
Review

Heterogeneous Compute Clusters and Massive
Environmental Simulations Based on the EPIC Model

Nikolay Khabarov 1,* , Alexey Smirnov 1,2 , Juraj Balkovič 1,3 , Rastislav Skalský 1,4 ,
Christian Folberth 1 , Marijn Van Der Velde 5 and Michael Obersteiner 1,6

1 Ecosystems Services and Management Program (ESM), International Institute for Applied Systems Analysis
(IIASA), A-2361 Laxenburg, Austria; smirnov@iiasa.ac.at (A.S.); balkovic@iiasa.ac.at (J.B.);
skalsky@iiasa.ac.at (R.S.); folberth@iiasa.ac.at (C.F.); oberstei@iiasa.ac.at (M.O.)

2 Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University,
119991 Moscow, Russia

3 Department of Soil Science, Faculty of Natural Sciences, Comenius University in Bratislava,
842 15 Bratislava, Slovakia

4 National Agricultural and Food Centre, Soil Science and Conservation Research Institute,
824 80 Bratislava, Slovakia

5 European Commission, Joint Research Centre, 21027 Ispra, Italy; marijn.van-der-velde@ec.europa.eu
6 Environmental Change Institute, Oxford University Centre for the Environment, Oxford OX1 3QY, UK
* Correspondence: khabarov@iiasa.ac.at

Received: 4 November 2020; Accepted: 30 November 2020; Published: 4 December 2020 ����������
�������

Abstract: In recent years, the crop growth modeling community invested immense effort into
high resolution global simulations estimating inter alia the impacts of projected climate change.
The demand for computing resources in this context is high and expressed in processor core-years per
one global simulation, implying several crops, management systems, and a several decades time span
for a single climatic scenario. The anticipated need to model a richer set of alternative management
options and crop varieties would increase the processing capacity requirements even more, raising
the looming issue of computational efficiency. While several publications report on the successful
application of the original field-scale crop growth model EPIC (Environmental Policy Integrated
Climate) for running on modern supercomputers, the related performance improvement issues and,
especially, associated trade-offs have only received, so far, limited coverage. This paper provides a
comprehensive view on the principles of the EPIC setup for parallel computations and, for the first
time, on those specific to heterogeneous compute clusters that are comprised of desktop computers
utilizing their idle time to carry out massive computations. The suggested modification of the core
EPIC model allows for a dramatic performance increase (order of magnitude) on a compute cluster
that is powered by the open-source high-throughput computing software framework HTCondor.

Keywords: EPIC model; high performance computing (HPC); high-throughput computing (HTC);
HTCondor; massive spatio-temporal modeling; legacy source code; environmental simulation;
heterogeneous compute clusters; crop model; agriculture; climate change

1. Introduction

The global high resolution simulations that were carried out recently by the crop growth modeling
community (GGCMI) [1] required a considerable amount of computing power expressed in processor
core-years, as such computations normally include model runs for several years, crops, management
systems, and climatic scenarios. One of the questions particularly addressed by these large scale
modeling experiments was the inter-comparison of different agricultural models. These efforts were
part of a larger research also looking at sectors other than agriculture [2] and provided the inputs to

Modelling 2020, 1, 215–224; doi:10.3390/modelling1020013 www.mdpi.com/journal/modelling

http://www.mdpi.com/journal/modelling
http://www.mdpi.com
https://orcid.org/0000-0001-5372-4668
https://orcid.org/0000-0003-1765-0782
https://orcid.org/0000-0003-2955-4931
https://orcid.org/0000-0002-0983-6897
https://orcid.org/0000-0002-6738-5238
https://orcid.org/0000-0002-9103-7081
https://orcid.org/0000-0001-6981-2769
http://dx.doi.org/10.3390/modelling1020013
http://www.mdpi.com/journal/modelling
https://www.mdpi.com/2673-3951/1/2/13?type=check_update&version=2


Modelling 2020, 1 216

economic modeling [3]. The demand for computing power in similar applications will likely increase
in the future as new input data at a finer spatio-temporal resolution become available and a richer set
of crops and management systems will be demanded.

There is a vast amount of knowledge accumulated in software products–environmental
models–that have developed over long periods of time. While the computer technologies evolve,
the old code becomes less suitable for new computing environments as compared to code that is
specifically developed for modern infrastructure. A full re-implementation of older software from
scratch to better fit new operating conditions seems to be challenging due to a range of reasons,
including a lack of documentation, specifics of compilers used, and mostly due to an immense effort
needed. From this perspective, it seems to be reasonable instead of a full re-implementation to adapt
the existing source code and the new operating environment to better fit together. This adaptation
requires extensive testing in order to identify the computational bottlenecks and interventions needed.

The Environmental Policy Integrated Climate model (EPIC) [4] is a crop growth model that has
been widely used by the global gridded crop modeling community. In earlier literature describing the
EPIC cluster applications, the aspects of Linux cluster setup [5] and inclusion of the MPI technology [6]
were covered in detail. Other papers went further in the simulation performance optimization (even
though for a model other than EPIC) and considered the full re-implementation of the model in different
programming languages [7]. In this paper, we focus on increasing the EPIC model performance on
compute clusters, document the decisions that we have made, and point to relevant trade-offs between
the effort invested and the efficiency gains. Special emphasis is put onto aspects of such adaptations
that are relevant to heterogeneous clusters—those that can be formed by utilizing the idle time
of normal desktop computers and, hence, provide a low cost (and for medium-scale applications
also low environmental footprint) cluster-based computing. However, as compared to dedicated
clusters, the compute nodes of such systems have fluctuating availability, uneven performance,
and lack uniform configuration. For the purposes of managing the compute cluster, we employ
HTCondor—an open-source cross-platform high-throughput computing software framework for
coarse-grained distributed parallelization of computationally intensive tasks [8].

2. Design and Implementation

2.1. General EPIC Setup

EPIC is a process-based cropping systems model that was developed in order to simulate crop
growth and yield at a field scale, as driven by site environmental conditions and crop management [4].
The gridded EPIC-IIASA infrastructure [9] uses EPIC v.0810 in order to estimate crop yields at a global
scale, with 5 arc-min. spatial resolution. EPIC-IIASA runs the EPIC model for more than 120,000 spatial
simulation units (SimUs) that are derived from intersecting soil and topography units, administrative
borders and climate grids following a set of criteria for internal homogeneity of SimU. Each SimU is
represented by one (default) or more homogeneous fields with “representative” soil, topography, and
present weather. Globally available data sources on climate, soils, and land use are used to construct
the simulation units [10]. A large set of crop management scenarios (crop varieties, fertilization and
irrigation options, and soil conservation practices) and climate change projections simulated for each
SimU are a common workload for the EPIC-IIASA model [11].

2.2. Input/Output Data Formats

The EPIC model is very data intensive and the number of variables and parameters describing
initial state of a site (field), its functioning (bio-physical processes), and present management is
approximately 300 [12]. In addition to that static initial input data, dynamic inputs are required and
daily weather is the largest dataset among those that are used by EPIC. All of the input files for EPIC
are in the text format with the values being located at the fixed positions within a file. In terms of
input/output efficiency, the plain text format is inferior to modern binary formats as, e.g., netCDF [13],



Modelling 2020, 1 217

because each number that is expressed as a plain text has to be translated to a floating point value (or a
floating point value has to be converted to text), even though efficient libraries exist [14]. Despite that
inefficiency, the effort–benefit trade-off speaks to leaving the format as plain text for two reasons. First,
for the main part of the (static) variables, the overhead implied with this conversion is negligible when
compared to the resources that are needed to carry out actual computation; moreover, this is true, even
for the daily climate data, as translating daily values from text to floating point only comprises a small
fraction of the whole associated computation for a day. Second, while a considerable effort would be
needed to modify the source code of the model to consistently use binary input data, it would still not
allow for straight-forward use of available weather datasets (see Section 2.3 below).

Similar consideration and justification is also valid for EPIC outputs and plain text works
acceptably well, unless daily outputs are required. That would create an immense amount of output
data, rendering plain text format unusable; however, in practical global applications, this finer temporal
granularity is not used, as monthly or annual outputs are deemed to be sufficient at the time of writing
this note.

2.3. Weather Data Pre-Processing

Before a weather dataset (that is usually available in a binary netCDF format) can be used to run
EPIC, it needs to be converted to the plain text format. This procedure is more sophisticated than just
taking floating point numbers one-by-one from the binary file and writing each as a text. The challenge
here is that one run of EPIC needs the whole record day-by-day for a particular grid cell, whereas,
in the commonly used weather datasets e.g., AgMERRA [15,16], ISI-MIP [17,18], Princeton [19,20],
for each day there is a whole map in the file instead of just one value, and filtering out one grid cell is
inefficient on a hard disk based storage devices (and also newer solid state drives), because, in that
case, the whole map has to be read or skipped (employing a time expensive seek operation) repeated
as many times as there are days in the dataset multiplied by the number of grid cells in it. Accordingly,
more sophisticated procedures need to be used to carry out that “transposition” of the time dimension
in such a dataset. In a practical realization of such a procedure, one has to make a decision based on
the trade-off between the number of seek operations and available RAM (random access memory) in a
processing machine, optionally creating intermediate fragments of time-transposed subsets of original
data and merging them at a final step. These considerations are also valid for the final post-processing
stage, where data pertinent to individual SimUs are aggregated to e.g., annual maps. However, here
the conversion has to be carried out in an opposite direction: from individual SimUs time series to a
series of maps.

2.4. Parallel Runs on a Cluster

There are several aspects of general consideration when moving an application developed for
running on a single-computer to a cluster, where many instances of such an application will be running
in parallel, even in case these runs are isolated from each other by using resources of only a local
node i.e., local disk storage. Some examples of those are highlighted below without the goal to be
exhaustive, but relevant to the EPIC model.

Non-interactive execution is the very nature of operating a cluster node. The jobs are submitted
to a cluster in a batch [21] and, after the processing, the outputs and/or error reports are delivered
to the submitting user. Unlike in the case of a single computer run, it is not possible to work with
each instance interactively and answer questions regarding whether to continue program execution
or not should any non-standard input be detected by the model. The possibility for a user to interact
with the program creates much needed flexibility when running it on a single machine, yet it creates
a problem when running it on a cluster node, where a typical outcome would be canceling the job
by a timeout when the program waits for a user confirmation whereas it is not going to come. Such
interactive requests from a program have to be eliminated e.g., by reporting an error to a log file and
carrying on with the next grid cell before the code can be run on a cluster; otherwise, the need to wait



Modelling 2020, 1 218

until a timeout occurs would delay the simulation outputs and, by that, consume valuable time of the
research staff and lower the use efficiency of the compute resources within an organization.

Tracking of model crashes is another issue that needs attention within a cluster environment.
A wrapper or launcher might help here in logging errors, keeping track of problematic cells
(or generally subsets of problematic input combinations e.g., weather plus management practices),
and restarting simulations for the next portion of data.

In case if a network storage is used to feed model runs on cluster nodes, the issue of input/output
optimization may turn out to be important. This can play a considerable role in the overall model
performance if the number of files opened per run, number of seek operations is large and/or there
are shared files. While local disk win shared network storage because they provide the intended
environment for a model run, this mode of operation implies data duplication and transfer time
overheads that negatively impact model performance and create an excessive load on the network,
especially if the network is also used for other purposes than just cluster runs, which is naturally the
case in heterogeneous clusters that can be managed by HTCondor.

An effect that is related to the network storage performance and excessive read/rewind operations
can be seen in practice when running a subset of EPIC simulations as one serial batch. It turns out that
there is a major speed limitation, because, for each iteration, EPIC reads through the large index files
(e.g., OPSCCOM and SITECOM), listing file names that are specific to a particular virtual agricultural
field—SimU. Accordingly, a considerable speed gain can be achieved by not running EPIC in its native
batch mode, but linking the relevant input files for each SimU to placeholder files with a constant
name prior to invoking EPIC. The resulting speed increase observed was about the factor of 2 to 3.

A note of caution should be given also with regard to compilers. While there exist standards
for programming languages (e.g., Fortran in EPIC case), there are still subtle points in compilers
configuration to make source code work as intended with an alternative compiler. As the authors
found out, the EPIC outputs differ when compiled by GNU Fortran from those when Intel Fortran
is used (officially supported by the EPIC developers). One of the suspects causing this effect is the
floating point comparison operation working differently in those two compilers.

3. EPIC-HTCondor Case Study and Benchmarking

A typical set of global runs as in e.g., ISI-MIP project [18] implies a processing of terabytes of data
and millions of CPU-hours i.e., weeks of computation on a thousand-core cluster. Despite an apparent
need to employ substantial computing power that is routinely available on dedicated remote clusters,
the data size may turn out to be quite an obstacle due to the bandwidth limits and need to transfer
large data between remote systems. If data are transferred to an in-house processing facility, it requires
the time consuming data transfer procedure to be carried out only one time, whereas transferring data
from the original source to a dedicated remote cluster and copying the results back from that remote
cluster to an in-house storage system (for backup and further processing) requires the time consuming
data transfer procedure to be completed twice (for two different datasets of comparable size—model’s
input and output). There are more limiting aspects to using dedicated clusters in practice, as e.g., large
number of small files operated by EPIC, which is generally not the mode of operation of modern highly
parallel network storage that is usually oriented towards high-speed throughput of large chunks of
data, and not accessing a huge number of rather small data pieces (files). The high cost of ownership
of a dedicated cluster and the potential benefits of utilizing a heterogeneous in-house cluster have
apparently supported the success and popularity of the HTCondor cluster software [22]. While the
authors have experience with other cluster architectures, the case study that is presented here is
focused, to a large degree, on a HTCondor-based cluster.

3.1. Custom Load Balancer

The main task of the custom load balancer (CLB), which the authors implemented for EPIC-IIASA,
is to take into account various speeds of cluster nodes and distribute calculation sub-tasks in small



Modelling 2020, 1 219

chunks to the nodes as they complete the chunks received earlier. Keeping individual SimUs to be
modeled “behind” a CLB (and not exposed to the HTCondor’s job manager) helps to maintain the
cluster’s job queue in an overseeable state.

A useful feature of the EPIC model is its ability to carry out calculation in batches, so that several
simulation units (SimU, “representative” fields) can be processed by starting the EPIC model only once.
That allows for a faster execution (unless the index files become too large as discussed in the Section 2.4)
as compared to the one-by-one alternative starting EPIC separately for each SimU, because the number
of SimUs is large and loading the model into RAM is far from instantaneous even taking advantage
of a cached disk access. The implementation of that “batched”: approach allows for boosting the
efficiency; however, error handling within this context needs an additional effort. If one simulation
unit (SimU) within a batch fails (e.g., for a reason of incorrect input data), then it leads to the necessity
of re-running all SimUs from that batch individually in order to report problematic SimUs and allow
for a detailed inspection. Overall, as these “problematic” SimUs are rather exceptional and their share
is usually below 1% in EPIC-IIASA. The logic for tracking and reporting problematic SimUs is included
in the custom load balancer that was implemented by the authors.

Because of the very nature of HTCondor to run jobs on compute nodes having limited availability,
it does automatically restart jobs that were interrupted as the computer they were running on was
claimed by a user. These jobs are restarted from scratch on another available machine under the
same job identifier (JID). The use of JIDs along with a custom sub-task tracking implemented within
CLB allows for an efficient resumption of a computation batch by only calculating the leftover part
of the original batch. This approach is implemented within the CLB, which technically is an EPIC
wrapper—an envelope setting up an individual EPIC run on a cluster node and starting the EPIC
executable file while linking to a database in order to keep track of the whole calculation at the SimU
level. CLB follows a semi-decentralized approach to the load balancing implementation, where the
entire logic is encapsulated within the same wrapper running simultaneously on multiple nodes
and accessing the same central database. The absence of a central application level manager does
greatly simplify the system’s setup. However, initially, locking the central database table containing
information on scheduled simulations turned out to be a bottleneck badly affecting the overall cluster
performance. The issue was resolved by splitting the whole SimU table into a cluster of smaller tables
that are pertinent to individual cluster jobs that can be locked independently without affecting each
other. The time overhead created by this implementation is estimated to be about 1% of the total
computation time. While allowing for high performance, this approach provides an efficient way for
the tracking of computed SimUs via a summary table available to a user via the standard client tools
accessing the SQL database.

In addition to the main CLB logic that is described above, the EPIC wrapper also performs rather
simple technical tasks of configuring a cluster node for a model run e.g., mounting necessary network
shares, including those that serve as a temporary space for storing intermediate model outputs.

3.2. Input/Output and Shared Network Storage

While the computation speed on a single computer is mostly limited by the CPU power and
depends on the processor architecture, operating frequency, and the number of cores for parallel runs,
there is another factor of large importance in practical cluster applications—the storage sub-system
performance. From the authors’ experience, this is a multifaceted issue being impacted by multiple
factors, such as: the total number of files involved in the computation, the share of those commonly
used per one SimU (e.g., several SimUs sharing the same weather data), the sizes of individual files,
the number, availability, and performance of individual nodes participating in a parallel run, the type
of the storage system, and the network configuration. Here, for comparison purposes, we present
the results of the impact of the number of nodes and different storage hardware. The motivation
for the exploration in this direction was provided by the fact that, in the process of an upgrade of
the network storage system from an older VNX5400 (http://vnx5400.com/) to a newer ZS5 (http:

http://vnx5400.com/
http://www.oracle.com/us/products/servers-storage/storage/nas/ds-nas-storage-zs5-3158594.pdf
http://www.oracle.com/us/products/servers-storage/storage/nas/ds-nas-storage-zs5-3158594.pdf


Modelling 2020, 1 220

//www.oracle.com/us/products/servers-storage/storage/nas/ds-nas-storage-zs5-3158594.pdf) used
for the EPIC cluster runs, the authors faced an unexpected performance downgrade. The original EPIC
binary code turned out to be three to four times slower on the newer storage as reported in Table 1,
columns “Original” and similar to the CPU-optimized code “Opt.Calc”.

Table 1. The performance of a 100-instances Environmental Policy Integrated Climate model (EPIC) job
on HTCondor cluster: the original binary code “Original”, a source code compiled with optimization
for calculation speed “Opt.Calc”, and with added read–only mode for all input files “Opt.Calc + RO”.
Units are SimU/minute.

Storage Original Opt.Calc Opt.Calc + RO

VNX5400 717 1146 1444
ZS5 241 298 1553

After the examination of the model’s source code and using the process monitoring tool
Process Explorer that was developed for the Microsoft Windows operating system by Mark Russinovich
(https://docs.microsoft.com/en-us/sysinternals/downloads/process-explorer), the problem with
locking input files for exclusive access was revealed. The files in question are supposed to be read-only,
as these are inputs to the model that are not supposed to be modified in the course of the model run.
The default file access mode used in EPIC file operations turned out to be read and write because of
using the plain Fortran OPEN command. On machines running Microsoft Windows operating system
this has lead to runtime failures when multiple clients requested exclusive write mode on a shared
file storage. (Machines running Linux did not expose this behaviour, because the OPEN command
did not implicitly put an exclusive lock on a file.) The Intel Fortran runtime handled the problem
on the fly and provided a remedy by changing the file open mode to read only, which was, in the
end, sufficient for a successful model run, yet it led to considerable delays in input–output operations
strongly downgrading the performance.

While the cause of the problem was not trivial to localize, the solution to it was pretty obvious:
the plain Fortran OPEN statements were amended with an explicit ACTION=’READ’ specifier for input
files, preserving the intended write mode for output files. The modification affected only one OPENV
subroutine of EPIC. The performance of the optimized model “Opt.Calc + RO” for a different number
of simultaneously working cluster nodes on different storage systems is presented in Table 2.

Table 2. Performance of the optimized model “Opt.Calc + RO” on two different storage systems and
for two different numbers of simultaneously working cluster nodes. Units are SimU/minute.

Storage/Nodes Count 100 300

VNX5400 1444 2607
ZS5 1553 4483

While the performance of the older storage VNX5400 is pretty much comparable with that of
the newer storage ZS5 for a 100-nodes run (Table 2, column “100”), it suffers more under a heavy
load delivering considerably lower performance (Table 2, column “300”), and this is what is expected,
unlike the opposite performance of the original code (Table 1, the “Original” column).

A closer look into the model performance, depending on the number of “active” cluster nodes,
confirms the expectation that the network storage performance scales up non-linearly, demonstrating
a degradation for a heavier load coming from the cluster, as shown on Figure 1. There we present
the results that were obtained for an older storage—NAS7310 (https://blogs.oracle.com/ahl/sun-
storage-7310)—in order to illustrate a more vivid performance degradation. The newer storage ZS5
performance does scale linearly for the relatively small number of cores available at the cluster (Table 2).

http://www.oracle.com/us/products/servers-storage/storage/nas/ds-nas-storage-zs5-3158594.pdf
http://www.oracle.com/us/products/servers-storage/storage/nas/ds-nas-storage-zs5-3158594.pdf
https://docs.microsoft.com/en-us/sysinternals/downloads/process-explorer
https://blogs.oracle.com/ahl/sun-storage-7310
https://blogs.oracle.com/ahl/sun-storage-7310


Modelling 2020, 1 221

0 50 100 150 200 250 300 350 400
0

500

1000

1500

2000

2500

3000
NAS7310

Ideal

VNX5400

Ideal

Number of cluster nodes

C
lu

st
e

r 
th

ro
u

g
h

p
u

t (
S

im
U

/m
in

)

Figure 1. EPIC calculation speed for a test run on cluster depending on the number of nodes
simultaneously running the model.

4. Discussion

This paper highlights some of the directions for the benchmarking and revision of legacy code.
In practice, an efficient system setup is not obvious and extensive testing is required in order to obtain
expected performance gains of an old code on a newer infrastructure. Synthetic tests usually deliver
imprecise estimates, as the specifics of calculations carried out by a model, the number of files opened
per running process, and read/write access patterns cannot be realistically reproduced; this is why
only a benchmarking run of a real model can ultimately be used in order to estimate its performance
under different conditions.

Heterogeneous cluster environments pose additional specific challenges. An implementation of
an efficient custom load balancer can help in addressing some of those—it is advantageous on taking
into account the difference in performance of individual cluster nodes. In addition to that, CLB’s use
allows for avoiding the need for creation of self-contained execution packages and respective data
copying to and from the cluster nodes, as described in [5]. The proposed semi-decentralized approach
to the CLB implementation only leaves a coordinating function to the load balancer, while the EPIC
instances running on cluster’s cores independently access the required data files. This allows for
avoiding a potential bottleneck where a message passing interface (MPI) master routine [6] handles,
in a centralized way, both model’s massive inputs and outputs and additionally coordinates task
assignments. A co-benefit of the proposed “lighter” CLB approach is its isolation from the core EPIC
model eliminating the source code re-integration need upon new model release.

While the tracking of model crashes needs special attention when running a model in a
non-interactive mode on any type of a compute cluster, a shared storage on dedicated clusters
is commonly configured differently from what is accessible from an in-house desktop PC-based
HTCondor environment. In practice, storage is the first suspect for a potential bottleneck.

Simple adjustments to the source code, such as a less demanding file access mode, can better fit the
parallel processing environment and drastically improve performance. Because these adjustments are
only possible if the model’s source code is open, there is a great benefit in the open-source distribution
paradigm for both prolonging the lifetime of a model and preserving the associated accumulated
scientific knowledge contained therein.

5. Conclusions

While the development effort can be saved and a vast accumulated scientific knowledge can be
used, the problem of the efficient use of a mature model, i.e., legacy source code on a new parallel
computing infrastructure is challenging. This challenge is multidimensional, as it implies the need



Modelling 2020, 1 222

to consider and analyse many interconnected components and factors impacting the performance
of the modeling system. In this paper, we have discussed an extensive set of those factors and
relevant trade-offs specific to the EPIC model highlighting the aspects that have not yet received
enough attention in earlier publications. Those include input–output text/binary data formats
and related pre-processing of the weather data being the largest input, shared network storage use
optimization, and bandwidth limitations when transferring large datasets between remote systems
being an argument for in-house computing.

Unlike similar papers, this manuscript does not report on any particular biophysical results
estimated by EPIC; instead, it focuses, in great detail, on the technical side of the modeling system setup
and, presents, for the first time, benchmarking results for a heterogeneous compute cluster managed
by the open-source HTCondor framework. A custom load balancer following an alternative to existing
implementations semi-decentralized approach is proposed and its high efficiency is illustrated for the
number of compute cores available at the cluster. A minor modification of the EPIC model source code
is suggested that provides a dramatic performance increase on HTCondor, which has proven itself as
an efficient, low-cost, and low environmental footprint parallel computing solution.

The discussed ideas for source code and run-time environment optimization for compute clusters
can be useful beyond the presented specific model application.

Author Contributions: N.K., R.S., J.B., and C.F. worked on pre- and post-processing of EPIC input and output
data. J.B. and C.F. carried out EPIC simulations. A.S. worked on setting up cluster infrastructure for the model
and developed the custom load balancer. N.K. and A.S. worked on the optimization of the model’s code for the
cluster infrastructure and together with C.F. carried out various performance tests on different cluster facilities.
All co-authors discussed the preliminary results and their interpretation. N.K. wrote the manuscript with
contributions from all co-authors. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the project “Delivering Incentives to End Deforestation: Global
Ambition, Private/Public Finance and Zero-Deforestation Supply Chains” funded by the Norwegian Agency for
Development Cooperation under agreement number QZA-0464, QZA-16/0218. This research was funded by the
European Research Council Synergy Grant number 610028 Imbalance-P: Effects of phosphorus limitations on Life,
Earth system and Society (Seventh Framework Programme of the European Union).

Acknowledgments: The authors would like to thank the developers of the EPIC model and particularly Jimmy
Williams (Texas A&M AgriLife Research, USA) for his support at the early stage of this work. The authors greatly
appreciate the help and support from the IIASA’s Information and Communication Technologies (ICT) Department,
namely Joe Undercoffer, Hans Mayer, Helmut Klarn, Norbert Eder, Serge Medow, and their colleagues. Nikolay
Khabarov, Christian Folberth, and Alexey Smirnov would like to thank Jacob Schewe and Karsten Kramer from
the Potsdam Institute for Climate Impact Research (PIK) for providing access to the PIK’s HPC cluster. Nikolay
Khabarov and Alexey Smirnov are thankful to Jussi Heikonen and Antti Pursula from the Center for Scientific
Computing, Finland (https://research.csc.fi/), Herbert Störi and Jan Zabloudil from the Vienna Scientific Cluster,
Austria (https://vsc.ac.at/) for providing access to the respective high performance compute clusters. The authors
are thankful for the support they received from their colleagues Anni Reissell, Ligia Azevedo, and the long
time collaborator Erwin Schmid from the University of Natural Resources and Life Sciences in Vienna, Austria.
The authors appreciate the efforts of the HTCondor developers and users community. The authors are thankful to
the three anonymous reviewers who have helped to improve the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

CLB custom load balancer
CPU central processing unit(s) of a computer
EPIC Environmental Policy Integrated Climate model
EPIC-IIASA global gridded crop model powered by EPIC v.0810
HPC high performance computing
HTC high throughput computing
JID job identifier
IIASA International Institute for Applied Systems Analysis, Laxenburg, Austria
RAM random access memory

https://research.csc.fi/
https://vsc.ac.at/


Modelling 2020, 1 223

References

1. Global Gridded Crop Model Intercomparisons (GGCMI) Initiative. Available online: https://agmip.org/
aggrid-ggcmi/ (accessed on 30 October 2020).

2. The Inter-Sectoral Impact Model Intercomparison Project. Available online: https://www.isimip.org/
(accessed on 30 October 2020).

3. Agricultural Model Intercomparison and Improvement Project. Available online: https://agmip.org/
(accessed on 30 October 2020).

4. Williams, J.R.; Singh, V. Computer models of watershed hydrology, chap. In The EPIC Model; Water Resources
Publications: Highlands Ranch, CO, USA, 1995; pp. 909–1000.

5. Nichols, J.; Kang, S.; Post, W.; Wang, D.; Bandaru, V.; Manowitz, D.; Zhang, X.; Izaurralde, R. HPC-EPIC for
high resolution simulations of environmental and sustainability assessment. Comput. Electron. Agric. 2011,
79, 112–115. [CrossRef]

6. Kang, S.; Wang, D.; Nichols, J.; Schuchart, J.; Kline, K.; Wei, Y.; Ricciuto, D.; Wullschleger, S.; Post, W.;
Izaurralde, R. Development of mpi_EPIC model for global agroecosystem modeling. Comput. Electron. Agric.
2015, 111, 48–54. [CrossRef]

7. de Wit, A.; Boogaard, H.; Fumagalli, D.; Janssen, S.; Knapen, R.; van Kraalingen, D.; Supit, I.;
van der Wijngaart, R.; van Diepen, K. 25 years of the WOFOST cropping systems model. Agric. Syst.
2019, 168, 154–167. [CrossRef]

8. Center for High Throughput Computing at UW-Madison. HTCondor Web Site. Available online: https:
//research.cs.wisc.edu/htcondor/ (accessed on 30 October 2020).

9. Folberth, C.; Khabarov, N.; Balkovič, J.; Skalský, R.; Visconti, P.; Ciais, P.; Janssens, I.; Peñuelas, J.; Obersteiner,
M. The global cropland-sparing potential of high-yield farming. Nat. Sustain. 2020, 3, 281–289. [CrossRef]

10. Skalský, R.; Tarasovičová, Z.; Balkovič, J.; Schmid, E.; Fuchs, M.; Moltchanova, E.; Kindermann, G.;
Scholtz, P. GEO-BENE Global Database for Bio-Physical Modeling v. 1.0 (Concepts, Methodologies
and Data). 2009. Available online: https://geo-bene.project-archive.iiasa.ac.at/files/Deliverables/Geo-
BeneGlbDb10(DataDescription).pdf (accessed on 30 October 2020).

11. Balkovič, J.; Skalský, R.; Folberth, C.; Khabarov, N.; Schmid, E.; Madaras, M.; Obersteiner, M.; van der Velde,
M. Impacts and uncertainties of +2◦C of climate change and soil degradation on European crop calorie
supply. Earth’s Future 2018, 6, 373–395. [CrossRef] [PubMed]

12. Gerik, T.; Williams, J.; Francis, L.; Greiner, J.; Magre, M.; Meinardus, A.; Steglich, E.; Taylor, R. Environmental
Policy Integrated Climate Model–User’s Manual Version 0810; Blackland Research and Extension Center, Texas
A&M AgriLife: Temple, TX, USA, 2014.

13. UCAR Community Programs. Network Common Data form (NetCDF). 2020. Available online: https:
//www.unidata.ucar.edu/software/netcdf/ (accessed on 30 October 2020).

14. Galbreath, N. Fast C–String Transformations: Stringencoders Library in C Programming Language.
2007–2020. Available online: https://github.com/client9/stringencoders (accessed on 30 October 2020).

15. Ruane, A. AgMERRA and AgCFSR Climate Forcing Datasets for Agricultural Modeling. 2017. Available
online: https://data.giss.nasa.gov/impacts/agmipcf/ (accessed on 30 October 2020).

16. Ruane, A.; Goldberg, R.; Chryssanthacopoulos, J. Climate forcing datasets for agricultural modeling: Merged
products for gap-filling and historical climate series estimation. Agric. For. Meteorol. 2015, 200, 233–248.
[CrossRef]

17. Inter-Sectoral Impact Model Intercomparison Project–Data Archive. Available online: https://esg.pik-
potsdam.de/projects/isimip/ (accessed on 30 October 2020).

18. Warszawski, L.; Frieler, K.; Huber, V.; Piontek, F.; Serdeczny, O.; Schewe, J. The inter-sectoral impact model
intercomparison project (ISI–MIP): Project framework. Proc. Natl. Acad. Sci. USA 2014, 111, 3228–3232.
[CrossRef] [PubMed]

19. Global Meteorological Forcing Dataset for Land Surface Modeling. 2014. Available online: http://hydrology.
princeton.edu/data.pgf.php (accessed on 30 October 2020).

20. Sheffield, J.; Goteti, G.; Wood, E. Development of a 50-Year High-Resolution Global Dataset of Meteorological
Forcings for Land Surface Modeling. J. Clim. 2006, 19, 3088–3111. [CrossRef]

https://agmip.org/aggrid-ggcmi/
https://agmip.org/aggrid-ggcmi/
https://www.isimip.org/
https://agmip.org/
http://dx.doi.org/10.1016/j.compag.2011.08.012
http://dx.doi.org/10.1016/j.compag.2014.12.004
http://dx.doi.org/10.1016/j.agsy.2018.06.018
https://research.cs.wisc.edu/htcondor/
https://research.cs.wisc.edu/htcondor/
http://dx.doi.org/10.1038/s41893-020-0505-x
https://geo-bene.project-archive.iiasa.ac.at/files/Deliverables/Geo-BeneGlbDb10(DataDescription).pdf
https://geo-bene.project-archive.iiasa.ac.at/files/Deliverables/Geo-BeneGlbDb10(DataDescription).pdf
http://dx.doi.org/10.1002/2017EF000629
http://www.ncbi.nlm.nih.gov/pubmed/29938209
https://www.unidata.ucar.edu/software/netcdf/
https://www.unidata.ucar.edu/software/netcdf/
https://github.com/client9/stringencoders
https://data.giss.nasa.gov/impacts/agmipcf/
http://dx.doi.org/10.1016/j.agrformet.2014.09.016
https://esg.pik-potsdam.de/projects/isimip/
https://esg.pik-potsdam.de/projects/isimip/
http://dx.doi.org/10.1073/pnas.1312330110
http://www.ncbi.nlm.nih.gov/pubmed/24344316
http://hydrology.princeton.edu/data.pgf.php
http://hydrology.princeton.edu/data.pgf.php
http://dx.doi.org/10.1175/JCLI3790.1


Modelling 2020, 1 224

21. HTCondor Manuals. Available online: https://research.cs.wisc.edu/htcondor/manual/ (accessed on
30 October 2020).

22. Thain, D.; Tannenbaum, T.; Livny, M. Distributed computing in practice: The Condor experience.
Concurr. Comput. Pract. Exp. 2005, 17, 323–356. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://research.cs.wisc.edu/htcondor/manual/
http://dx.doi.org/10.1002/cpe.938
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Design and Implementation
	General EPIC Setup
	Input/Output Data Formats
	Weather Data Pre-Processing
	Parallel Runs on a Cluster

	EPIC-HTCondor Case Study and Benchmarking
	Custom Load Balancer
	Input/Output and Shared Network Storage

	Discussion
	Conclusions
	References

