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Abstract: Hypothermic and normothermic machine perfusion in kidney transplantation are pur-
ported to exert a beneficial effect on post-transplant outcomes compared to the traditionally used
method of static cold storage. Kidney perfusion techniques provide a window for organ recondition-
ing and quality assessment. However, how best to deliver these preservation methods or improve
organ quality has not yet been conclusively defined. This review summarises the promising advances
in machine perfusion science in recent years, which have the potential to further improve early graft
function and prolong graft survival.

Keywords: machine perfusion; kidney; HMP; NMP; regenerative medicine; biotechnology

1. Introduction

Kidney transplantation is the most economical [1] and effective [2–5] therapy for
patients with end-stage renal disease (ESRD). However, there is a worldwide shortage of
suitable kidneys for transplantation [6]. Over the next decade, the incidence of chronic
kidney disease (CKD) and ESRD is expected to increase considerably, with CKD due to
become the fifth leading cause of death by 2040 [7]. Strategies that increase the number of
kidneys available for transplantation or improve transplant success rates and outcomes are
likely to have a considerable effect on global health.

Machine perfusion technologies have emerged as an important tool in tackling critical
problems intrinsic to transplantation, such as ischaemia reperfusion injury (IRI) [7–9], poor
post-transplant graft function [10–12] and reduced graft survival [10]. Understanding how
machine perfusion ameliorates these problems and optimising these methods will likely
further improve patient outcomes. Although the central goal of this research (i.e., increasing
the availability and quality of transplant kidneys) is uniform, the means by which this
could potentially be achieved differs. Optimisation of machine perfusion technologies may
improve kidney transplantation in three ways:

- Improvement of transplant outcomes through delivery of therapeutic agents to repair
and regenerate kidneys.

- Reduction in the number of discarded kidneys by developing robust techniques of
organ assessment.

- Reduction in ischaemic injury during the preservation interval to improve the ‘shelf
life’ of donated kidneys and increase the number available for transplant.

This review focuses on the current understanding of the biological factors that nega-
tively affect kidney quality and the physiological effects of hypothermic and normothermic
techniques. Recent advances that further our understanding of how we can adapt machine
perfusion to improve outcomes or assess kidney quality will also be discussed.
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2. Why Do We Need Organ Preservation? What Are the Factors Diminishing Kidney
Quality?

Modifiable factors that have a key impact on pre-transplant kidney quality are the
periods of ischaemia that occur prior to transplant and the reperfusion injury that occurs
following transplant. These are illustrated in Figure 1 and described below.
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Figure 1. Overview of the changing graft tissue environment between organ donation and implantation. In health,
homeostatic mechanisms ensure sufficient oxygen and nutrients are delivered to the renal tissue, resulting in balance
between adenosine triphosphate (ATP) usage and regeneration. After donation, cessation of blood flow halts oxygen and
nutrient supply (causing warm ischaemia). This causes an anaerobic switch that results in ATP depletion and accumulation
of harmful metabolic by-products such as reactive oxygen species (ROS) and lactic acid. Cold ischaemia (chilling the
organ) is deliberately implemented to slow the ATP depletion and damage that would occur under warm ischaemia.
Restoration of blood flow drives ATP regeneration, but leads to another insult (ischaemia reperfusion injury) which occurs
as a consequence of deleterious processes initiated by warm and cold ischaemia.

3. Warm Ischaemia

Preservation techniques maintain organ viability from the time of retrieval until
transplantation. These techniques are required to counteract the destructive processes
initiated during warm ischaemia. In general, warm ischaemia arises prior to donation [13]
and results in impaired delivery of oxygen and metabolic substrates [14,15]. This drives
an anaerobic shift [14] and crucially ATP depletion [16], which results in widespread
deterioration of tissue structure [17–22]. The warm ischemic injury incurred also stimulates
damaging inflammatory responses [23].

The warm ischaemic time (WIT) is associated with increased incidences of delayed
graft function (DGF) [24] and therefore, the initial role of kidney preservation is to reduce
ATP depletion, cell swelling and hypoxic injury. This is achieved by rapidly flushing
the kidney at procurement with a cold preservation solution to slow metabolism and
requirements for ATP.

4. Cold Ischaemia

Although effective in reducing metabolism, ongoing depletion of ATP leads to cold
ischaemic damage. The cold ischaemic time (CIT) is an independent risk factor for the
development of DGF [25]. The mechanisms of damage conferred under conditions of cold
ischaemia have been described elsewhere [26].
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5. Current Kidney Preservation Methods, Their Advantages and Limitations
5.1. Static Cold Storage

Static cold storage (SCS) is a simple and economical method of kidney preservation.
Kidneys are placed in a bag of preservation solution and packed in wet ice, lowering
the temperature to around 4 ◦C. At this temperature, enzymatic activity is reduced by
approximately 58% [27]. Different preservations solutions are available, but University of
Wisconsin (UW) solution is deemed the gold standard [27]. An overview of solutions used
in SCS and the perfusion technologies described below is given in Table 1.

Table 1. Constituents of kidney preservation solutions in clinical use.

SCS Fluids HMP Fluids NMP Fluids

University of
Wisconsin (UW)

solution
Custodial-N solution

UW Machine
perfusion solution

(UWPS)

Hosgood protocol
[28]

Minor protocol
[29]

Base fluid Water Water Water Ringer’s solution
Steen solution

Ringer’s
solution

Volume ex-
panders/osmotic

agents

Hydroxyethyl
starch

Raffinose
pentahydrate

Mannitol

Hydroxyethyl starch
Mannitol (USP)

Magnesium
gluconate

Sodium gluconate

Mannitol Calcium
gluconate

Oxygen carriers - - - 1 unit red blood
cells (group O) -

Drugs

Allopurinol
Magnesium

sulphate
heptahydrate

Lactobionic acid

Deferoxamine

Dexamethasone
Heparin

Prostacyclin
Insulin

Ampicillin

Antioxidants Glutathione Tryptophan Glutathione

Metabolic
support Adenosine

Potassium hydrogen
2-ketoglutarate

Sucrose
Aspartate
Arginine
Alanine
Glycine

Glucose, beta D (+)
Ribose

Glucose, beta D
(+)

Synthamin 17
Cernevit

multivitamins

-

Individual
electrolyte
additives

-

Magnesium chloride
Calcium chloride

Potassium chloride
Sodium chloride

Calcium chloride - -

Buffering agents
Potassium

dihydrogen
phosphate

Histidine
Histidine · HCI

HEPES (free acid)
Potassium
phosphate

(monobasic)

Sodium
bicarbonate

Sodium
bicarbonate

pH adjustment

Sodium hydrox-
ide/hydrochloric

acid
Potassium
hydroxide

- Sodium hydroxide - -
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5.2. Hypothermic Machine Perfusion

Hypothermic machine perfusion (HMP) involves the circulation of cold preservation
fluid through the kidney using a mechanical pump. With the exception of several recent
clinical trials, clinical HMP does not utilise active oxygenation. The limited metabolic
support provided in the perfusion fluid was thought to be sufficient to meet the residual
aerobic requirements under hypothermia [18].

ROS are a primary driver of reperfusion injury [30], and commonly used preservation
fluids contain potent antioxidants, such as glutathione, to combat ROS activity during
preservation. However, extended CIT is associated with marked perfusate glutathione
depletion [31].

Machine perfusion solutions provide low-level metabolic support and antioxidant
protection throughout perfusion. A key difference between HMP and SCS is the provision
of fluid flow, which facilitates nutrient supply, waste removal and a limited amount of
tissue reoxygenation with the dissolved oxygen present in the perfusate.

There are several commercially available HMP devices. The Organ Assist Kidney
Assist, Waters RM3 and Organ Recovery Systems Lifeport are pressure-controlled systems
designed to limit mechanical damage to the kidney during perfusion. Several new devices
have been trialled, such as the AirDrive system which includes an oxygenator [32]. A new
two-pump perfusion device which circulates fluid through the kidney and also in the organ
reservoir has been used to deliver clinical HMP [33,34].

A number of randomised controlled trials and a meta-analysis have shown superiority
of HMP over SCS techniques in improving early and longer-term graft function; however,
despite this evidence HMP has not gained wide acceptance in some countries.

The evidence base supporting the use of HMP for all deceased donor kidneys is
growing, with benefits recently reported in the UK [35,36], France [37], Poland [38] and
Brazil [39,40]. HMP can also improve renal function when the CIT is extended [35].

In extend criteria donor (ECD) kidneys, use of HMP enhances 1-year graft survival [41].
However, HMP has not shown a convincing benefit in prolonging longer-term graft sur-
vival [42]. The Netherlands is the first country to introduce HMP for all deceased donor
kidneys as standard practice [43]. Other countries use HMP specifically for donation after
circulatory death (DCD) kidneys, but this practice is not uniform.

5.3. Normothermic Machine Perfusion

Normothermic machine perfusion (NMP) is a relatively new technique of preservation
in kidney transplantation. It is currently used in combination with hypothermic preserva-
tion strategies as a form of end graft reconditioning. During NMP, kidneys are perfused at
near-physiological temperatures and pressures allowing cellular metabolism and function
to be restored. In the 1980s, interest in NMP using oxygenated blood-based perfusion
solutions started to emerge, and demonstrated that short intervals or an end period of
NMP could replenish cellular ATP [44].

The first case of NMP in clinical practice was published in 2011 [45]. The recipient
received a kidney from an ECD donor that had been rejected by five other transplant
centres in the UK. The kidney underwent NMP for a short interval immediately before
transplantation. The recipient did not require dialysis post-transplant and 10 years post-
transplant has normal kidney function (personal communication). Subsequently a series of
NMP in ECD kidneys demonstrated a remarkably low rate of DGF (11%) compared to SCS
kidneys (37%).

More recently, NMP has been used to rescue kidneys that were deemed unsuitable
for transplant due to inadequate in situ perfusion after retrieval. Both kidneys were
transplanted successfully with immediate graft function following transplant [46]. Building
on this work, the authors developed a scoring system which could be used to assess kidney
quality prior to transplant [46,47]. A large multicentre clinical trial assessing the effects of
1 h NMP in DCD kidneys compared to SCS has been completed and is due to report this
year [28].
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NMP conditions are still being developed and have recently been used to counteract
‘rewarming injury’ which occurs during the warm reperfusion of cold stored grafts. In 2015,
the Minor group demonstrated that gradual rewarming (controlled oxygenated rewarming
(COR)) of cold stored kidney grafts using machine perfusion improve creatinine clearance
and reduces apoptotic signalling when compared to cold stored controls [48].

Kidneys are rewarmed (8–35 ◦C) over a 1.5 h period to allow metabolic adaptation to
the changing thermal environment. Building on this work, the same group trialled their
method in the clinical setting, reporting immediate graft function and acceptable levels of
creatinine clearance within 1 week of transplantation [29].

More recently, a porcine auto-transplantation model demonstrated that while 8h of
NMP improves renal function compared to SCS, a similar improvement in renal function is
observed when cold-stored kidneys are subjected to 2 h of COR [49]. The authors speculate
that this may be a useful application given the current requirement for hypothermic storage
in the logistics of organ transport.

The perfusates used in clinical NMP have been defined in Table 1. The Hosgood et al.
protocol provides a more physiological environment, with multiple metabolic substrates
and red cells as an oxygen carrier. This contrasts with the Minor protocol, which utilises an
acellular perfusate based on Steen solution [29,50].

Adapted cardiac bypass technologies or other perfusion set-ups can be used for
NMP. The Kidney Assist, a pressure-controlled system, is the only CE-marked device
on the market.

There are some limitations of NMP compared to HMP. These include a more com-
plicated, expensive perfusion circuit and the requirement of personnel for continuous
monitoring of the kidney. In a recent publication, RNA sequencing of kidney tissue be-
fore and after NMP demonstrated the upregulation of genes associated with oxidative
phosphorylation but also inflammatory pathways [51]. Modulation of NMP conditions by
incorporating a cytokine filter into the circuit removed the inflammatory cytokines from
the perfusate and reduced the inflammatory gene expression.

There is international interest in the development and clinical deployment of NMP [52]
and it is the subject of other current clinical trials. The feasibility and safety of normother-
mic ex vivo kidney perfusion (NEVKP) trial will recruit 25 patients who receive a kidney
after 1–10 h of NMP, and assess the device failure rate alongside standard measures of out-
come such as DGF, graft failure and patient survival (Clinicaltrials.gov ID: NCT03136848).
Perfusion at subnormothermic (20–32 ◦C) temperatures is also being explored [53]. A new
clinical trial is due to start called ‘Oxygenated machine preservation in kidney transplan-
tation’ (SNOPO; Clinicaltrials.gov ID: NCT04540640), which will address the safety of
subnormothermic machine perfusion on transplant kidneys. This is an explorative trial
that will also assess the rate of graft discard and assess graft function.

An overview of the active trials investigating both HMP and NMP is given in Table 2.
Alongside this, the more physiological environment generated by NMP permits the

use of therapeutic agents to mediate cellular physiology ex vivo and in recent years there
have been numerous developments in potential additives to the NMP perfusate which
may confer clinical benefit. These are detailed below.
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Table 2. Recent clinical trials optimising pretransplant kidney storage and machine perfusion protocols.

NMP Clinical Trials

NCT Number Title Primary Outcome Measure Start Date Completion
Date

NCT05031052
Normothermic machine perfusion

(NMP) vs Static Cold Storage (SCS) in
Human Kidney transplantation

Kidney function at 6 months post-transplant
(eGFR) August 2021 December 2025

NCT04882254
Normothermic Machine Perfusion: An

Additional Value for Kidney
Transplant Outcomes?

Number of patients with immediate graft
function within three months post-transplant May 2021 February 2023

NCT03136848
The Feasibility and Safety of

Normothermic ex Vivo Kidney
Perfusion

1. The ratio of actual/eligible kidney
grafts subjected to study intervention
at three months after enrolment or up
to 4 years whichever is earlier

2. The rate of kidney discard or graft
failure attributable to the study
intervention from the date of first
actual intervention to the date the last
participant completes the study follow
up period of 3 months
post-intervention.

December 2016 April 2019

NCT04693325
PROlonged Ex-vivo Normothermic

Machine PERfusion for Kidney
Regeneration

Glomerular filtration rate (GFR) at: 6 months
post-transplantation February 2021 July 2022

NCT02525510 Deceased Organ Donor Interventions
to Protect Kidney Graft Function

Delayed Graft Function incidence within 1
week of transplantation August 2017 March 2022

ISRCTN15821205 Ex Vivo Normothermic machine
perfusion Trial

Delayed Graft Function incidence within 1
week of transplantation January 2017 -

HMP Clinical trials

NCT Number Title Primary outcome measure Start date Completion
Date

NCT04619732 Real-time Monitoring of Kidney Grafts
on Hypothermic Machine Perfusion

Post-operative recovery of kidney function
within: 30 days of transplant June 2021 December 2021

NCT03378817
Hypothermic Oxygenated Machine

Perfusion of Extended Criteria Kidney
Allografts from Brain Death Donors

Delayed Graft Function incidence within 1
week of transplantation December 2017 March 2020

NCT03031067
Hypothermic Oxygenated Perfusion

Versus Static Cold Storage for Marginal
Graft

Graft function at 3 months
post-transplantation October 2016 February 2018

NCT04359173
Propensity Score Matched Comparison

of HMP vs. SCS in Kidney
Transplantation

Delayed Graft Function incidence within 1
week of transplantation August 2015 March 2020

NCT02055950 Pulsed Perfusion for Marginal Kidneys

1. Glomerular filtration rate (GFR) at 6
months post-transplant

2. Renal resistance at 6 hours after
pulsatile machine perfusion

July 2013 August 2018

NCT03837197
Clinical Trial of New Hypothermic

Oxygenated Perfusion System Versus
Static Cold Storage

Delayed Graft Function incidence within
0–30 days of transplantation December 2018 December 2021

NCT02876692
Prediction and Management of

Delayed Graft Function Based on
Donor Criteria and LifePort Platform

1. Delayed Graft Function incidence
within 1 week of transplantation

2. Transplant nephrectomy at 1 year
January 2016 December 2019
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Table 2. Cont.

NMP Clinical Trials

NCT Number Title Primary Outcome Measure Start Date Completion
Date

NCT02652520

Evaluation of a Marine OXYgen
Carrier: HEMO2Life for hypOthermic

Kidney Graft Preservation, Before
Transplantation (OXYOP)

Charting within three months of transplant:

1. HEMO2Life adverse effects
2. Graft safety
3. Recipient safety (any adverse event)

March 2016 February 2018

NCT03773211 Renaparin in Kidney Transplantation Adverse events within 30 days February 2019 1 April 2020

NCT03024229
Metabolomics in Assessing the Quality
of Kidney Transplants Retained on a

LifePort Perfusion Machine

Immediate graft function (IGF) ( i.e. the
absence of a requirement for dialysis) within
7 days post-transplant

March 2017 January 2020

NCT01848249 Deceased Donor Biomarkers and
Recipient Outcomes

1. Delayed Graft Function incidence
within 1 week of transplantation.

2. Death-Censored Graft Failure within 4
years post-transplant.

May 2010 March 2020

6. What Are the Advances in HMP?
6.1. Active Perfusate Oxygenation under HMP

A key focus in the optimisation of HMP over recent years has been the addition of
oxygen. Aerobic metabolism, through facilitation of the electron transport chain, generates
more ATP than anaerobic glycolysis, which, alongside compounding the injury caused
by ATP depletion, also results in deleterious tissue acidification through the enhanced
production of lactic acid [54].

Early studies using murine models demonstrated potential benefits of actively oxy-
genating the perfusate, with perfusate oxygen consumption during HMP appearing to be
linked to improvements in post-transplant glomerular filtration rate (GFR) [55]. This was
supported by a porcine kidney ex vivo reperfusion model, in which 21 h of HMP combined
with provision of 100% oxygen resulted in improved blood flow and creatinine clearance,
when compared with non-oxygenated HMP. In addition, non-oxygenated HMP resulted in
evidence of greater tubular damage [56].

The Consortium for Organ Preservation in Europe (COPE) recently reported the
COMPARE trial, a randomised controlled phase 3 trial comparing the effects of continuous
HMP with oxygen, with HMP without oxygen in pairs of DCD kidneys using the Kidney
Assist Device. A small improvement in estimated GFR (eGFR) and a lower incidence of
graft failure was observed when compared to standard HMP (i.e., 3% vs. 10%, p = 0.028) at
1 year when sensitivity analysis was applied, but there was no significant difference in graft
function, the primary outcome measure if both pairs from the same donor were functioning
at 1 year [57]. Shorter periods of oxygenated HMP may also have some benefit. In a porcine
model, active perfusate oxygenation was found to promote enhanced restoration of aerobic
metabolism and also increase endpoint cortical ATP concentrations [58]. This latter finding
was repeated by another group, who documented no effect of perfusate oxygenation on
graft function, but noted increased endpoint ATP concentrations as a consequence of
oxygenation [59].

There are concerns that such high-level oxygenation could be surplus to requirements
and actually be deleterious to the preserved tissues through enhanced ROS activity [60].

Using an ex vivo ischaemia reperfusion model, it has been demonstrated that continu-
ous oxygenation under HMP results in superior early graft recovery when compared to
SCS, various transient oxygenation strategies and also end ischaemic NMP strategies [61].

Extending this into an auto-transplantation model, the same group compared different
oxygenation strategies. The aim of these studies was to identify the minimal oxygenation
strategy that provides a therapeutic effect, but avoids the potential for unnecessary ox-
idative stress. Oxygenation with a concentration of 30% or 90% resulted in no significant
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differences in functional outcomes; however, kidneys perfused with higher concentrations
of oxygen had reduced perfusate lactate concentration [62].

The same group also examined methods of oxygenation. Kidneys received 22 h HMP
with or without a 2 h oxygenation period at the beginning or end of perfusion [63]. In
the first 4 days after transplant, kidneys that had received 22 h continuous oxygenation
and 2 h oxygenation at the start of HMP had improved graft function compared to those
without oxygenation or with HMP with 2 h of end oxygenation. While end ischaemic
oxygenation may offer benefit, initial oxygen uploading appears the most promising
transient oxygenation strategy. This may be delivered in the clinical setting using currently
approved devices. The Waters and Kidney Assist Devices include the capacity for an
oxygenator; the Organ Recovery Systems Lifeport is also capable of oxygenation through
bubble and surface oxygenation methods [64].

In clinical kidney transplantation, the COPE consortium recently published the results
of the HOPE trial. The effects of end ischaemic oxygenated HMP was trialled in ECD
kidneys and compared to ECD kidneys undergoing SCS. No significant difference in DGF
incidence was observed between group [65].

In contrast, a study published in letter format to the Journal of Clinical and Transla-
tional Research proposed end ischaemic oxygenation to be particularly therapeutic in renal
HMP [66].

Other studies examining the effects of oxygenated HMP using these different strategies
are also being carried out (Clinicaltrials.gov ID: NCT03837197).

6.2. Modification of Perfusate under HMP

M101 is an extracellular haemoglobin with a high oxygen-carrying capability. Porcine
kidneys perfused with fluids supplemented with M101 had reduced vascular resistance
during perfusion and less fibrosis after reperfusion [67].

M101 was assessed in a clinical study including 60 pairs of donation after brain death
(DBD) kidneys. The OXYPOP study added M101 during HMP and SCS and found no
adverse outcomes. There was some indication of improved early graft function [68].

Perfusate supplementation with Vectisol® is a recent advance that shows preclinical
potential. Vectisol is a revesterol–cyclodextin conjugate which increases the solubility
of the potent antioxidant resveratrol. When compared to porcine kidneys stored using
standard HMP protocols, supplementing HMP perfusate kidney perfusion solution 1 (KPS-
1) with 1.56 g Vectisol reduced the levels of oxidative stress and apoptosis in a porcine
auto-transplantation model. In addition, Vectisol reduced total plasma levels of superoxide
dismutase and lowered plasma creatinine levels at 3 months post-transplant compared to
standard HMP [69].

Another recent development in perfusate optimisation includes perfusate supple-
mentation with macromolecular heparin. Reperfusion results in rapid degradation of the
endothelial glycocalyx. Using immunofluorescence analysis and confocal microscopy, it
has been shown that heparin administered during HMP binds to the vascular endothe-
lium lining the perfused vasculature and, simultaneously, perfusate concentrations of
macromolecular heparin are depleted [70]. Using a paired porcine perfusion model
with an ex vivo reperfusion model, the same group demonstrated that administration
of 50 mg macromolecular heparin resulted in lower renal resistance and faster reductions
in serum creatinine than kidneys that did not receive heparin administration. Additionally,
heparinised kidneys had lower levels of the biomarker neutrophil gelatinase-associated
lipocalin (NGAL) [71].

The ‘Renaparin® in kidney transplantation’ placebo-controlled trial is currently under-
way, in which kidney transplant recipients will receive a kidney stored using conventional
HMP or HMP with the addition of Renaparin, a heparin analogue. This study will as-
sess the incidence of DGF and adverse events within the first 30 post-operative days
(Clinicaltrials.gov ID: NCT03773211).
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6.3. Measures of Graft Quality during HMP

In recent years, there has been considerable focus on non-invasive methods through
which kidney quality can be assessed during HMP. The most readily available indices
on kidney quality come from macroscopic inspection: larger kidneys with poor perfu-
sion at procurement are more likely to go on to experience impaired graft function post-
transplant [72]. However, the perfusion period offers more ability to assess organ quality.

An assessment that can be performed in real time is the measurement of perfusion
parameters. Renal resistance may have some value in kidney assessment. A renal resistance
of <1 mmHg within the first hour of perfusion was associated with reduction in the
incidence of DGF and primary non-function (PNF) and also improved rate of decrease in
post-operative serum creatinine [73].

The value of using renal resistance to predict transplant outcomes was also demon-
strated recently in an oxygenated HMP study. The percentage fall in renal resistance
was found to be inversely correlated to serum creatinine on day 1 and 2 after transplant,
indicating a functional link between an individual kidney’s response to perfusion during
storage and graft function [65]. Patients who receive a kidney that exhibited high resistance
during the first hour of HMP have higher post-operative serum creatinine at 1 year and a
higher incidence of DGF immediately post-transplant [74].

Additionally, a high endpoint renal resistance was reported again to be a strong
risk factor for the development of DGF [75] and a retrospective analysis has recently
linked high renal resistance with graft failure [76]. Kidneys with resistance readings
>0.19 mmHg/mL/min have a higher risk of acute rejection and inferior one-year graft
survival compared to kidneys with an endpoint resistance of <0.19 mmHg/min [77].

Nonetheless, the utility of renal resistance in prediction of PNF or long-term kidney
graft outcomes appears to be limited [78].

Measuring intracellular ATP using magnetic resonance imaging (MRI) is another
strategy which could be used to assess kidney quality. MRI is a non-destructive technique
which uses the unique magnetic profile of compounds containing MRI sensitive nuclei
to produce images of the biological vessel they inhabit. With a protocol that specifically
targets the 31P isotope of phosphorous, a Swiss study showed the deleterious effects of
warm ischaemia on intracellular ATP concentrations and also enhanced ATP resynthesis
during oxygenated perfusion. ATP levels were linked with the level of damage observed
upon tissue examination [79].

Alternatively, the use of optical coherence tomography has been reported as another
non-invasive technique which can be used to define macroscopic structural changes in
the shallow cortex of pre-transplant human kidneys. Larger proximal tubule diameters
had predictive potential for DGF development, and shorter distances between separate
proximal tubule lumens was also indicative of DGF [80].

Monitoring of ongoing metabolism during organ preservation has been proposed as
a useful method to assess kidney quality [81]. However, logistically, this requires rapid
analysis and the use of perfusate samples.

Rapid sampling microdialysis has been applied during kidney perfusion, permitting
a continual acquisition of tissue-derived analyte into a detection system [82]. While this
approach does not offer comprehensive metabolic profiling, it does allow for continu-
ous profiling of metabolites of interest, such as lactate, and may have a role in defining
kidney quality before transplant. This technology will be applied in the upcoming REMO-
HYMAP trial (Real-time monitoring of kidney grafts on hypothermic machine perfusion)
(Clinicaltrials.gov ID: NCT04619732).

Another trial, ‘Metabolomics in assessing the quality of kidney transplants retained
on a LifePort® perfusion machine’ (RENALIFE), will utilise nuclear magnetic resonance
(NMR) spectroscopy to define metabolic changes in the perfusate and determine whether
these are linked with graft function post-transplant (Clinicaltrials.gov ID: NCT03024229).

A similar study, the 13 Champion clinical study, will also utilise NMR to chart changing
perfusate metabolic profiles prior to transplantation, with a perfusate modification enabling
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tracing of glucose metabolism (i.e., substitution of conventional naturally occurring glucose
for glucose that has been carbon-13 enriched). This study will report the results in 2022 [83].

A complementary indicator of graft quality that may be used alongside measures of
renal resistance is the detection of damage-associated biomarkers in the perfusate, of which
many have been proposed and studied [84,85].

A recent meta-analysis assessed the published literature linking potential perfusate
biomarkers with post-transplant outcomes. This study found that assessment of glutathione
S transferase offered the best predictive potential for DGF and PNF [86].

7. What Are the Advances in NMP?

For logistical reasons, NMP is used in combination with hypothermic techniques of
preservation. Therefore, kidneys are subject to periods of cold ischaemia. Furthermore, after
NMP, it is necessary to flush the kidney with cold preservation solution to remove the red
cell-based perfusate and cool the kidney in preparation for transplantation. Anastomosis
of the renal vessels can take up to 60 min and cooling helps to prevent warm ischaemic
injury.

One approach to avoid ischaemic injury is to continually perfuse the kidney using
NMP conditions. A single-case report demonstrated use of the Kidney Assist apparatus
to perfuse a kidney from a DBD donor from the time of retrieval until transplantation.
Although logistically and technically difficult, the authors demonstrated proof of principle
that it is possible to avoid ischaemic injury using this approach [87].

A more practical approach is normothermic regional perfusion (NRP), in which
kidneys are perfused in situ within the donor’s body at the time of retrieval. NRP reduces
the incidence of PNF in kidneys from DCD donors compared to in situ cooling [88].
Porcine models have demonstrated that 4 h of NRP is an optimal timeframe to limit kidney
injury [89].

7.1. Modification of the Normothermic Perfusion Conditions

NMP may utilise red cells as oxygen carriers [50]; however, with the potential for
haemolysis to occur, alternatives are desirable.

Haemoglobin-based oxygen carriers (HBOCs) may be a suitable alternative. Using
14 discarded human kidneys, a 2019 study demonstrated that the use of perfusate sup-
plemented with HBOC (n = 7) exerted no significant differences in oxygen consumption
or endpoint tissue ATP levels when compared to perfusate supplemented with packed
red cells (n = 7) [90]. In addition, no differences in renal resistance or tissue histology
were noted. This indicates that a cellular perfusate may not be required for optimal
delivery of NMP.

NMP delivered with controlled rewarming and an acellular perfusate was found to
improve creatinine clearance and reduce expression markers of innate immune activation
when compared to SCS stored kidneys [91]. However, no benefit was gained by addition
of red cells, indicating that they may not be necessary for NMP.

An alternative to supporting oxygen requirements is to suppress oxygen requirements
by administering hydrogen sulphide (H2S) during NMP. Hydrogen sulphide inhibits the
activity of complex IV of the mitochondrial electron transport chain. A study investigating
the effects of H2S supplementation during perfusion demonstrated a 61% decrease in
oxygen consumption; however, this suppression was quickly reversed after stopping H2S
administration [92]. This suggests that continuous delivery of hydrogen sulphide may be
required for longer preservation periods. Nonetheless, no differences in damage indicators
were found between H2S and control kidneys.

7.2. Regenerative Therapies

NMP can also be used to administer regenerative therapies to the kidney. Mesenchy-
mal stem cells (MSCs) have the capability to repair cellular damage and immunomod-
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ulation properties to reduce the immune response. To date, large animal models have
demonstrated the safety and feasibility of introducing MSCs in this way [93].

Factors limiting the application of MSCs during NMP include observations that the
infused cells localise within glomerular lumen and may not confer protection to post-
glomerular structures such as the proximal tubules [94]. Additionally, high doses of
MSCs (i.e., 107) appear to be required as cells can adhere to the filters and tubing of
the NMP circuit.

Nonetheless, when trialled in pairs of non-transplanted human kidneys, the infusion
of multipotent adult progenitor cells (MAPCs) resulted in decreased injury markers and
improvements in both cortical microcirculation and urine output when compared to con-
trols [95]. In a similar study, infusion of MSCs resulted in downregulation of inflammatory
cytokines, improvements to tissue ATP concentrations and evidence of enhanced cellular
repair [96].

7.3. Therapeutic Agents

A different approach may be to add compounds that target specific immune processes.
An Australian study documented the use of a small animal model to determine the efficacy
of three drugs added to the NMP perfusate. Of a CD47 receptor agonist (αCD47ab), soluble
complement receptor 1 and recombinant thrombomodulin, the antibody therapy proved
the most effective in ameliorating IRI. When this was taken forward to a porcine NMP auto-
transplant model, the antibody was shown to significantly improve perfusion parameters
when compared to controls [97].

Cold ischaemia causes fibrinogen to accumulate in the proximal tubule epithelium [98].
Upon reperfusion, this is released and causes red cell aggregates that plug the renal
vasculature. Kidneys can be treated during NMP with the addition of plasminogen and
plasminogen activator to clear the microcirculation and improve function [98].

An exciting development recently applied to the kidney is the use of NMP to deliver
lentiviral vectors containing constructs that silence expression of major histocompatibility
complex (MHC) I and II in rats [99]. This approach has the potential to mask human
leucocyte antigen (HLA) differences between donor and recipient and reduce the risk of
acute rejection. This study reported no evidence of damage to the kidney; however, there
was a significant increase in the levels of inflammatory cytokines detected.

Restoring cellular processing during NMP after ischaemic injury inevitably leads to
the upregulation of pro-inflammatory cytokines. The perfusion conditions can be modified
by including a cytosorb filter in the NMP circuit to remove the circulating cytokines, which
reduces the inflammatory gene expression within the kidney [51].

7.4. Modifying the Duration of NMP

At present, reports of NMP in clinical kidney transplantation use short durations
of NMP (1–2 h). This is for logistical reasons and from evidence in experimental work
demonstrating that cellular ATP is restored within this timeframe.

A recent study in the Netherlands reported the effect on recipients over the age of 65
of receiving a kidney from an ECD following 2 h of NMP [100]. The follow up included
11 patients who received a kidney stored by NMP and a historical cohort of 53 patients who
received a kidney stored by HMP or SCS. This study found no differences in graft outcomes
within the 1 year follow up, indicating that within this timeframe a 2 h preservation
time is safe.

The PROlonged ex vivo normothermic PERfusion for kidney regeneration (PROPER)
clinical trial will evaluate the effects of extending NMP duration on patient outcomes
(Clinicaltrials.gov ID: NCT04693325). An initial cohort will examine the effects of 1 h NMP,
followed by 3 h and then 6 h, with patient outcomes determining progression to each
successive timepoint. The primary endpoint is eGFR at 6 months following transplantation

A recent study has reported 24 h NMP with discarded human kidneys [101]. The
longer perfusion times were accredited to the use of a perfusion circuit which permits urine
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recirculation. Conventionally, the urine produced during perfusion is isolated and the
volume replaced with a suitable fluid, such as Ringer’s lactate. In this study, the researchers
found use of urine recirculation led to a more stable environment with normal electrolyte
and acid–base balance compared to kidneys that did not have urine recirculation.

7.5. Assessment of Graft Quality during NMP

NMP offers enhanced capacity to monitor organ quality, with physiological tem-
peratures allowing measures of blood flow, urine production and macroscopic changes
detectable with visual inspection [102]. NMP technology has been used to assess kidneys
rejected for clinical use and allowed successful transplantation [46].

Transcriptomic signatures measured in samples of kidney tissue after NMP may be
able to predict graft outcome. A bioinformatic analysis performed by researchers at Wuhan
University Hospital has identified a set of five genes, the level of transcription of which
in post-implantation biopsies was predictive for DGF [103]. The authors postulate their
genomic model could have value when used in conjunction with genomic data acquired
from kidneys undergoing NMP.

This hypothesis has been proposed previously: an apparent DGF-linked gene signa-
ture was identified in NMP reconditioned kidneys. In this study, upregulation of compo-
nents of inflammatory pathways, such as tumour necrosis factor α (TNF-α) and nuclear
factor kappa B (NFκB), were linked with extended DGF durations, whereas enhancements
of oxidative phosphorylation genes had the opposite effect [51]. This infers observation of
the renal transcriptome during NMP may indicate post-transplant outcomes.

The use of final resistance values may also be useful for predicting poor outcomes after
NMP [104]. This study reported that between 59% and 70% of transplanted kidneys that
had a postoperative GFR of <30 ml/min at 6 months could be predicted by an endpoint
resistance of 0.3 mmHg/ml/min during regional NMP.

However, there may be limitations to the use of short NMP durations to predict
transplant outcomes [105] and extended durations may prove more prognostic.

8. Summary

Developments in hypothermic and normothermic machine perfusion technologies
show potential in clinical kidney transplantation. HMP has been more widely adopted
as the primary method of hypothermic preservation and modification of HMP protocols
to include oxygen supplementation may or may not be beneficial. Other translational
developments in the field of HMP include passive indications of graft quality through ob-
servation of perfusion parameters and more specific indications, such as ongoing metabolic
processes or biomarker release.

NMP also has the potential to improve kidney transplant outcomes, with better
measures of kidney assessment. Additionally, NMP shows great promise in the delivery
of therapeutics which can modify the graft during perfusion. While these are currently in
experimental stages, it is not inconceivable that advances similar to those discussed in this
review could enhance graft compatibility, quality and survival. The advances described
here are an indication that the full clinical potential of different machine perfusion strategies
as a whole have not yet been realised.
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Abbreviations

ATP adenosine triphosphate
CIT cold ischaemic time
CKD chronic kidney disease
COR controlled oxygenated rewarming
DBD donation after brain death
DCD donation after circulatory death
DGF delayed graft function
ECD extended criteria donor
eGFR estimated glomerular filtration rate
ESRD end-stage renal disease
GFR glomerular filtration rate
HBOC haemoglobin-based oxygen carrier
HLA human leucocyte antigen
HMP hypothermic machine perfusion
IRI ischaemia reperfusion injury
KPS-1 kidney perfusion solution 1
MAPCs multipotent adult progenitor cells
MHC major histocompatibility complex
MRI magnetic resonance imaging
MSCs mesenchymal stem cells
NEVKP normothermic ex vivo kidney perfusion
NFκB nuclear factor kappa B
NGAL neutrophil gelatinase-associated lipocalin
NMP normothermic machine perfusion
NMR nuclear magnetic resonance
NRP normothermic regional perfusion
PNF primary non-function
ROS reactive oxygen species
SCS static cold storage
TNF-α tumour necrosis factor α
UK United Kingdom
US United States
WIT warm ischaemic time
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