, and the frequency of the vibration as 50 Hz, we arrive
at a minimum element size of 10mm (using a conservative choice of 10 elements per wavelength [23]).
For vibrations of higher frequency or more transient loading (such as the cases for impact loads),
this requirement is even more stringent according to λ = cT/ f with f = 1/T.
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(a) (b)
Figure 2. (a) Voxel-based finite element mesh segmented into skull (red), cerebrospinal fluid (CSF)
(yellow), gray matter (gray) and white matter (white). (b) Surface of cerebral cortex with sulci and gyri
clearly resolved.

2.3. Material Properties

As discussed above, we assign different material definitions to each voxel based on the result
of the mesh segmentation. Due to the presence of highly oriented tracts of myelin-sheathed axonal
fibers in white matter, significant heterogeneity exist in this region, especially within the corpus
callosum (CC) and corona radiata (CR). On the other hand, gray matter is made up of cell bodies
and supporting vascular networks that can be assumed to be isotropic and homogeneous [10,24].
This assumption allows for the MRE imaging to be performed over a manageable acquisition volume.
As such, we allow for only the white matter to have material heterogeneity whereas other tissues are
assumed to be homogeneous.

For homogeneous tissues, the choice of material properties is determined from data used
commonly in the literature, presented in Table 2. The skull is assumed to be linear elastic and
modeled as a single-layer structure with homogenized properties given in [25]. For the material model
for the CSF, we have the choice of three models, previously presented in [19]: incompressible elastic,
viscoelastic, and fluid-like elastic using an equation of the state model. We determined that the choice
of CSF affects the shear wave propagation within the brain while the peak pressure is not significantly
altered. For the first iteration of our heterogeneous model, we choose the most commonly utilized
model—nearly incompressible elastic model with bulk modulus—to be very large compared to the
shear modulus, with values taken from [26].

We choose the Ogden hyperelastic material model to accurately capture behavior of brain tissue
under large deformations. Additionally, brain tissues are considerably softer in extension than in
compression [27]—behavior that a nonlinear model would correctly capture. Research has found that
compared to other nonlinear models such as the neo-Hookean or Mooney–Rivlin—the Ogden model
performs the best over multiple loading conditions [26,28].

The strain energy functional is a function of the principal strain invariants (λ1, λ2, λ3) of the right
Cauchy–Green deformation tensor expressed as:

U∞ =
N

∑
i=1

µi
αi
(λαi

1 + λ
αi
2 + λ

αi
3 − 3) +

1
2

K(J − 1)2 (5)
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where αi and µi are the Ogden constants; J is the relative volume and K is the bulk modulus.
The long-term second Piola–Kirchhoff stress tensor is derived by:

S∞
ij =

1
2

(
∂U∞

∂Eij
+

∂U∞

∂Eji

)
(6)

where Eij is the Green strain tensor.
The rate dependence of brain tissue is modeled through a convolution integral:

Sij(t) = S∞
ij +

∫ t

0
G(t− T)

∂Eij(T)
∂T

dT (7)

where the relaxation function, G(t) is represented with an N term Prony series of the form:

G(t) =
N

∑
i=1

Gie−βit. (8)

Here, Gi are the shear relaxation moduli, and βi are the decay constants.
A second-order Ogden model is used to model the tissues of white and gray matter, with material

constants taken from Kleiven [29]. In that work, Kleiven presents a range of material properties
fit to the experimental data from [30] using the iterative least-squares method. This is presented
as the Average model in Table 3. Two additional models are generated by scaling the values of
stiffness parameters µi and Gi; while the decay constants, βi and Ogden parameters αi are not altered.
These models, designated Compliant and Stiff, are one-half and twice as stiff as the Average model,
respectively. Using the relationship G = 1/2 ∑ αiµi we arrive at a effective long-term shear modulus
of roughly 1kPa for the Compliant model.

Due to limitations in the MRE inversion, we are limited to a locally linear viscoelastic model
(c.f., Equation (2)) for the heterogeneous input data. We therefore incorporate the relative stiffness
from MRE and scale the nonlinear material parameters between the three material models presented
in Table 3. For each white matter voxel, effective stiffness from MRE inversion is used to scale the
hyper-viscoelastic material properties between the extreme Compliant and Stiff models. For the gray
matter voxels, the stiffness is chosen to be homogeneous, with values scaled to the average stiffness
presented in Table 3. The mass density, decay constants and Ogden parameter αi are maintained to be
homogeneous in all voxels.

Table 2. Material properties of different tissues used in the FE model.

Tissue Mass Density (kg/m3) Bulk Modulus K (Pa) Shear Modulus G (Pa)

Skull [25] 2070 3.61 × 109 2.7 × 109

Grey Matter 1040 Hyperviscoelastic

White Matter 1040 Hyperviscoelastic

Mass Density (kg/m3) Young’s Modulus E (Pa) Poisson Ratio

CSF [26] 1000 160 0.49
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Table 3. Hyper-viscoelastic material properties [29].

‘Compliant’ ‘Average’ ‘Stiff’

µ1 (Pa) 26.9 53.8 107.6
µ2 (Pa) −60.2 −120.4 −240.8
α1 10.1 10.1 10.1
α2 −12.9 −12.9 −12.9

G1(kPa) 160 320 640
G2(kPa) 39 78 156
G3(kPa) 3.1 6.2 12.4
G4(kPa) 4.0 8.0 16.0
G5(kPa) 0.05 0.10 0.20
G6(kPa) 1.5 3.0 6.0

β1(1/s) 106 106 106

β2(1/s) 105 105 105

...
...

...
...

β6(1/s) 101 101 101

2.4. Interface and Boundary Conditions

We ensure traction and displacement continuity at material interfaces, ensuring neither tangential
sliding nor separation occurs at any two-tissue interface. We consider two extreme assumptions for
the head-neck junction, free and fixed boundary conditions mostly following previous work in [17].
This gives us two extreme cases to recreate the imprecise boundary conditions used in experiments.
The free boundary condition allows for predominantly rectilinear motion under frontal impacts
while rotational motion cannot be represented. We consider the fixed boundary condition as the
other extreme case where the nodes around an area of the foramen magnum are fully constrained.
Research reported in [17] showed that the responses from these two boundary conditions bound the
experimental response.

2.5. Experimental Verification

We use Nahum et al. linear impact experiments [31] to verify the accuracy of our model. In the
typical experiment, a cylindrical impactor was launched at a seated cadaver at a constant velocity of
9.94 m/s. The impact was along the specimen’s mid-sagittal plane in an anterior-posterior direction.
The skull was rotated such that the Frankfort anatomical plane was inclined 45◦ to the horizontal.
The input force lasts approximately 9 ms, reaching a peak of 6.8 kN, as showed in Figure 3. Intracranial
pressure history is recorded during the simulated impact event. The results of this comparison are
presented in the next section under both the free and fixed boundary conditions. Our homogeneous
model is also verified using tagged MRI and harmonic phase (HARP) imaging analysis techniques
in [18], where displacement time history from head-drop experiments is compared to numerical
results. Finally, we directly compare displacement data during impact utilizing experimental data
from Hardy et al.’s brain translational motion experiment [32,33]. Brain motion is captured using
neutral density targets (NDT) under linear accelerations ranging from 38 to 291 g. We use the free
boundary conditions to simulate the impact under Hardy’s experiment.
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Figure 3. Input force time history (adapted from [17]).

3. Results and Discussion

3.1. Simulation of Impact

The recorded impact force from the frontal cadaveric impact experiment conducted by Nahum,
as discussed in the preceding section, is directly applied to the model in the form of a distributed load
with the peak pressure input of 4.37 MPa on the frontal region of the skull. The impact pulse lasts
about 9 ms and the simulation is run for 15 ms. Rotation of the model is permitted as the base of the
skull is not constrained. We find that this free boundary condition gives better correlation of coup
pressure to experimental results [17] than the fixed boundary condition. The FE simulations are carried
out using Abaqus/Explicit.

The pressure–time history for the Nahum loading is presented in Figure 4 at the coup impact site.
We plot the results for both the homogeneous and heterogeneous models. The model predicts tensile
pressure for nearly the whole duration of impact. The peak pressure predicted by the heterogeneous
material model more closely matches that from Nahum’s experiments than the homogeneous model.
In both cases the peak pressure occurs roughly at the same time, indicating very similar wave speeds.

We next compare the displacement response to the C383-T1 impact from Hardy et al.
experiments [32]. This is a frontal impact experiment lasting 118 s with displacements captured by two
columns of six NDTs. We plot the response for relative displacements for the x− and y−directions for
two NDTs each in the anterior (A) and posterior (P) positions (labeled A1, A2 and P1, P2, respectively);
see Figures 5 and 6. To quantitatively compare the response of the two models, we follow a similar
argument as in [26] and compute the displacement magnitude (excursion) at the NDTs. Since injury
criteria are based on the magnitude of tissue strain, it is argued that the extension rather than the
entire NDT trajectory is more important. We find that the heterogeneous model more consistently
and closely predicts the excursion determined experimentally, as presented in Table 4. Additionally,
we have previously validated our homogeneous model using tagged MRI and HARP imaging analysis
techniques in [18], which allows comparisons of displacement fields for the entire cerebrum in vivo.
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Figure 4. Comparison of heterogeneous model with experimental data from [31]. We find that the
heterogeneous model exhibits a response closer to the Nahum et al. [31] data.
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Figure 5. Comparison of displacements in the x−direction for two positions in the anterior (A) and
posterior (P) to the Hardy C383-T1 experiment.
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Figure 6. Comparison of displacements in the z−direction for two positions in the anterior (A) and
posterior (P) to the Hardy C383-T1 experiment.

Table 4. Total excursions (in mm) for Hardy’s C383-T1 experiment compared to the predicted values
for two models.

Location Experiment Homogeneous Heterogeneous

A1 9.24 7.47 9.02

A2 8.04 4.22 6.88

P1 12.42 7.66 8.76

P2 9.80 4.01 10.14

We plot the contours of the von Mises stress distribution on the sagittal plane due to the frontal
impact in Figure 7 (also see supplementary simulation video available online). The spherically
convergent structure of the shear wave, just like the one found using the linear elastic model of
brain’s gray and white matters [17], is clearly observed. The wave attenuates as it travels inwards
and eventually dissipates. Reflections of wave due to scattering from heterogeneous white matter
structures can also be observed at later times.

Next, we consider three distinct points along the sagittal plane, as depicted in Figure 8. The points
are chosen within regions of strong heterogenities due to the presence of highly aligned axon tracts,
such as the corpus callosum and corona radiata. The differences in mechanical properties of these
regions are given in Table 5. We see that the material phases at these points are relatively stiffer than
the corresponding points in the homogeneous model. As a result, the response in Figure 8 is affected
accordingly. We find that the difference in peak pressure response is proportional to the difference in
shear stiffness between the homogeneous and heterogeneous models. However, the time at which
these events occur is not significantly affected. This indicates that the pressures in regions of high
stiffness within the brain are over-estimated in the homogeneous models. In summary, relative to
the MRI-based model, the new MRE-based heterogeneous model more accurately predicts the local
response within the white matter by taking into account the differences in tissue stiffness of local white
matter structures.

A few points are in order regarding the qualitative differences between the shear modulus of
different regions in our model. Globally, the white matter is found to be approximately 32% stiffer
than the gray matter. In general, the white matter properties in local regions differ significantly
from the average ones. For instance, the storage modulus G′ is significantly lower in the rest of the
white matter than within the corpus callosum and the corona radiata [10]. This is quite logical given
the fact that the corpus callosum contains highly oriented, tightly packed axon tracts. The corpus
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callosum, in fact, is stiffer than the corona radiata, again evident from the composition of the corona
radiata, which contains axon fibers that fan out and are not as highly aligned as the corpus callosum.
Indeed, experiments have found that the fractional anisotropty (FA) values for the corpus callosum
and corona radiata are in the range of 0.6–1.0 and 0.4–0.6, respectively [34,35].

Figure 7. Shear wave propagation due to frontal impact. Notice the attenuation of the wavefront as
time progresses.

Additionally, while both white and gray matter have similar values of damping ratio,
ξ (which reflects the amount of motion attenuation within the tissue), the corpus callosum has a
lower value while the corona radiata has a higher value. This can be explained by examining the
microstructure of each of these regions. Experiments by Guo et al. [36] demonstrated that the damping
ratio (and thus, the attenuation) in soft tissue composites increases as the number of cross-links
between fibers increases. The corona radiata consists of fibers arranged in a grid-like pattern [37] with
a large number of cross-links. These crossings do not exist in the corpus callosum, offering a possible
explanation for the distribution of ξ.
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Figure 8. Comparison of pressure at three points on the sagittal plane. The difference in the
heterogeneous and homogeneous models is most evident in regions of high relative stiffness.

Table 5. Difference of material properties and peak pressure, displacement response for three distinct
points (indicated in Figure 8) along the sagittal plane within the white matter.

Location
% Difference in

Shear Modulus (G∞)
% Difference in
Peak Pressure

% Difference in
Peak Displacement

1 12.11 −9.12 −3.16

2 24.75 −13.91 −6.62

3 18.67 −29.05 −12.96

Since mechanical measures from MRE and diffusivity measures from diffuse tensor imaging
(DTI) both provide insight into the heterogeneity within the white matter, a natural question arises
here: What is the difference between our heterogeneous (yet isotropic) model and the more common
anisotropic FE models where fiber anisotropy is determined from DTI scans? Many such examples
of the latter exist in the literature: for instance in [38–41]. Johnson et al. [10] performed both MRE
and DTI measurements on a group of seven volunteers to determine the correlation of mechanical
and diffusivity measures within the corpus callosum and corona radiata. They determined that MRE
and DTI measures correlate well with each other within the corpus callosum—not surprising since
they are both sensitive to the underlying tissue microstructure. They hypothesize that these measures
are highly dependent on axon diameter since larger axons provide greater structural rigidity to the
tissue [42]. Within the corona radiata, however, the correlation is not as significant. The corona radiata
comprises fiber tracts that fan towards the cortex and contain numerous crossings [37] which are not
captured well by DTI [43]. This has been hypothesized as the reason for the poor correlation within the
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corona radiata. More work is needed to determine the differences between these two methods when
used within FE models.

3.2. Stochastic Wave Propagation

The highly heterogeneous structure of the brain tissue introduces wave scattering that competes
with wave amplification due to spherically convergent implosion. Following the development in [44],
we investigate this effect by considering the theory of wavefronts. For the case of one-dimensional
wave motion, we assume that a compressive load produces a shock wavefront that propagates from
a disturbed domain to an undisturbed one with a speed cT . The initial conditions can be given as
u(x, 0) = u,t(x, 0) = 0; τ(0, t) = −τ0H(t) where H is the Heaviside function.

Assuming a plane wave in a homogeneous medium, we have the dynamic compatibility condition
[τ] = −ρcT [u,t ] in the (x, t)-plane, where [·] denotes the discontinuity in a function across the boundary
of two materials, σ is the shear stress, ρ is the mass density, u is the displacement normal to the direction
of wave motion, and cT is the transverse wave speed. The linear viscoelastic stress–strain relation for a
process that started at time t = t+0 is

τ(t) = G(0)ε(t) +
∫ t

t+0
G,t(t− s)ε(s)ds = G(0)

1
c1

u,x(t) +
∫ t

t+0
G,t(t− s)

1
c1

u,x(s)ds, (9)

where ε is the shear strain. We can derive the relationship for the wave speed as cT =
√

G(0)/ρ,
where G(0) is the glassy modulus. Following the derivation in [44], we obtain the equation governing
the evolution of the discontinuity of τ at the wavefront as:

dT
dt

[τ] =
1
2

G,t(0)
G(0)

[τ]. (10)

On account of the initial conditions above, the solution of Equation (10) is

[τ] = −τ0 exp
[

1
2

G,t(0)
G(0)

[τ]

]
. (11)

Given that G,t(0) ≤ 0, and G(0) > 0, the stress jump exhibits exponential attenuation and has a
tendency for blow-up as r → 0. As our simulations here and in [19] demonstrate, the attenuation is
sufficiently strong so that the imploding waves generated from transient impacts do not blow up into
a singularity at the head center.

The impact results not only in a fast pressure wave, but also in a slower shear wave. Due to its
relatively low shear modulus, brain tissue deforms much more easily in shear than in dilatation mode.
Thus, the shear wave is potentially more damaging. Recall that the spherically convergent shear wave
patterns are observed even in the case of homogeneous material description, c.f. [17]. The attenuations
of pressure along the sagittal plane for both the homogeneous and heterogeneous models are presented
in Figure 9. It is clear that the attenuation is greater in the heterogeneous model as predicted. This is
consistent with studies of transient wave propagation in elastodynamics of random media [45,46].
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Figure 9. Comparison of attenuation of pressure wave along the sagittal plane between homogeneous
and heterogeneous model. (a) At 3 ms and (b) at 7 ms.

3.3. Limitations

This section discusses a few limitations of our methodology, some of which are likely to be
improved in future works. First, features that are below the imaging resolution such as membranes
(in particular, the falx cerebri and tentorium), bridging veins and blood vessels are excluded from
the current model. However, we argue that the inclusion of heterogeneous MRE-derived parameters
in white matter tissue alleviates some of the drawbacks of excluding these features. Additionally,
since the MRE inversion is performed assuming a locally linear viscoelastic material model, we are
limited to include only relative stiffness from MRE and not the absolute moduli measured. A limitation
of MRE is that displacement is induced in the small strain regime. While our current model is able to
accurately capture experimental response, it has not been validated for large deformations yet.

4. Conclusions

Our high resolution, hyper-viscoelastic FE head model now includes heterogeneities of white
matter structures improving the ability to capture wave dynamics during highly transient impact
events. Heterogeneous shear modulus is determined using a nonlinear inversion technique from
MRE experiments performed by [10]. While many FE models employ homogenized or averaged
mechanical properties to approximate constitutive relations of brain tissues, our approach allows us to
investigate response due to local structures within the white matter. Previous experiments have shown
that both the corpus callosum and corona radiata are significantly stiffer than overall white matter,
with the corpus callosum exhibiting greater stiffness and less viscous damping than the corona radiata.
These differences are explained by examining the organizational and compositional characteristics
of each structure. Incorporating this heterogeneity in our model affects wave propagation within the
cerebrum and yields results that more closely match experimental results. We find that local variations
in stiffness affect the local mechanical response; for instance, intracranial pressure magnitude following
an impact is lower in regions of high local stiffness. Finally, shear wave attenuation is observed to be
more pronounced in the heterogeneous material model and this aspect introduces extra shear wave
scattering in addition to the damping effect of tissue viscoelasticity.
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