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Abstract: The strengths and torque of well-boiling hydrocarbons are of utmost significance. Boiling a
well is one of the most critical steps in the discovery and production of oil and gas. The well’s boiling
process is expensive because the drilling depth can be as much as 7000 meters. Any delay (breakdown
time) in boiling costs a lot of money for hydrocarbon firms. Various boiler parameters are continuously
tracked and regulated to avoid drilling delays. This paper focuses on the vibrations occurring at the
bottom hole assembly (BHA) stick-slip. Two modelling methods, the lumped parameter model and
the combination of the distributed–lumped (D–L) parameter model, were used and compared to the
actual measurement performance. The D–L model was found to be more precise, particularly for
long strings. Using the simulations, the most comprehensive modelling methodology is introduced.
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1. Introduction

Drilling processes in the petroleum industry are extremely costly. The drill bit penetrates via a
mechanism affected by the drilling rocks. The axial vibrations, lateral vibrations (the longitudinal bit
bounce phenomenon known as the whirl motion), and torsional vibrations are classified into three
main categories during the drilling process.

Axial vibrations: Axial vibrations are caused by the irregular movement of the drill string on the
longitudinal axis, thus leading to the bit-bounce [1,2]. It may cause damage to the extreme shape of the
bit, bearing, and bottom hole assembly (BHA) [3]. The bit bounce causes the bit to lose the drilling
rock touch, which delays the penetration.

Lateral vibrations: Lateral vibrations consist of some of the most destructive string oscillations [4,5].
During rotation, the pipe’s eccentricity sometimes results in centripetal forces, resulting in what is
called a drill string whirl. This whirl can also be caused by the plot entering the borehole walls under
lateral vibrations, which may result in the eccentric hole, wall damage, damage to the BHA, and an
incorrect drilling direction [6,7]. Additionally damaged is the drilling pull. All this contributes to the
postponement of the entire cycle. The connection between the BHA and the contact points of the drill
cord cause the unit to turn backward or forward in some cases. A backwards whirl is the most extreme
vibration that causes fatigue at the moment of large-frequency bending. Unbalancing in an assembly
causes a centrifugal bowing of the drill string, which may lead to a front whirl and partial wear on one
side [5,8].

Torsional vibrations: Torsional vibration, called stick-slip, is typically responsible for a nonlinear
interaction between the bits and the rock or between the drill string and the borehole wall. Stick-slip
vibration typically occurs during drilling and is an extreme type of the torsional oscillation of the drill
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string in which the bit for a fraction of the drilling time becomes stationary. Torsional vibrations are
more suitable than forced self-exiting (through axial vibrations) [9,10].

The non-linear relationship between the torque and angular velocity on the bit is responsible for
stick-slip motion. Even when the engine steadily turns the bit [11,12], the drilling and BHA over the
engine push around the stick/slip. Torsional vibrations induce drill brace fatigue, slow the process of
boiling, and damage bits, drilling pipes, and the BHA.

In different studies that have been focused on modelling drilling behaviour, the three classes of
vibrations have been separate or combined [1–12]. The focus of this article is on the BHA’s torsional
vibration. The related phenomenon is that the top portion of the drill line rotates at a constant rotational
speed, while the bit of the rotational speed varies from zero to up to six times the surface rotational
speed. This paper introduces a model of a lumped parameter and a hybrid model consisting of the
drilling system’s distributed–lumped parameter model.

The string is considered as a two-degree free torsional pendulum in the lumped model and
represents normal differential equations, which implies that there is one independent variable (i.e., time)
in device analysis. In modelling systems, spatial variations are not important.

A mixture of ordinary and partial differential equations [13–15] describes the distributed–lumped
(D–L) parameter model, as opposed to the lumped model. The normal differential equations describe
the behaviour of the lumped model (drive systems and the BHA with the friction of the bit–rock
interaction) and partial differential equations, the behaviour of the distributed model (drill pipes).

The D–L parameter model is a hybrid modelling technique defined by a combination of ordinary
and partial difference equations. The lump parameter and distributed parameter models of an
interconnected model with partial differential equations are represented by normal differential
equations. D–L modelling is based on the approach of the transmission line matrix (TLM). This is a
numbering strategy that was originally created to enable engineers to explain electromagnetic problems
in the field of electrical and electronic engineering [14,15].

The hybrid model of intertwined lumped and distributed dynamic components, proposed by
Robert Whalley in [13], is represented in Figure 1. Distributed elements are separated by lumped
elements, where each item’s output represents the input of the element. For that modelling process,
one basic rule is that the model should end up in a lumped product.
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Figure 1. Interconnected distributed–lumped parameter system [13].

2. Model Description

A basic rotary drilling method was taken into account for this analysis; see Figure 2. This type
of drilling system was used because the most common drilling system is now used to reach the
reservoirs of fossil fuel below the surface of the earth. By spinning a drill bit, the rotating drilling
mechanism produces a drill hole. Normally, an electric motor mounted on the surface supplies the
energy for rotation.

The electric motor drives the rotary table via a mechanical gearbox. A rotating table in the form of
large disk has inertia that works as the kinetic storage of energy. A high-grade steel pipeline named
Kelly provides the kinetic energy for the string via the revolving surface. The Kelly pipeline has a
hexagonal external shape at the top of the drill line. It passes through the rotary table and connects to
a swivel.

A dynamometer is used to pump a substance called mud down to the base of the well to help cut
the process. The mud aids the cutting through the drilling bit by jetting, refreshes and lubricates the
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bit, and moves the cutting rocks from the bottom of the well to the surface, where mud is examined to
assess where the drill bit has penetrated the earth layer and whether oil or gas traces remain.
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Figure 2. Schematic representation of onshore/land drilling rig.

A drill string mainly consists of drill pipes that are 9–10 m long and 0.73–0.14 m high and that are
connected to the BHA at the bottom of the drill pipes [16–18]. The BHA consists of a heavyweight drill
pipe, drill collars, and stabilizers, and it is at the bottom the drill bit.

A heavyweight drill pipe is used as a transition section between the drill pipe and the drill collar
to reduce the generated stress between them. The drill collars in the BHA are kept in position by
several stabilizers, which are short sections with nearly the same diameter as the bit [19,20].

The BHA consists of the heaviest section of the drill string and supplies the required weight on bit
(WOB). The WOB, the rotary torque, and the hook load are the key operator parameters for the drilling
operation. The breakdown time of the drilling process can be significantly reduced by controlling these
parameters [19].

3. Mathematical Models

The mathematical modelling of physical systems helps to predict and then optimize system
performance and behaviour under varying conditions. Two models of the presented drilling system
were developed for this study—the lumped model and the distributed–lumped model (hybrid).

The torsional behaviour of the drill string in the lumped model has been described by a simple
torsional pendulum driven by an electric DC motor. The drill pipes are represented as a linear spring
of torsional stiffness kdp and torsional damping Ddp. The drill pipes at the top side are connected to
the inertia of the drive system (Jr), and the drill pipes at the bottom side are connected to the inertia of
the BHA (Jbh), which is considered the sum of the BHA inertia plus the 1/3 of the drill pipes’ inertia.
The bit–rock interaction was modelled by a dry friction model that was presented in [21,22].

On the other hand, for D–L modelling, the drill string of the drilling system is considered to
be a shaft in torsion of length l and diameter D with shear modulus G0 that has been described as
a distributed parameter element. In this case, the inertia and stiffness of the shaft are a continuous
function of its length. The scheme of the software drilling system used for lumped modelling is shown
in Figure 3.

Due to the system design and the drilling process, it is believed that the drill string and the
borehole are considered to be both vertical and straight, the drill bit does not exhibit lateral motion
during the drilling process, the angular velocity of the high drive system is greater than 0, the drilling
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mud is simplified by a viscous-type friction element at the bit, and the drilling mud fluid orbital motion
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4. Lumped Model

The lumped model is a mathematical modelling technique concentrated on the pointwise features
of a system. It is based on the use of ordinary differential equations (ODE) and applied to model
systems in which spatial variation is not important.

The lumped modelling technique is considered to be a simpler modelling method compared
to distributed modelling. The main feature of lumped models is that the signal is assumed to be
transmitted from the input to the output of the element without delaying or distorting the next element
in the system, but it does not consider the distance between components. These are the main differences
between lumped and distributed modelling.

For this study, the drill string was viewed by the electric motor as a torsional pendulum
that has two degrees of freedom. The drilling method was divided into three components for
mathematical modelling.

4.1. The Drive System

First, one must provide the required torque for the drilling process, which consists of three main
components: the electrical DC motor, which is the prime mover of the system and provides the torque
(Tm) for the drilling operation, and the gearbox with bevel gear, which transfers the torque to the last
part of the drive system, which is the rotary table.

4.2. The Drill String

In many cases, the modelling of the drill string is considered to be a torsional model
of a conventional vertical drill string with two degrees of freedom [15], as reported in [13].
The two-degrees-of-freedom torsional model is presented in Figure 3, where the first mass represents
the rotary table inertia (Jr), which is affected by the motor and gearbox at the side of the motor,
and the second mass represents the BHA inertia (Jbh). The two masses are connected by the torsional
coefficients of stiffness (kdp) and damping (Cdp). The drill pipe is dumped due to the drilling mud,
the structural damping of drill pipe, and friction between the drill pipe and wellbore.

4.3. The Cutting Process

The cutting process is the process where the drill bit cuts the rock and penetrates the stone
layers. Due to the interaction between the drill bit and the cutting rocks, friction torque is generated.
During the cutting process, stick-slip vibrations occur.
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A non-linear frictional torque combines the sloppy vibrations of the oil drill string with a reactive
torque when the bit is connected to the rocks and the non-linear frictional forces along with the BHA.
Most drilling processes are modelled as a decreasing and constantly differentiated function in the
modelling of friction torque when the velocity of the BHA does not equal zero and is otherwise
discontinues because of the presence of Coulomb friction. The governing equations of motion for the
described rotating system are:

Jdr
..
θr + Cdr

.
θr + kdp(θr − θb) + Cdp(

.
θr −

.
θb) = Tr (1)

Jds
..
θb + Cds

.
θb − kdp(θr − θb) −Cdp(

.
θr −

.
θb) = −Ttob (2)

where Tr and Ttob are the torque of the rotary table transferred to the drill string and the reactive
torque on the bit (TOB), respectively. The rotary torque equals the gear ratio of the gearbox times the
torque supplied by the motor Tr = nTm. The reactive torque on bit Ttob represents the combined
effects of viscous damping torque on the BHA and non-linear frictional forces, along with the BHA,
and is calculated by Ttob = Tvb + Tfb(

.
θb), where Tvb = Ceb

.
θb and Tfb(

.
θb) (as is described later on

the frictional torque model). Jdr is the overall inertia of the drive system that can be calculated from
Jdr

..
θr = (Jr + n2Jm)

..
θr, where Jr is the inertia of the rotary table and Jm is the electric motor’s inertia.

..
θr ,

.
θr, and θr are the angular acceleration, angular velocity, and angular displacement of the rotary

table, respectively.
The rotary table rotates at a constant speed regardless of the applied load, while the drill collars

behave as a rigid body with an equivalent moment of inertia Jds, where
..
θb ,

.
θb, and θb are the angular

acceleration, angular velocity, and angular displacement of the bit, respectively. The equivalent moment
of inertia, as can be seen in the following equations, includes the drill collar inertia Jdc, the heavy
weight drill pipe (HWDP) inertia Jhdp, and 1/3 of the drill pipe Jdp:

Jds = Jdc + Jhdp + Jdp (3)

Jds = Gρ
π

32

[
ldc(d4

0,dc − d4
i,dc) + lhdp(d4

0,hdp − d4
i,hdp) +

ldp

3
(d4

0,dp − d4
i,dp)

]
(4)

where G0 and ρ are the shear modulus and density for steel of the drill pipes, respectively ; ldc, ldp,
and lhdp are the lengths of the drill collar, drill pipes, and heavyweight drill pipe, respectively. As the
drilling operation proceeds deeper into the earth, the drill string length increases.

When new drill pipes are added to the drill string, the BHA length remains the same. Since drill
pipe length increases during the drilling operation but the BHA length remains the same, their dynamics
should be studied separately. d0,dc and di,dc are the outer and inner diameters of the drill collar,
respectively; d0,hdp and di,hdp are the outer and inner diameters of the heavyweight drill pipe,
respectively; and d0,dp and di,dp are the outer and inner diameters of the drill pipe, respectively.
The coefficients Cdr, Cds, Ceb, and Cdp are the overall viscous damping coefficients of the drive system,
the drill string, the BHA, and that along the drill pipe due to mud drilling, respectively. The damping
coefficient along the drill pipe (Cdp) and the torsional stiffness of the drill pipe (kdp) can be calculated
using the following equations.

Cdp = Cl
ldp

3
(5)

kdp =
G
ldp

π

32
(d4

0,dp − d4
i,dp) (6)

5. Frictional Torque on the Bit

The friction torque applied on the bit Tfb(
.
θb) due to the bit–rock interaction can be described

using a variation of the Stribeck friction together with the dry friction model. The dry friction model can
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be approximated by a combination of the switch model proposed in [22] and a variation of Karnopp’s
friction model (dry friction model) in which a zero-velocity band is introduced [23]. The friction model
was used in [24] and is defined by Equation (7).

Tfb(
.
θb) =


Teb . . . If

∣∣∣∣∣ .
θb

.∣∣∣< Dv, . . . |Teb | ≤ Tsb . . . Stick

Tsb sign(Teb) . . . If|
.
θb |< Dv , . . . |Teb | >Tsb Stick to Slip Transition

Tcb sign (
.
θb) . . . If |

.
θb| > Dv . . . Slip

(7)

where Teb = C(
.
θb −

.
θb) + k(θr − θb) −Ceb

.
θb.

Teb defines the applied external torque. It must overcome the static friction torque Tsb in order
to make the drill bit rotate. Since the friction on the bit is proportional to the weight on bit (Wob),
the friction coefficient (µsb) equals the radius (Rb) of the bit. The friction torque on the bit is defined
by: Tfb = WobRbµb(

.
θb); the static friction torque on the bit is: Tsb = WobRbµsb; the Coulomb friction

torque is: Tcb = WobRbµb(
.
θb); and Dv is the limit velocity interval that specifies a small enough

neighborhood of
.
θb = 0.

The dry friction torque Tfb for
.
θb > 0 varies between the static friction torque (Tsb) and the

Coulomb friction torque (Tcb). µb(
.
θb) is the velocity depending dry friction coefficient at the bit,

where µb(
.
θb) =

[
µcb

+ (µsb
− µcb

) e−γb |
.
θb |

]
.

µcb
and µsb

are the static and Coulomb friction coefficients, respectively, associated with the inertia
Jb, with 0 < µcb

< µsb
< 1; γb is a positive constant defining the decaying velocity of Tfb.

Many models can be used to model the friction torque on the bit; most of these models use a
reduced and continuous speed when the speed is not equal to zero and because there is discontinuous
Coulomb friction. Together with the Stribeck effect, a dry friction model is used to form the friction
torque on a bit [22,25]. The resulting friction model is presented and compared with a classical dry
friction model with an exponential decaying law at the sliding phase [22,26]. Figure 4 shows a block
diagram that represents the lumped model of a drilling system.
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5.1. Distributed Model of the Rotating Shaft

Distributed modelling is a mathematical modelling method used to model dynamic systems.
The authors of [18] stated that all physical systems are distributed in space, so for the sake of modelling,
a model should also be distributed in the space to represent a real system. Distributed parameter
models are used if a special configuration is very important. Distributed parameter models are very
general models that can be used to simulate reservoirs with few or many grid-blocks. They allow for
spatial variations in rock properties and thermodynamic conditions. The size of the distributed model
plays an important role in the provided results—a bigger distributed model may give rise to errors
such inaccuracy and delays. However, this is dependent on the experience of the modeler.

Distributed modelling is derived from the transmission line modelling method (TLM).
Transmission line modelling was developed by electrical engineers at the beginning of the 1970s.
It was developed for the calculation of voltage and current into electrical circuits, as well as for the
propagation of electromagnetic waves through a manner (conductor). Over the years, new versions
of the TLM have been developed to improve the modelling of arbitrary inhomogeneous media [27].
The TLM can be used to model events other than electric ones, such as mechanical and thermal events.
The TLM is based on an electrical circuit where electrical elements substitute other elements.

A transmission line is considered to be any medium that transfers electrical or mechanical power
from one point to another, e.g., the electrical cables that transmit the electricity from electric stations to
our homes. A transmission line comprises infinity infinitesimal elements. Each element comprises the
primary constants of R (resistance), L (inductance), C (capacitance), and G (conductance). The primary
constants for each infinitesimal element of a transmission line are multiplied by the length of the element
dx. If the resistance (R) and conductance (G) are included in the analysis of a system, the transmission
line is called a “lossy transmission line,” which represents losses in a system. On the other hand,
if there are no losses, the model could be reduced to an ideal transmission line known as a “lossless
transmission line” that only consists of inductance (L) and capacitance (C). Figure 5 shows the circuit
representation of an infinitesimal element of a lossy transmission line.
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Based on Figure 5, the presented elements have a voltage input V(t, x) at point x, and, due to the
voltage, an input current I(t, x) at point x is generated. Therefore, the element has output voltage
V(t, x + dx) and output current I(t, x + dx). The voltage and the current in the presented circuit can
be described using two equations that are based on Kirchhoff’s current and voltage law. The derived
equations are known as telegrapher’s equations.

5.2. Torsional Shaft

The distributed torsional shaft comprises a well-known example of the transmission line system.
The shaft comprises an infinite series of infinitesimal elements of dx length that transmit an applied
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torque from the input point to the output point. The electric circuit presented earlier has been used to
model the interconnected infinitesimal elements of a torsional shaft. The shaft’s element has length dx
and it is at distance x from the input point of the shaft. Since the shaft is subjected to torque, each
element has an input torque T(t, x) (torque at time t at distance x) and an output torque T(t, x + dx)
(torque at time t and distance (x + dx)) with corresponding input angular velocityω(t, x) and output
angular velocityω(t, x + dx). The infinitesimal elements consist of a series inductance (L) and a shunt
capacitance (C), which for mechanical systems such as (in this case) a shaft are analogs to the inertia
per unit length Jρ and the shaft’s compliance per unit length 1/GJ, respectively.

Based on the electrical circuit that was discussed earlier, the infinitesimal element has a series
resistance R, series inductance L, shut capacitance C, and shut conductance G. The series resistance
R and the shut capacitance G for the shaft analysis are usually neglected. This happens because the
internal friction of the shaft and the external damping forces (due to the mud and the bearings) are
neglected. The internal friction and external damping forces represent the losses of any system and, in
this thesis, are considered in the lumped system model.

The drill string of a drilling system is considered to be a shaft in torsion with length l and diameter
D. Shafts that are subjected to torque present the phenomenon of torsion. Torsion is a shaft’s (or any
other object) twist due to an applied torque that leads to the rotation of one end relative to the other.
The applied force leads to the generation of shear stress (τ) on any cross-section of an object. As soon
as the object starts to twist, the shear strain (γ) occurs. Figure 6 shows a shaft of length L and diameter
D that is fixed at one end and twisted at the other end, as well as a zoom view of a sliced section of the
shaft after torque has acted upon it.
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The relationship of the shear stress and shear strain can be expressed by applying Hooke’s law
(Equation (8)):

τ = Gshγ (8)

If a small differential element of length dx is sliced from the bar, the two angles must be compatible
at the outside edge (arc length A–B in red), where arc AB = rdθ = γdx.

Using Hook’s Law, the change of angle (γ) can be found to be the shear strain produced by the
shear stress. This assumption leads to the following relationship:

γ = r
dθ
dx

(9)
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Substituting Equation (8) into Equation (9) and rearranging it in term of shear stress (τ) leads to:

τ = Gshr
dθ
dx

(10)

where dθ
dx is the rate of the twist, which is related to the applied torque. To maintain rotational

equilibrium, the sum of the moments contributed by the shear stress that acts on each differential area
dA on the cross-section must balance the applied moment T:

T =

∫
A

r(τdA) (11)

Substituting Equation (10) into Equation (11) gives:

T = Gsh
dθ
dx

∫
A

r2dA (12)

where Gsh and dθ
dx are considered constants, and

∫
r2dA is defined as the polar moment of inertia (J),

which for a hollow shaft of internal diameter Di and outer diameter Do, is: J =
π(D4

0−D4
i )

32 .
Substituting the polar moment of inertia (J) into Equation (12) derives:

T = Gsh
dθ
dx

J (13)

Rearranging Equation (13) in terms of the twisting angle leads to: dθ
dx = T

GJ . For a constant T, Gsh,
and dA, dθ

dx = θ
L , where θ = TL

GshJ .

The twisting angle can be substituted into Equation (10) to give shear stress: τ = Tr
J . From this

relationship, one can assume that T, Gsh, and J are constant along the shaft length. By substituting the

two relations into the torsion formula (Equation (9)), the equation can be derived as: Gsh = τ
γ =

Tr
J

r∂θ(x,t)
∂x

.

Solving the above equation in terms of torque leads to:

T = GshJ
∂θ(x, t)
∂x

(14)

where G is the shear modulus of the pipe material and J is the shaft polar moment of inertia π
32 d4.

The inertia torque acting on an element of length dx is Jρ( ∂
2θ
∂t2 ) dx, where ρ is the density of the

shaft and Jρ represents the mass polar moment of inertia per unit length. Using Newton’s second law
(
∑

F = mα) and transforming it for rotational motion, the equation of motion of the rotating shaft can
be derived as:

∑
T = J

..
θ:

(T(x, t) + dT(x + dx, t)) − T(x, t) = −Jρ
∂2θ

∂t2 dx (15)

Taking the limit as dx approaches zero and dividing it by dx leads to:

dT(x, t)
dx

= −Jρ
∂2θ(x, t)
∂t2 (16)

Deriving the above equation with respect to t leads to:

∂T(x, t)
∂x

= −GshJ
∂2θ(x, t)
∂x∂t

(17)
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Considering thatω(x, t) = ∂θ(x,t)
∂t , Equations (16) and (17) can be expressed as:

∂T(x, t)
∂x

= −Jρ
∂ω(x, t)
∂t

(18)

∂ω(x, t)
∂x

= −
1

GshJ
∂T(x, t)
∂t

(19)

where Jρ = L is the shaft inertia per unit length and 1/GshJ = C is the compliance per unit length.
The characteristic impedance ζj and propagation of constant Γj of the shaft are:

Γj(s) = s
√

LjCj =⇒ Γj(s) = s

√
ρj

Gsh,j
, ζj =

√
Lj

Cj
=⇒ ζj = Js

√
(ρjGsh,j)

Considering the solution found in [28] for the lossless transmission line section, the general
equation for the torsional system can be expressed as:

[
Tj(s)

Tj+1(s)

]
=

 ζjwj(s) −ζj

√
(w2

j (s) − 1)

ζj

√
(w2

j (s) − 1) −ζjwj(s)


[
ωj(s)
ωj+1(s)

]
(20)

where the transform variable wj(s) = e2l1Γ1(s)+1
e2l1Γ1(s)−1

.
Figure 7 presents a block diagram of the mathematical model derived above (Equation (20)).
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6. Hybrid Model of the Drilling System

Here, we present the distributed model of a drilling shaft that is interconnected with the two
lumped models of the drive system and the BHA. In this case, the interconnected distributed–lumped
parameter system is represented by a lumped–distributed–lumped (L–D–L) model. The distributed
element from the D–L model is represented by matrix Equation (21), where the two lumped elements
from the D–L model are represented by Equations (22) and (23).

[
T1(s)
T2(s)

]
=

 ζ1w1(s) −ζ1

√
(w2

1(s) − 1)

ζ1

√
(w2

1(s) − 1) −ζ1w1(s)


[
ω1(s)
ω2(s)

]
(21)
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where T1(s) is the input torque to the drill pipes provided by the rotary table, T2(s) is the input torque
to the BHA applied by the drill pipes, ω1(s) is the angular velocity of the rotary table, ω2(s) is the
angular velocity of the drill bit, and ζ1 is the characteristic impedance of the distributed shaft, which is:

ζ1 = Js

√
(ρ1Gsh,1)

Additionally, w1(s) is the transform variable of the distributed shaft, which can be derived as:

w1(s) =
e2l1Γ1(s) + 1
e2l1Γ1(s) − 1

where l1 is the shaft’s length and Γ1(s) is the propagation constant that can be derived as:

Γ1(s) = s
√

ρ1

Gsh,1
.

At D–L modelling:
T1(s) = Trt − Jmssωrt(s) −Cmsωrt(s) (22)

T2(s) = Tfob − Jebsωb(s) −Cebωb(s) (23)

where Jms is the equivalent mass moment of the inertia of drive system, Cms is the equivalent viscous
damping of drive system, Jeb is the equivalent mass moment inertia of the BHA, Ceb is the equivalent
viscous damping of the BHA, and Tfob is the friction torque on the bit due to the bit–rock interaction
and is represented by the dry friction model. The applied torque on the bit (Tab) from the drill string in
the D–L model is Tab = T2 − Tvb, where Tvb is the viscosity damping torque over the BHA. Figure 8
shows the derived D–L model of the presented drilling system.
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7. Results and Analysis

7.1. Comparison of the Lumped Model and the D–L Model

After their development, the two models (the distributed–lumped model and the lumped model)
had to be checked to see whether they provided the expected results, whether these results were
accurate, and whether these models emulated the drilling process. To achieve that, the results were
compared with real data that were found during the literature review [29].
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Because MATLAB is a proprietary multi-paradigm programming language and numerical
computing environment that allows for the plotting of functions and data, it was used to perform the
required figures and comparisons of the models.

The comparison showed that the pipeline lengths were 2000, 5700, and 7500 m in three different
scenarios. The two models were compared to find the best way to get stick-slip vibrations that were
equal to those that occur during an actual drilling process. All models were tested for the different
lengths and speeds of tubing. Both of them were tested with and without stick-slip vibrations.

The variations between the two models were extracted at the end of the comparison. The critical
speed was considered as the speed at which just stick-slip vibration occurred and above which stick-slip
motion did not occur to show the differences between the two models. The comparison between the
two models was focused on two main points—the first was related to the beginning of stick-slip motion
and the end in both models when the angular velocity of the drilling decreased from sliding mode
to the critical speed until the model stopped. The second point was the difference between the two
models in the desired speed of drilling,ωrt = 50 RPM; see Figure 9.Modelling 2020, 2, FOR PEER REVIEW 12 
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7.2. Simulation for Drill Pipe Length of 2000 m

The simulations were performed with a drill pipe length of 2000 m using the variable parameters
in Table 1. The angular velocity for the two models is shown in RPM in Figure 10. The graph helps to
observe the critical speed of both models. The critical speed of the lumped model was lower than the
critical velocity of the D–L model. For the lumped model, the critical speed was 95 RPM when the
torque of the rotary table (Trt) was 13,470 Nm. For the D–L model, the critical speed was 106 RPM
when the torque of the rotary table was 13,650 Nm.

Table 1. Variable Parameters of the drilling system with a length of drill pipe (Ldp) = 2000 m.

Name Symbol Value Units

Length of Drill Pipe ldp 2000 m

Viscous Damping along with Drill Pipe Cdp 23 Nms/rad

Viscous Damping along with the bottom hole assembly (BHA) Ceb 50 Nms/rad

Equivalent Inertia Mass Moment of Drill String Jes 540.6 Kgm2

Drill Pipe Stiffness Kdp 473 Nms/rad

Propagation Time Associated with Drill Pipe td 0.6281 s
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Figure 10. Comparison between angular velocities obtained from the lumped and D–L models at
critical speed for Ldp = 2000 m.

The two models were tested at a lower speed where the stick-slip could initially be observed.
Figure 11 shows the lower speed limit at which both models could detect the stick-slip. For the lumped
model, when the rotating speed dropped to below 30 RPM, it went directly to 0 RPM without showing
stick-slip. The input torque at 30 RPM was 9750 Nm, and as soon as the torque dropped below this
value, the rotating speed became 0 RPM. On the other hand, the stick-slip at the D–L model occurred
at an average speed of 22 RPM, where the input torque at that time was 9425 Nm. When the torque
dropped below 9250 Nm, the rotating speed became 0 RPM.
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Figure 11. Comparison between angular velocities obtained from the lumped and D–L models at low
speed for Ldp = 2000 m.

Figure 12 shows the angular velocity of the rotary table (ω1) and the drill bit (ω2) from the two
models. Both models were set to run at the same angular velocity of 50 RPM, which was the desired
speed of drilling. The difference between the two models at this speed could be clearly observed.
By comparing the drill bit’s angular velocity in both models, it could be seen that the angular velocity
in the D–L model fluctuated between zero and non-constant upper values (130, 140, 160, 180 RPM,
etc.). The fluctuation range varied as the simulation time increased or decreased. On the other hand,
the angular velocity of the drill bit (ω2) fluctuated between 0 RPM and a constant upper value of
150 RPM. Fluctuation was also observed in the curve of both angular velocities (ω1 andω2) from the
D–L model. This behavior was not seen in the lumped model because its angular velocities had a
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smooth curve. Another important difference between the two models was that they had an unequal
number of stick-slip vibrations. The numbers of stick-slip vibrations for the D–L and lumped models
were 11 and 17. This number depended on the used parameters and simulation time.
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Figure 12. Comparison between angular velocities obtained from the lumped and D–L models at
50 RPM for Ldp = 2000 m.

Figure 13 shows the behaviour of both models at the same angular velocity of 145 RPM. The input
torque was different for each model. To reach this speed, the input torque for the lumped model was
14,980 Nm, and it was 14,350 Nm for the D–L model.

Modelling 2020, 2, FOR PEER REVIEW 14 

 

Figure 13 shows the behaviour of both models at the same angular velocity of 145 RPM. The 
input torque was different for each model. To reach this speed, the input torque for the lumped model 
was 14,980 Nm, and it was 14,350 Nm for the D–L model. 

 
Figure 13. Comparison of the lumped and D–L models’ behaviour at the same angular velocity at Ldp 
= 2000 m. 

Figures 14 and 15 show comparisons of the applied torque on the bit (Tୟୠ) of the two models at 
the desired speed of 50 RPM and the critical speed, respectively. The obtained torque from the D–L 
model appeared as an irregular shape, while the applied torque in the lumped model fluctuated 
smoothly. Both applied torques (Tୟୠ) fluctuated constantly between 4000 and 13,000 Nm. In Figure 
14, the applied torque on bit (Tୟୠ) is shown for both models at the critical speed of 145 RPM. The Tୟୠ 
in both models overcame the static friction (Tୱୠ = 12,446 Nm) and continued with Coulomb friction 
torque (Tୡୠ = 7778.8 Nm). For a drill bit to start moving, the applied torque on the bit Tୟୠ  must 
overcome the Tୱୠ. 

 
Figure 14. Comparison between applied torque on bit obtained from the lumped and D–L models at 
50 RPM for Ldp = 2000 m. 

7.3. Simulation for Drill Pipe Length of 5700 m 

Here, simulations were done for a drill pipe length of 5700 m as the drilling process moved 
deeper. When the length of the drill pipe increased, the torsional stiffness decreased, which may have 
led to the increment of the stick-slip vibrations. The simulations for this length of drill pipe were done 
using the variable parameters presented in Table 2. 

Figure 13. Comparison of the lumped and D–L models’ behaviour at the same angular velocity at
Ldp = 2000 m.

Figures 14 and 15 show comparisons of the applied torque on the bit (Tab) of the two models
at the desired speed of 50 RPM and the critical speed, respectively. The obtained torque from the
D–L model appeared as an irregular shape, while the applied torque in the lumped model fluctuated
smoothly. Both applied torques (Tab) fluctuated constantly between 4000 and 13,000 Nm. In Figure 14,
the applied torque on bit (Tab) is shown for both models at the critical speed of 145 RPM. The Tab

in both models overcame the static friction (Tsb = 12, 446 Nm) and continued with Coulomb friction
torque (Tcb = 7778.8 Nm). For a drill bit to start moving, the applied torque on the bit Tab must
overcome the Tsb.
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7.3. Simulation for Drill Pipe Length of 5700 m

Here, simulations were done for a drill pipe length of 5700 m as the drilling process moved deeper.
When the length of the drill pipe increased, the torsional stiffness decreased, which may have led to
the increment of the stick-slip vibrations. The simulations for this length of drill pipe were done using
the variable parameters presented in Table 2.

Table 2. Variable parameters for ldp = 5700 m.

Name Symbol Value Units

Length of Drill Pipe ldp 5700 m

Viscous Damping along with Drill Pipe Cdp 85 Nms/rad

Viscous Damping along with the BHA Ceb 100 Nms/rad

Equivalent Inertia Mass Moment of Drill String Jes 655.6 Kgm2

Drill Pipe Stiffness Kdp 166 Nms/rad

Propagation Time Associated with Drill Pipe td 1.79 s
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Figure 16 shows the critical speed of the two models. From the figure, it can be observed that the
critical speed of the two models was different. For the lumped model, the critical speed was 45 RPM at
an input torque (Trt) of 10,150 Nm, while the critical speed for the D–L model was 68 RPM at an input
torque of 11,500 Nm.
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critical speed for Ldp = 5700 m.

Figure 17 shows a comparison of the two models at the desired speed (50 RPM). In Figure 17, it can
be observed that the difference between the two models increased. The lumped model had an angular
velocity of 50 RPM that, compared with the real measurements presented in Figure 9 [30], was not
correct because at this pipe length and 50 RPM, a stick-slip phase should have occurred. The D–L
model showed stick-slip vibrations under these conditions.
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50 RPM for Ldp = 5700 m.

Figure 18 shows the angular velocity of the two models at their minimum speed. It can be see that
the lumped model failed to show any stick-slip vibrations at low speeds. The angular velocity of the
lumped model became 0 RPM when the input torque Trt at the rotary table was equal to 10,150 Nm.
This was in contrast with the experiences of drillers and the scientific fact that stick-slip vibrations
increase as the drill pipe length increases under the same operating conditions. On the other hand,
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the stick-slip vibrations in the D–L model occurred at an average speed of 20 RPM when the input
torque at that time was 9975 Nm.
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Figure 18. Comparison between angular velocities obtained from the lumped and D–L models at
minimum speed for Ldp = 5700 m.

Figures 19 and 20 show comparisons of the applied torque on bit (Tab) of the two models at the
desired and critical speeds, respectively. From the figure, it can be seen that the applied torque on the
bit obtained from the D–L model appeared as an irregular shape, while the line shape was smooth in
the lumped model. The applied torque of the two models was very different. In the lumped model,
the applied torque fluctuated for a small period in the beginning and then moved constantly in Tcb.
This did not happen with the D–L model. For the D–L model, the applied torque on bit fluctuated
constantly between 5000 and 12,200 Nm.Modelling 2020, 2, FOR PEER REVIEW 17 
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7.4. Simulation for Drill Pipe Length of 7500 m

As the drilling process continues to penetrate a dipper, the behaviour of the process changes.
Here, simulations were done for a drill pipe length of 7500 m. Table 3 shows the equivalent parameters
for this drill pipe length.

Table 3. Variable parameters for Ldp = 7500 m.

Name Symbol Value Units

Length of Drill Pipe ldp 7500 m

Viscous Damping along Drill Pipe Cdp 140 Nms/rad

Viscous Damping along the BHA Ceb 150 Nms/rad

Equivalent Inertia Mass Moment of Drill String Jes 711.6 Kgm2

Drill Pipe Stiffness Kdp 126 Nms/rad

Propagation Time Associated with Drill Pipe td 2.3553 s

As can be seen in Figure 20, the critical speed changed significantly for both models. The new
critical speed for both models was 45 RPM at Trt = 10, 800. The D–L model initially just passed the
stick-slip phase but, after few seconds, continued with an angular velocity of around 45 RPM. On the
other hand, the lumped model did not show stick-slip vibrations, which was wrong.

Figure 21 shows a comparison of the angular velocities obtained from both models. When the
torque of the rotary table dropped to 10,250 Nm, the D–L model showed a transition from the slip phase
to the stick-slip phase. The stick-slip phase fluctuated from 0 to 110 RPM. As the torque decreased,
the angular velocity for the lumped model dropped to 0 RPM without going through the stick-slip
phase. This was a weakness for the lumped model because it could not show stick-slip vibrations with
longer drill pipes.

Figure 22 shows a comparison of the applied torque on the bit Tab of the two models at the desired
speed. From the figure, it can be seen that the applied torque on the bit obtained from the D–L model
appeared as an irregular shape, while the line shape was smooth in the lumped model. The applied
torque of the two models was different. In the lumped model, the applied torque at the beginning
went to the static friction torque (12,446) before returning immediately and continuing with Coulomb
friction torque. The applied torque on the bit in the D–L model was initially (for about 60 s) fluctuating
between 6000 and 12,446 Nm, and then, with small fluctuations, became continuous with Coulomb
friction torque.
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8. Conclusions

In this work, two models of a simple oil well drill system—a pure lumped model and a
distributed–lumped model (hybrid model)—were created and validated. A comparison of the D–L
and lumped versions was shown. Our study confirmed that the results were identical to an actual
sample. In contrast, the D–L model was more precise, particularly for long strings. Since the lumped
model passed from 50 to 0 RPM with a pipe length equal to 7500 m without sticking out of the slip
step, the D–L model was more vulnerable to the slip of the pipe.

In the D–L model, the stick-slip vibrations behave differently than in the lumped model due to
their strength. As the duration increased, the amplitude of the vibrations obtained from the D–L model
increased. In the lumped model, where the amplitude of the vibrations remained the same, this did
not happen. The applied torque was compared for the two models, and it was found that as the length
of the drill pipe increased, the difference between them did as well.

For all three lengths, the applied torque obtained by the lumped model was constant (2000,
5700, and 7500 m). On the other hand, the applied torque on the bit obtained from the D–L model
was different for all three lengths. As the length increased, the fluctuation of the applied torque in
the D–L model increased, which was a result that was similar to an actual calculation found in the
literature review.

The simulations were done based on real parameters found in [1,30,31]. Using these parameters,
the results from the presented lumped and D–L models were able to be compared with other case
studies and real measurements. Table A1 in Appendix A shows the parameters that were used
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for the validation of the models. These parameters remained constant for all drill pipe lengths.
These parameters changed as the drill pipe length changed.
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Nomenclature

C Capacitance per unit length (F/m)

C0 Coefficient damping of bearing on the motor side (Nms/rad)
C1 Coefficient damping of bearing on the load side (Nms/rad)
Cms Equivalent viscous damping of the drive system (Nms/rad)
Cdp Equivalent viscous damping coefficient along the drill pipe (Nms/rad)
Cl Damping coefficient of the drill pipe per unit length (Nms/rad)
Ceb Equivalent viscous damping of the bottom hole assembly (Nms/rad)
d0,dp Outer diameter of the drill pipe (mm)

di,dp Inner diameter of the drill pipe (mm)

d0,dc Outer diameter of the drill collar (mm)

di,dc Inner diameter of the drill collar (mm)

d0,hdp Outer diameter of the HWDP (mm)

di,hdp Inner diameter of the HWDP (mm)

G Conductance per unit length (Nm2)

Gsh Shear modulus of steel (Nm2)

G0 Shear modulus of distributed shaft (Nm2)

im Current of armature of the motor (A)

I(x, t) Current at distance x and time t (A)

J0 Inertia of distributed shaft (m4)

Jm Mass moment of inertia of the motor (kgm2)

Jrt Mass moment of inertia of the rotary table (kgm2)

Jms Equivalent mass moment of inertia at motor side (kgm2)

Jbh Equivalent mass moment of inertia of the BHA (kgm2)

Jds Mass moment of inertia of the drill string (kgm2)

Jhdp Mass moment of inertia of the HWDP (kgm2)

Jdp Mass moment of inertia of the drill pipe (kgm2)

Jdc Mass moment of inertia of the drill collar (kgm2)

J0 Mass moment of inertia of distributed shaft (kgm2)

J1 Mass moment of inertia of load (kgm2)

J Shaft polar moment of inertia π/32d4(m4)

kb The emf constant (vs)
km Motor constant related to physical properties of the motor (vs)
kdp Equivalent torsional stiffness of the drill pipe (Nmrad )

L Inductance per unit length of electrical transmission line
Lm Armature inductance of the motor (H)

ldp Length of drill pipe (m)

lhdp Length of HWDP (m)

l0 Length of torsional distributed shaft (m)

n A combined gear ratio of gear box and bevel gear
Rm Armature resistance of the motor (Ω)

r Radius of shaft (mm)

Rb Radius of the bit (m)

R Resistance per unit length (Ω/m)

Tm Torque of motor (Nm)
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Trt Torque of the rotary table (Nm)

Ttob Torque on the bit (TOB) (Nm)

Tvb Viscosity damping torque over the BHA (Nm)

T f b Friction torque on the bit (Nm)

Tab External torque applied by drill string on the bit (Nm)

Tsb Static friction torque on the bit (Nm)

Tcb Sliding friction torque (cutting torque) (Nm)

T1 Input torque to distributed shaft from a prime mover (Nm)

T1,db Input torque to drill pipe from a rotary table (Nm)

T2 Output torque from distributed shaft to load (Nm)

T2,db Output torque from drill pipe to the BHA (Nm)

Vb Back electric motive force (back-emf) of armature (v)
Vs Supply armature voltage (v)
V(x, t) Voltage at distance x and time t (v)
Wob Weight on a bit (WOB) (N)

δω Limit velocity interval (rpm)

γ Shear strain
γb Positive constant defining the decaying velocity of Tfb
Γ Propagation constant of the electrical transmission line (s/m)

Γ0 Propagation constant of the distributed (s/m)

ζ Characteristic impedance of electrical transmission line (v/A)

ζ0 Characteristic impedance of distributed shaft (Nms)
ζ1 Characteristic impedance of the drill pipe (Nms)
µb Friction coefficient at the bit
µcb Coulomb friction coefficient
µsb Static friction coefficient
θm Angular displacement of the motor (rad)
θrt Angular displacement of the rotary table (rad)
θb Angular displacement of the bit (rad)
θ Angle of twist (rad)
ρ Density of steel (kg/m3)

ρ0 Density of distributed shaft (kg/m3)

ωm Angular velocity of the motor shaft (rpm)

ωr Angular velocity of the rotary table (rpm)

ωb Angular velocity of the bit (rpm)

ω0 Angular velocity at the inlet of a distributed shaft (rpm)

ω1 Angular velocity at the outlet of a distributed shaft (rpm)

Appendix A

Table A1. Constant parameters of the drilling system.

Name Symbol Value Units

Shear Modulus of Steel Gsh 79.6× 109 N/m2

Density of Steel ρ 7850 Kg/m2

Radius of Drill Bit Rb 0.155575 m

Weight on Bit Wb 10, 000 N

Static Friction Torque on Bit Tsb 12,446 Nm

Coulomb Friction Torque on Bit Tcb 7778.8 Nm

Length of the BHA ldc 150 m

Length of HWDP lhw 110 m

Outer Diameter of Drill Pipes do,dp 127 mm
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Table A1. Cont.

Name Symbol Value Units

Inner Diameter of Drill Pipes di,dp 108.6 mm

Outer Diameter of Drill Collar do,dc 228.6 mm

Inner Diameter of Drill Collar di,dc 76.2 mm

Outer Diameter of HWDP do,hw 127 mm

Inner Diameter of HWDP di,hw 76.2 mm

Gear Ratio n 7.2 −

Inertia Mass Moment of Motor Jm 23 Kgm2

Inertia Mass Moment of Rotary Table Jr 930 kgm2

Inertia Mass Moment of Drive System J1 2122.3 Kgm2

Equivalent Mass Moment of Inertia of the BHA Jbh 457.5795 Kgm2

Equivalent Damping Coefficient of Drive System C1 425 Nms/rad

Propagation Constant of Drill Pipe Γ 3.140× 10−4 s/m

Static Friction Coefficients µsb 0.8

Coulomb Friction Coefficients µcb 0.5

Decaying Constant γb 0.9

Limit Velocity Interval Dv 10−6 RPM

Inductance of Motor Lm 0.005 H

Resistance of Motor Rm 0.01 Ω

Constant of Motor Ka 6 Vs

Emf Constant Kb 6 Vs

Characteristic Impedance of Drill Pipe ζ1 297 Nms
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