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Abstract: In this work, a novel high-order formulation for multilayered piezoelectric plates based
on the combination of variable-order interior penalty discontinuous Galerkin methods and general
layer-wise plate theories is presented, implemented and tested. The key feature of the formulation
is the possibility to tune the order of the basis functions in both the in-plane approximation and
the through-the-thickness expansion of the primary variables, namely displacements and electric
potential. The results obtained from the application to the considered test cases show accuracy and
robustness, thus confirming the developed technique as a supplementary computational tool for the
analysis and design of smart laminated devices.

Keywords: piezoelectric laminates; composite materials; plate theories; discontinuous
Galerkin method

1. Introduction

Multilayer composite beams, plates and shells are today widely employed in several fields of
engineering, for example in the aerospace, naval, automotive and biomedical sectors, among others [1].
The reason for their success is largely related to the possibility of achieving excellent stiffness-to-weight
and strength-to weight ratios and especially to the possibility of tailoring such properties with respect
to the application features, e.g., following the load paths, so as to increase the overall structural
efficiency in terms of weight.

The availability of techniques for manufacturing composite laminates employing layers with
multi-physics properties has led to the concept of smart laminates, in which different laminae may
exhibit couplings between different physical fields, e.g., mechanical, thermal, electric, magnetic
or even a combination of more than two of such fields, thus enabling the design of devices with
multifunctional capabilities, besides the basic structural employment [2–5]. A remarkable example is
provided by piezoelectric materials and laminates that, exploiting the coupling between the mechanical
and electrical fields, may be employed in several applications of engineering or scientific interest [6–9].

The width of the available design space for this kind of multi-physics multilayer materials,
deriving from the variety of properties of the individual laminae and from the layup flexibility,
induces the need of a preliminary careful assessment of the properties of the assembled laminate: their
heterogeneous nature, the mismatch of material features between contiguous layers and the variety
of external loading condition may indeed result in complex multi-physics states that, if not carefully
designed, may lead to unwanted behaviors or unforeseen damage/failure patterns.

For such a reason, several analytical, numerical and computational methods have been developed
for the analysis of multilayer composites. The reconstruction of the fields (mechanical, thermal,

Modelling 2020, 1, 198–214; doi:10.3390/modelling1020012 www.mdpi.com/journal/modelling

http://www.mdpi.com/journal/modelling
http://www.mdpi.com
https://orcid.org/0000-0003-3755-2768
https://orcid.org/0000-0001-7613-4927
https://orcid.org/0000-0001-7022-8199
http://www.mdpi.com/2673-3951/1/2/12?type=check_update&version=1
http://dx.doi.org/10.3390/modelling1020012
http://www.mdpi.com/journal/modelling


Modelling 2020, 1 199

electrical, etc.) within the laminate is a fully three-dimensional problem for which analytical solutions
are available only for basic configurations: in general engineering applications, the employment of
numerical/computational methods is then necessary. Besides fully three-dimensional approaches,
which may be employed to capture complex localized field details (see, e.g., [10]), thin and relatively
thick multilayered composite structures have been investigated using suitable plate theories, which are
based on specific assumptions about the behavior of some specific field components throughout the
laminate thickness and allow reducing the total number of unknowns and thus the computational cost
associated with the numerical models: familiar examples are provided by the Kirchhoff and Mindlin
kinematic assumptions in the case of purely structural plates, while also the coupling with the electric
fields must be considered in piezoelectric plates (see, e.g., [1,11]).

The structural theories for laminated plates may be classified into equivalent-single-layer (ESL)
and layer-wise (LW) models, which have been used for both elastic and multi-physics plates [12–15].
ESL models are based on an initial expression of some unknown fields, e.g., displacements in elastic
plates or displacements and electric potential in the case of piezoelectric plates, in terms of a sum
of individual contributions given by the products of known through-the-thickness functions and
unknown in-plane functions, where the through-the-thickness functions span the whole thickness of
the laminate. LW models differ from ESL ones for the adoption of through-the-thickness functions
restrained to individual layers, which must be then complemented by suitable inter-laminar continuity
conditions. While ESL models are suitable for capturing global behaviors of the laminate, LW models
provide a more accurate representation of the fields on a layer-by-layer basis.

Once an ESL or LW representation of the multi-physics behavior of the structural element is
assumed, the reduced equations, expressed in terms of the unknown in-plane functions, must be
numerically solved. A popular strategy for the numerical treatment of the problem is based on the
employment of a suitable multi-physics, or generalized, variational statement, providing the weak
formulation of the problem, followed by the application of a suitable solution technique, e.g., the finite
element method [13], the Rayleigh–Ritz method [16–18] or other similar approaches.

In FEM-based methods, the unknown fields are approximated over each finite element in terms of
shape functions and nodal values and inter-element continuity is ensured by enforcing that contiguous
elements share the same nodal values. Although it appears quite natural, this aspect may represent a
limiting constraint when high-order, adaptive or non-conforming meshes are adopted. More advanced
FE-based methods, which have been developed also for piezo-electric plates and structures, bypass
such issues and allow retrieving discontinuous kinematics by resorting to node-dependent fields
expansions, in which the generalized structural theory is a function of the node and may vary within
the element itself (see, e.g., [19–22]).

An alternative approach to a continuous approximation of the solution, and to the mentioned
advanced FE strategies with node-dependent kinematics, is provided by the discontinuous Galerkin
(dG) method [23], which admits a discontinuous interpolation of the solution among the mesh elements
and naturally handles arbitrary meshes, high-order basis functions and contiguous mesh elements
with different order of approximation. When compared to the FEM literature, the adoption of
dG-based numerical schemes for multilayered plates appears quite limited and mostly focused on
the Classical Laminated Plate Theory [24–27] or the First-order Shear Deformation Theory [28,29].
Recently, Gulizzi et al. [30,31] presented dG formulations for ESL and LW theories for elastic plates,
whereas, to the best of the Authors’ knowledge, no discontinuous Galerkin formulation for LW theories
of piezoelectric plates is available.

In this work, we thus present an interior penalty discontinuous Galerkin formulation for
multilayered piezoelectric plates based on a suitable generalization of the Principle of Virtual
Displacements, which allows a high-order resolution of the electro-elastic problem. Throughout the
thickness, the plate is represented adopting a LW representation, which naturally allows selecting
a high-order expansion of the unknown fields within each layer, whereas, within the plate domain,
the discontinuous nature of dG schemes allows employing general high-order mesh elements.
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The paper is organized as follows. The basic equations of the problem in hand are first recalled in
Section 2, which reviews the generalized formulation of piezoelectricity, the layer-wise formulation
for piezoelectric laminates and the related laminates governing equations. The proposed method
is formulated in Section 3. Numerical results on single and multiple layers piezoelectric plates are
provided by Section 4, which is followed by the Conclusions.

2. Boundary-Value Problem

In this section, the basic equations describing the mechanics of general piezoelectric laminated
plates are recalled. Figure 1 shows a multilayered plate obtained by stacking N` suitably oriented
piezoelectric layers. In the figure, θ〈`〉 denotes the angle between the `th layer’s local reference system
X̃〈`〉1 X̃〈`〉2 X̃〈`〉3 and the plate global reference system X1X2X3.

Figure 1. Schematic representation of a multilayered plate consisting of suitably oriented piezoelectric

layers. The angle θ〈`〉 represents the orientation of the X̃〈`〉1 axis of the `th layer’s local reference system
with respect to the X1 axis of the plate reference system.

The plate lies in the domain V ≡ Ω× [zb, zt], where zb identifies the height of the plate bottom
surface, zt is the height of its top surface and Ω denotes the modelling domain of the plate spanned by
the coordinates (X1, X2). The layers are stacked in such a way that z〈`〉t = z〈`+1〉

b , for ` = 1, . . . , N` − 1,

zb = z〈1〉b and zt = z〈N`〉
t , being z〈`〉b and z〈`〉t the coordinates of the `th layer’s bottom and top surfaces,

respectively. Henceforth, quantities related to the layer ` are denoted by the superscript 〈`〉.
The electro-mechanical behavior of the multilayered piezoelectric plates is described in terms

of mechanical displacements d〈`〉 = {d1, d2, d3}〈`〉 and electric potential φ〈`〉, ∀` = 1, . . . , N`, which
represent the primary variables of the problem.

The gradients of the primary variables, namely the strains γ〈`〉 ≡ {γ11, γ22, γ33, γ23, γ13, γ12}〈`〉
and the electric field E〈`〉 ≡ {E1, E2, E3}〈`〉, may be expressed as

γ〈`〉 = Iγ
α

∂d〈`〉

∂Xα
+ Iγ

3
∂d〈`〉

∂X3
and E〈`〉 = −IE

α
∂φ〈`〉

∂Xα
− IE

3
∂φ〈`〉

∂X3
, (1)

where the matrices Iγ
1 , Iγ

2 , Iγ
3 , IE

1 , IE
2 , IE

3 are defined as
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Iγ
1 ≡



1 0 0
0 0 0
0 0 0
0 0 0
0 0 1
0 1 0


, Iγ

2 ≡



0 0 0
0 1 0
0 0 0
0 0 1
0 0 0
1 0 0


, Iγ

3 ≡



0 0 0
0 0 0
0 0 1
0 1 0
1 0 0
0 0 0


(2)

and

IE
1 ≡

 1
0
0

 , IE
2 ≡

 0
1
0

 , IE
3 ≡

 0
0
1

 . (3)

It is worth noting that, in Equation (1) and the continuation of the paper, Greek subscripts take
value in {1, 2} and the Einstein’s implicit summation convention over repeated subscripts is assumed.

The problem description is completed by assigning the constitutive relation to its piezoelectric
layers, which are assumed to be homogeneous and governed by linear piezoelectricity. Then, the
constitutive behavior of the `th layer can be expressed as

σ〈`〉 = c〈`〉γ〈`〉 − e〈`〉ᵀE〈`〉 and D〈`〉 = e〈`〉γ〈`〉 + κ〈`〉E〈`〉 (4)

where σ〈`〉 collects the stress components in the same order as that used for the strain components
in γ〈`〉; D〈`〉 collects the components of the electric displacement in the same order as that used for
the electric field components in E〈`〉; and the matrices c〈`〉, κ〈`〉 and e〈`〉 denote, respectively, the
elasticity, dielectric and piezoelectric constitutive matrices of the `th layer. Equations (1) and (4) can
be straightforwardly combined to link the stress σ〈`〉 and electric displacement D〈`〉 with the primary
variables. It is worth noting that, when the piezoelectric constants are set to zero, decoupled elastic
and dielectric behaviors are retrieved.

2.1. Generalized Formulation for Piezoelectricity

The form of Equations (1)–(4) suggests the introduction of generalized quantities (see, e.g., [32–34]).
More specifically, for the sake of the present formulation, it is convenient to define the generalized
displacement vector u〈`〉, the generalized strain vector ε〈`〉 and the generalized stress vector τ〈`〉 as

u〈`〉 ≡
{

d
φ

}〈`〉
, ε〈`〉 ≡

{
γ

−E

}〈`〉
and τ〈`〉 ≡

{
σ

D

}〈`〉
. (5)

Then, using Equation (5), Equation (1) can be rewritten as

ε〈`〉 = Iα
∂u〈`〉

∂Xα
+ I3

∂u〈`〉

∂X3
, with Ik ≡

[
Iγ

k 0
0 IE

k

]
, k = 1, 2, 3, (6)

while the constitutive relationships given in Equation (4) become

τ〈`〉 = p〈`〉ε〈`〉, where p〈`〉 ≡
[

c eᵀ

e −κ

]〈`〉
. (7)

2.2. Layer-Wise Formulation for Multilayered Plates

Layer-wise formulations for multilayered plates are based on the introduction of suitable
assumptions regarding the through-the-thickness behavior of the primary variables [1,13]. In this
work, the primary variables are collected in the vector u〈`〉, ` = 1, . . . , N`, which is assumed to be
give by a linear combination of known thickness functions of the coordinate X3 and unknown in-plane
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functions of the coordinates (X1, X2). More specifically, the ith generalized displacement component
u〈`〉i of u〈`〉 is written as

u〈`〉i (X1, X2, X3) =
N〈`〉i

∑
k=0

f 〈`〉ik (X3)U
〈`〉
ik (X1, X2), ∀` = 1, . . . , N`, (8)

where N〈`〉i denotes the order of expansion, f 〈`〉ik (X3) is kth known thickness function and U〈`〉ik (X1, X2)

is the unknown in-plane function associated to ith generalized displacement component of the `th layer.
Consistently with the notation introduced in [30,31], Equation (8) can be expressed in matrix

form as
u〈`〉 = F〈`〉(X3)U〈`〉(X1, X2), ∀` = 1, . . . , N`, (9)

where U〈`〉(X1, X2) is a N〈`〉U × 1 vector collecting the in-plane functions and F〈`〉(X3) is a 4× N〈`〉U

matrix collecting the corresponding thickness functions being N〈`〉U ≡ (N〈`〉1 + N〈`〉2 + N〈`〉3 + N〈`〉4 + 4).
Further details about the explicit expression of the thickness functions and how the in-plane functions
are ordered within the matrix U〈`〉(X1, X2) to satisfy the continuity at the layers’ interfaces can be
found in [31].

Eventually, substituting Equation (9) into Equations (6) and (7) allows expressing the generalized
strain vector ε〈`〉 and the generalized stress vector τ〈`〉 in terms of U〈`〉.

2.3. Governing Equations

The partial differential equations governing the electro-mechanical behavior of a multilayered
piezoelectric plate, modelled according to the LW formulation derived in the previous section, can be
obtained from the Principle of Virtual Displacements (PVD) for piezoelectric media (see, e.g., [35]).
For the generic `th layer, the PVD reads

∫
V〈`〉(δγ〈`〉ᵀσ〈`〉 − δE〈`〉ᵀD〈`〉)dV =

∫
V〈`〉(δd〈`〉ᵀb〈`〉m − δφ〈`〉ρ〈`〉e )dV +

∫
∂V〈`〉(δd〈`〉ᵀt〈`〉m + δφ〈`〉σ〈`〉e )d∂V, (10)

where b〈`〉m is the vector of the mechanical volume forces, ρ
〈`〉
e is the body electric charge, t〈`〉m is the

vector of the mechanical tractions and σ
〈`〉
e is the surface electric charge. Upon using the generalized

notation introduced in Equation (5), the PVD can be written in a more compact form as∫
V〈`〉

δε〈`〉ᵀτ〈`〉dV =
∫

V〈`〉
δu〈`〉ᵀb〈`〉dV +

∫
∂V〈`〉

δu〈`〉ᵀt〈`〉d∂V, (11)

where b〈`〉 ≡ {b〈`〉m ,−ρ
〈`〉
e }ᵀ denotes the generalized volume loads and t〈`〉 ≡ {t〈`〉m , σ

〈`〉
e }ᵀ denotes the

generalized surface tractions.
Substituting Equations (6), (7) and (9) into Equation (11), one obtains

∫
Ω

[
∂δU〈`〉ᵀ

∂Xα

(
Q〈`〉αβ

∂U〈`〉

∂Xβ
+ R〈`〉α3 U〈`〉

)
+ δU〈`〉ᵀ

(
R〈`〉ᵀα3

∂U〈`〉

∂Xα
+ S〈`〉33 U〈`〉

)]
dΩ =

=
∫

Ω
δU〈`〉ᵀB〈`〉dΩ +

∫
Ω

δU〈`〉ᵀT〈`〉b dΩ +
∫

Ω
δU〈`〉ᵀT〈`〉t dΩ +

∫
∂Ω

δU〈`〉ᵀT〈`〉d∂Ω, (12)

which represents the PVD for the `th layer of a piezoelectric plate modelled via LW theories.
In Equation (12), the matrices Q〈`〉αβ , R〈`〉α3 and S〈`〉33 are obtained by the following integrals defined
over the thickness of the layer

Q〈`〉αβ ≡
∫ z〈`〉t

z〈`〉b

F〈`〉ᵀIᵀα p〈`〉 IβF〈`〉dX3, (13a)
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R〈`〉α3 ≡
∫ z〈`〉t

z〈`〉b

F〈`〉ᵀIᵀα p〈`〉 I3
dF〈`〉

dX3
dX3, (13b)

S〈`〉33 ≡
∫ z〈`〉t

z〈`〉b

dF〈`〉ᵀ

dX3
Iᵀ3 p〈`〉 I3

dF〈`〉

dX3
dX3. (13c)

On the other hand, B〈`〉 stems from the generalized volume loads b〈`〉, T〈`〉b from the generalized

surface tractions defined over the bottom surface of the layer and T〈`〉t from the generalized surface
tractions defined over the top surface of the layer, i.e.,

B〈`〉 ≡
∫ z〈`〉t

z〈`〉b

F〈`〉ᵀb〈`〉dX3, (14a)

T〈`〉b ≡ F〈`〉ᵀ(X3 = z〈`〉b )t〈`〉 and T〈`〉t ≡ F〈`〉ᵀ(X3 = z〈`〉t )t〈`〉. (14b)

Similarly, the generalized surface tractions defined over the lateral surface of the `th layer
contribute to the definition of the boundary term

T〈`〉 ≡
∫ z〈`〉t

z〈`〉b

F〈`〉ᵀt〈`〉dX3. (15)

Equation (12) represents the layer building block allowing to state the generalized PVD for the
whole piezoelectric plate. In fact, upon summing over the total number of layers and considering
the equilibrium condition t〈`〉m (X1, X2, z〈`〉t ) + t〈`+1〉

m (X1, X2, z〈`+1〉
b ) = 0 and the zero net surface

charge condition σ
〈`〉
e (X1, X2, z〈`〉t ) + σ

〈`+1〉
e (X1, X2, z〈`+1〉

b ) = 0, for ` = 1, . . . , N` − 1, the PVD for
the assembled plate is written as

∫
Ω

[
∂δUᵀ

∂Xα

(
Qαβ

∂U
∂Xβ

+ Rα3U

)
+ δUᵀ

(
Rᵀ

α3
∂U
∂Xα

+ S33U
)]

dΩ =

=
∫

Ω
δUᵀBdΩ +

∫
Ω

δUᵀTbdΩ +
∫

Ω
δUᵀT tdΩ +

∫
∂Ω

δUᵀTd∂Ω, (16)

where the LW assembly technique described in [31,36] is employed to define the vectors U, B, Tb, T t

and T and the matrices Qαβ, Rα3 and S33. It is worth noting that U collects the NU in-plane functions,
which are the unknowns of the present LW formulation of piezoelectric plates.

Equation (16) represents the weak form of the governing equations for the considered problem;
eventually, through standard variational calculus, it is possible to obtain the corresponding strong
from of the governing equations and the relative boundary conditions as follows

− ∂
∂Xα

(
Qαβ

∂U
∂Xβ

+ Rα3U
)
+ Rᵀ

α3
∂U
∂Xα

+ S33U = B, in Ω

U = U, on ∂ΩD

nα

(
Qαβ

∂U
∂Xβ

+ Rα3U
)
= T , on ∂ΩN

, (17)

where nα is the αth component of the outer unit normal of the boundary ∂Ω, B ≡ B + Tb + T t are the
plate’s volume loads, U are the plate’s prescribed boundary displacements, T are the plate’s prescribed
boundary tractions and ∂ΩD and ∂ΩN denote non-overlapping subsets of ∂Ω over which Dirichlet
and Neumann boundary conditions apply.
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3. Discontinuous Galerkin Formulation

The equations given in (17) denote a system of second-order elliptic partial differential equations
with suitably defined Dirichlet and Neumann boundary conditions. The derivation of a solution
scheme based on the discontinuous Galerkin method generally involves [23]: (i) the introduction of
an auxiliary variable that allows to rewrite the second-order system as a first-order system; and (ii) a
weak statement of said first-order system for each element of the mesh discretizing the considered
domain. Here, the derivation proposed by Gulizzi et al. [30,31] is employed.

The form of Equation (17) suggests defining as auxiliary variable the quantity

Σα ≡ Qαβ
∂U
∂Xβ

+ Rα3U, (18)

so that the system of equations given in Equation (17) may be rewritten as

− ∂Σα
∂Xα

+ Rᵀ
α3

∂U
∂Xα

+ S33U = B, in Ω

Σα = Qαβ
∂U
∂Xβ

+ Rα3U, in Ω

U = U, on ∂ΩD

Σαnα = T , on ∂ΩN

. (19)

Upon introducing the generic mesh element Ω(e) and the test functions V , Γα ∈ VNU
hp , where VNU

hp
is the space of discontinuous vector fields for the considered mesh, the weak statements of the first
two equations in (19) can be written as

∫
Ω(e)

[
∂Vᵀ

∂Xα
Σhα + Vᵀ

(
Rᵀ

α3
∂Uh
∂Xα

+ S33Uh

)]
dΩ =

∫
∂Ω(e)

VᵀΣ̂αnαd∂Ω +
∫

Ω(e)
VᵀBdΩ, (20a)

and

∫
Ω(e) Γᵀ

αΣhαdΩ =
∫

Ω(e) Γᵀ
α

(
Qαβ

∂Uh
∂Xβ

+ Rα3Uh

)
dΩ +

∫
∂Ω(e)(Γᵀ

αQαβ + VᵀRᵀ
β3)(Û −Uh)nβd∂Ω. (20b)

In Equation (20a,b), ∂Ω(e) denotes the boundary of Ω(e); Uh and Σhα denote the dG solutions
and are in general approximations of the exact solutions U and Σα, respectively; and Û and Σ̂α are
the so-called numerical fluxes, which allow recovering the continuity of the solution at the elements’
boundaries.

Different choices of the numerical fluxes lead to different discontinuous Galerkin formulations [23].
However, prior to giving their explicit expression, it is useful to introduce ∂Ω(e)

D and ∂Ω(e)
N as the

subsets of ∂Ω(e) where Dirichlet and Neumann boundary conditions, respectively, are to be enforced;
furthermore, considering that the mesh discretization introduces a subdivision of the plate domain
Ω, we define ∂Ω(e)

I as the part of ∂Ω(e) that the element e shares with its neighboring elements. Then,
upon employing the interior penalty dG formulation introduced in [30,31], the numerical fluxes are
chosen as follows

Û =


{Uh}, on ∂Ω(e)

I

U, on ∂Ω(e)
D

Uh, on ∂Ω(e)
N

(21)
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and 
Σ̂α = {Qαβ

∂Uh
∂Xβ

+ Rα3Uh} − µ[[Uh]]α, on ∂Ω(e)
I

Σ̂α = Qαβ
∂Uh
∂Xβ

+ Rα3Uh − µ(Uh −U)nα, on ∂Ω(e)
D

Σ̂αnα = T , on ∂Ω(e)
N

, (22)

where {•} ≡ 1
2

(
•(e) + •(e′)

)
and [[•]]α ≡ n(e)

α •(e) +n(e′)
α •(e

′) are, respectively, the so-called average and
jump operators, which are defined at the interface between the element e and its generic neighbour
e′. It is noted that the numerical flux Σ̂α given in (22) depends on the so-called penalty parameter µ,
whose influence on the numerical solution is addressed in Section 4.

Eventually, upon substituting Equations (21) and (22) into Equation (20a,b), respectively, setting
Γα ≡ ∂V/∂Xα and summing over all the mesh elements, Equation (20a,b) can be combined to obtain
the interior penalty dG variational statement for multilayered piezoelectric plates:

B(V , Uh) = F(V , B, T , U), (23)

where

B(V , Uh) =
∫

Ωh

[
∂Vᵀ

∂Xα

(
Qαβ

∂Uh
∂Xβ

+ Rα3Uh

)
+ Vᵀ

(
Rᵀ

α3
∂Uh
∂Xα

+ S33Uh

)]
dΩ+

−
∫

∂ΩhI

[
[[V ]]ᵀα

{
Qαβ

∂Uh
∂Xβ

+ Rα3Uh

}
+

{
∂Vᵀ

∂Xα
Qαβ + VᵀRᵀ

β3

}
[[Uh]]β

]
d∂Ω+

−
∫

∂ΩhD

[
nαVᵀ

(
Qαβ

∂Uh
∂Xβ

+ Rα3Uh

)
+

(
∂Vᵀ

∂Xα
Qαβ + VᵀRᵀ

β3

)
Uhnβ

]
d∂Ω+

+
∫

∂ΩhI

µ[[V ]]ᵀα [[Uh]]αd∂Ω +
∫

∂ΩhD

µVᵀUhd∂Ω (24)

and

F(V , B, T , U) =
∫

Ωh

VᵀBdΩ +
∫

∂ΩhN

VᵀTd∂Ω+

−
∫

∂ΩhD

(
∂Vᵀ

∂Xα
Qαβ + VᵀRᵀ

β3

)
Unβd∂Ω +

∫
∂ΩhD

µVᵀUd∂Ω. (25)

The integrals appearing in Equations (24) and (25) are referred to as the broken integrals and are
defined as

∫
Ωh
•dΩ ≡ ∑Ne

e=1

∫
Ω(e) •(e)dΩ,

∫
∂ΩhD

•d∂Ω ≡ ∑Ne
e=1

∫
∂Ω(e)

D
•(e)d∂Ω,

∫
∂ΩhN

•d∂Ω ≡ ∑Ne
e=1

∫
∂Ω(e)

N
•(e)d∂Ω (26)

and ∫
∂ΩhI

•d∂Ω ≡
Ni

∑
i=1

∫
I(i)
•(i)d∂Ω, (27)

where Ne is the total number of mesh elements, Ni is the total number of inter-element interfaces that
have been introduced along with the mesh discretization and I(i) is the generic ith interface between
the neighboring elements e and e′, i.e., I(i) = ∂Ω(e) ∩ ∂Ω(e′), Ωh ≡ ∪Ne

e=1Ω(e), ∂ΩhD ≡ ∪Ne
e=1∂Ω(e)

D ,

∂ΩhN ≡ ∪Ne
e=1∂Ω(e)

N and ∂ΩhI ≡ ∪
Ni
i=1 I(i).

It is underlined that the bilinear form given in Equation (24), stemming from the choice of
the numerical fluxes given in Equations (21) and (22), is symmetric and verifies the Galerkin
orthogonality. As shown in Section 4, this allows avoiding super-penalization [23] and obtaining
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optimal hp-convergence with values of the penalty parameter µ that have the same order of magnitude
of the constants of the differential operators involved in the governing equations.

4. Numerical Results

In this section, the present formulation is employed to analyze the following test cases: (i) a
simply-supported square piezoelectric layer subjected to a bi-sinusoidal load and zero surface charge at
the top and bottom surfaces; and (ii) a simply-supported square smart plate subjected to a bi-sinusoidal
load and with grounded top and bottom surfaces. The materials and the stacking sequences of the
considered numerical tests are reported in Tables 1 and 2, respectively. The same order of expansion
is used for each layer and for each component of the generalized displacement field u〈`〉, i.e., N(`)

1 =

N(`)
2 = N(`)

3 = N(`)
4 = N, ∀` = 1, . . . , N`, and the corresponding theory is denoted by LWN . Legendre

polynomials are used as basis functions.
The numerical results are reported in terms of non-dimensional quantities, denoted by the hat ·̂

and defined as
d̂ ≡ d

l
, φ̂ ≡ φ

l
√

c/κ
, σ̂ ≡ σ

c
, and D̂ ≡ D√

κc
, (28)

where l, c and κ denote, respectively, a characteristic length and the stiffness and dielectric permittivity
constants of the considered problem.

Table 1. Properties of the considered piezoelectric materials, as taken from Ballhause et al. [36].

Material ID Property Component Value Unit

PZT-4 Young’s moduli E1, E2 81.3 GPa
E3 64.5 GPa

Poisson’s ratios ν23, ν13 0.432 -
ν12 0.329 -

Shear moduli G23, G13 25.6 GPa
G12 30.6 GPa

Dielectric constants κ1, κ2 6.46 × 10−9 C/(V·m)
κ3 5.62 × 10−9 C/(V·m)

Piezoelectric constants e15, e24 12.72 C/m2

e31, e32 −5.2 C/m2

e33 15.08 C/m2

Gr/Ep Young’s moduli E1 132.38 GPa
E2, E3 10.756 GPa

Poisson’s ratios ν23 0.49 -
ν12, ν13 0.24 -

Shear moduli G23 3.606 GPa
G12, G13 5.6537 GPa

Dielectric constants κ1 1.53 × 10−11 C/(V·m)
κ2, κ3 1.31 × 10−11 C/(V·m)

Table 2. Properties of the considered plate stacking sequence.

Plate ID Material Layup Layers Thickness [m]

P1 [PZT-4] [0] [0.025]
P2 [PZT-4,Gr/Ep,Gr/Ep,PZT-4] [0, 0, 90, 0] [0.025,0.1,0.1,0.025]

4.1. Piezoelectric Layer

In the first test case, the plate labeled as P1 in Table 2 is considered. The plate is shown in
Figure 2a and consists of a single piezoelectric layer that occupies the volume V = [0, L]× [0, L]×
[−z/2, z/2], where L = 1 m and z = 0.025 m. For this problem, the non-dimensionalization constants
are chosen as l = 1 m, c = 81.3 GPa and κ = 6.46 × 10−9 C/(V·m). The plate is subjected to
simply-supported boundary conditions over the lateral surfaces, zero tractions and zero surface
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charges over the bottom surface and a bisinusoidal vertical traction and zero surface charge over the top
surface; more specifically, the mechanical tractions over the top surface have the following expression

tm = q sin
(

πX1

L

)
sin
(

πX2

L

)
ê3, at X3 = z/2, (29)

where q denotes the amplitude and ê3 is the unit vector along the X3 direction.

X1
X2

X3

Simply-supported 
boundary condi6ons

tm = q sin ( πX1
L ) sin ( πX2

L ) ̂e3
PZT-4

z

L
L

(a)

X1
X2

X3tm = q sin ( πX1
L ) sin ( πX2

L ) ̂e3

Simply-supported 
boundary condi6ons

PZT-4
Gr/Ep

z

L
L

(b)
Figure 2. Geometry, materials and boundary conditions for the piezoelectric structures analyzed in the
numerical tests: (a) piezoelectric layer; and (b) smart plate. In the case of the smart plate, when the
switch of the circuit connecting the top and the bottom surfaces is open, the plate is in open-circuit
electrical configuration, whereas, when the switch is closed, the plate is in short-circuit configuration.

Given the chosen material, geometry and set of boundary conditions, this problem admits
Navier-type solutions (see, e.g., [36]), which are used to assess the accuracy of the proposed formulation
as a function of the basis functions order p, the penalty parameter µ and the mesh size h = L/n, being n
the number of mesh elements per side of the plate.

Eventually, the following error measure is introduced:

e(Uh) ≡
||Uh −Uref||2
||Uref||2

, (30)

where ||U||2 is the L2(Ω) norm, Uref is the Navier solution and Uh is the solution computed using the
present formulation. It is worth stressing that the solution fields Uh = Uh(X1, X2) provided by the
developed dG scheme and assessed through the error definition in Equation (30) are those appearing
in the generalized kinematical model in Equation (9), which identifies them as a generalization of the
mid-plane displacements and rotations employed in classical plate theories.

Figure 3a shows the effect of the penalty parameter µ introduced in Equation (24) on the error
measure e(Uh) as a function of the basis functions order p and for a mesh grid 2× 2 and a layer-wise
theory LW3. In the figure, p11 ≡ (p)11, where p is the generalized constitutive matrix of the considered
piezoelectric material as introduced in Equation (7). Consistently with the results obtained in [30,31],
the magnitude of the penalty parameter has little influence on the error values as long as it is chosen
sufficiently large. It is also worth noting that, unlike super-penalized techniques, µ can be chosen
one or two orders of magnitude larger than p11, thus not affecting the conditioning of the system of
equations; this is a typical feature of the interior penalty dG formulation [23].

Then, upon choosing µ/p11 = 10/h as common in interior penalty dG formulations, the error
e(Uh) is computed as a function of the mesh size h and the polynomial order p; the obtained results
are presented in Figure 3b and show the optimal convergence of the present formulation.

For the sake of completeness, it is interesting to show a comparison between the LW theories and
the 3D solution, which can be obtained in closed form [6]. Figure 4 shows the through-the-thickness
behavior of some selected mechanical and electrical quantities, which have been evaluated using the
exact 3D solution and the present formulation with two different layer-wise theories, namely LW2, LW3,
LW4 and LW5, a polynomial order p = 7 and a mesh grid 2× 2. As shown in the figure, a low-order
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LW theory is able to capture accurately the values of the primary variables, i.e., the displacement
components and the electric potential; however, high-order LW theories are required to reproduce the
through-the-thickness stress and electric displacement distribution, especially when the out-of-plane
components are considered.
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/p11
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Figure 3. (a) The effect of the penalty parameter µ introduced in Equation (24) on e(Uh) as a function
of the basis functions order p and for a mesh grid 2× 2; and (b) hp-convergence analysis of e(Uh) as
a function of the mesh size h = L/n and the basis functions order p. e(Uh) is the error measure as
defined in Equation (30).

4.2. Smart Plate

In the second test case, the dG formulation is employed to evaluate the electro-mechanical
response of the smart plate analyzed in [36], which corresponds to the plate labeled as P2 in Table 2 and
shown in Figure 2b. The plate occupies the volume V = [0, L]× [0, L]× [−z/2, z/2], where L = 1 m
and z = 0.25 m, and consists of four layers: two outer piezoelectric layers with thickness z〈1〉 = z〈4〉 =
0.025 m made of PZT-4 and two structural layers with thickness z〈2〉 = z〈3〉 = 0.1 m made of Gr/Ep in
the [0/90] configuration. For this problem, the non-dimensionalization constants are chosen as l = 1
m, c = 132.38 GPa and κ = 6.46 × 10−9 C/(V·m).

The plate is subjected to the same mechanical boundary conditions of the piezoelectric layer
considered in the previous test case, i.e., a bisinusoidal normal traction over the top surface. However,
from an electrical standpoint, two sets of boundary conditions are considered, namely closed-circuit
and open-circuit, which correspond to zero potential and zero surface charge, respectively, at the
bottom and top surfaces. These sets of boundary conditions aim at reproducing realistic situations
when smart plates are employed as actuator or sensor devices.

In addition, in this test case, the 3D solution can be computed in closed form [6]. Figure 5
shows the through-the-thickness behavior of some selected mechanical and electrical quantities
in the short-circuit configuration, whereas Figure 6 shows the same quantities in the open-circuit
configuration. The curves have been evaluated using the exact 3D solution and the present formulation
using the layer-wise theory LW7, a polynomial order p = 7 and a mesh grid 2× 2. As shown in the
figures, a perfect agreement is observed between the exact 3D results and the results obtained using
the present formulation.
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Figure 4. Through-the-thickness selected components of: (a) the generalized displacements; (b) the
generalized in-plane stresses; and (c) the generalized out-of-plane stresses for the plate P1 reported
in Table 2 and loaded by a bisinusoidal normal traction over the top surface. The dG solutions
(solid curves) are computed by means of a 2× 2 mesh grid and p = 7.
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Figure 5. Through-the-thickness selected components of: (a) the generalized displacements; (b) the
generalized in-plane stresses; and (c) the generalized out-of-plane stresses for the plate P2 reported in
Table 2 in short-circuit configuration and loaded by a bisinusoidal normal traction over the top surface.
The dG solutions (the solid curves) are computed by means of a 2× 2 mesh grid and p = 7. The light
grey lines represent the interface between consecutive layers.
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Figure 6. Through-the-thickness selected components of: (a) the generalized displacements; (b) the
generalized in-plane stresses; and (c) the generalized out-of-plane stresses for the plate P2 reported in
Table 2 in open-circuit configuration and loaded by a bisinusoidal normal traction over the top surface.
The dG solutions (the solid curves) are computed by means of a 2× 2 mesh grid and p = 7. The light
grey lines represent the interface between adjacent layers.

5. Conclusions

In this work, we present a novel high-order formulation for multilayered piezoelectric plates.
The method is based on the combination of a variable-order interior penalty discontinuous Galerkin
method and general layer-wise plate theories. One of the main advantages of the developed
formulation is that it allows tuning the order of the numerical approximation throughout both the
thickness and the modelling plane of the considered multilayered piezoelectric plates, thus enabling
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high-order layer-wise resolution of the electromechanical fields, which is typically obtainable via fully
three-dimensional models. Additionally, the use of high-order basis functions allows to attain a certain
level of accuracy with a smaller number of mesh elements, and therefore of total degrees of freedom,
with respect to those needed by other popular low-order methods. The readers interested in these
aspects are referred to [30], which presents a quantitative comparison between the present dG approach
and standard FEM in terms of accuracy versus total degrees of freedom for the case of purely elastic
plates. Numerical tests were performed on a single piezoelectric layer and on a smart multilayered
plate consisting of a structural two-layer core and two outer piezoelectric layers, and the effect of the
penalty parameter µ was investigated. The obtained results show that the present formulation offers
optimal hp-convergence rate and that it is able to resolve with high-order accuracy both the in-plane
and the through-the-thickness behavior of the primary variables as well as the behavior of the derived
variables, i.e., mechanical stresses and electric displacements.
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