
Citation: Waynforth, D. Identifying

Risk Factors for Premature Birth in

the UK Millennium Cohort Using a

Random Forest Decision-Tree

Approach. Reprod. Med. 2022, 3,

320–333. https://doi.org/10.3390/

reprodmed3040025

Academic Editors: Paolo

Ivo Cavoretto and Anca

Maria Panaitescu

Received: 10 November 2022

Accepted: 7 December 2022

Published: 9 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

reproductive
medicine

Article

Identifying Risk Factors for Premature Birth in the UK
Millennium Cohort Using a Random Forest
Decision-Tree Approach
David Waynforth

School of Medicine, Faculty of Health Sciences & Medicine, Bond University, Robina, QLD 4223, Australia;
dwaynfor@bond.edu.au

Abstract: Prior research on causes of preterm birth has tended to focus on pathophysiological
processes while acknowledging the role of socioeconomic indicators. The present research explored
a wide range of factors plausibly associated with preterm birth informed by pathophysiological
and evolutionary life history perspectives on gestation length. To achieve this, a machine learning
ensemble classification data analysis approach, random forest (RF), was applied to the UK Millennium
Cohort (18,201 births). The results highlighted the importance of socioeconomic variables and parental
age in predicting preterm (before 37 completed weeks) and very preterm (before 32 weeks) birth.
Infants born in households with low income and with young fathers had an increased risk of both
very preterm and preterm birth. Maternal health and health problems during pregnancy were
not found to be useful predictors. The best-performing algorithm was for very preterm birth and
had 93% sensitivity and 100% specificity using six variables. Algorithms predicting preterm birth
before 37 weeks showed increased error, with out-of-bag error rates of about 7% versus only 1%
for those predicting very preterm birth. The poorer performance of algorithms predicting preterm
births to 37 weeks of gestation suggests that some preterm birth may not result from pathology
related to poor maternal health or social or economic disadvantage, but instead represents normal
life-history variation.
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1. Introduction

Normal gestation length in humans is 37 to 42 weeks from the last menstrual period.
Premature birth, which is defined as less than 37 weeks, is associated with increased
neonatal morbidity and mortality [1–3]. The risk of infant death is over 60% for infants born
very prematurely who do not receive specialist medical interventions [1]. While mortality
is dramatically lowered with neonatal intensive care, there are health-related sequelae to
premature birth which may persist into adulthood [4].

The predominant view in medicine is that premature birth before 37 weeks is most
likely to result from pathophysiological processes which affect the uterine environment.
Examples of pathologies include intrauterine infection, preeclampsia, vaginal bleeding
and anaemia in pregnancy [5–8], but also include longstanding maternal health problems
and effects of maternal behaviours, such as smoking [9–11]. One study which included a
large number of pathologies, maternal behaviours and sociodemographic variables found
that both pathophysiological factors and lack of physical exercise, maternal anxiety and
antibiotic use predicted high preterm birth risk [12]. Similar pathologies appear to underlie
both mildly preterm (32–36 weeks) and very preterm (before 32 weeks) birth [13], but with
some exceptions. Delivery due to hypertension and placental pathologies is more likely to
occur in mildly preterm birth [14].

In contrast to the predominant view that premature birth is necessarily indicative of
pathophysiology, understandings from theoretical and evolutionary biology developed in
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the last several decades suggest that not all premature birth is an outcome of pathological
processes in a straightforward way. Gestation length is a biological trait with a range of
normal variability between individuals and between pregnancies. Natural selection will
act on and constrain this variability. In addition, following the theory of parent–offspring
conflict [15], maternal and foetal interests in when birth should ideally occur will differ,
with the foetus typically maximising its survival at a longer gestation length than is optimal
from the mother’s perspective [16]. This is because the mother will maximise her genetic
representation in future generations by investing not only in her current pregnancy but
by allocating her energy optimally across her entire reproductive career. This situation for
a foetus can be reversed if foetal nutrition is limited enough for early birth to be in the
infant’s survival interests [17]. This perspective is less specific about what exactly causes
a mother to attempt to have a shortened gestation length: on top of pathophysiological
processes stemming from maternal illness, anything that limits maternal energy resources
may predict shorter gestation, including low socioeconomic status and social stressors in
her environment. In unpredictable, poor-quality environments, traits which accompany
premature birth may, counterintuitively, be beneficial for survival: small size at birth,
altered hypo-pituitary axis functioning, increased insulin resistance and altered growth
trajectories may be part of a suite of traits which represent evolutionary adaptations to
environmental adversity [17–19]. It is also possible given this evolutionary perspective
that preterm birth in some cases could occur in genetic lineages in which there has been
consistent exposure to stressors: preterm birth could occur not due to maternal factors but
to stress and poor nutrition in her lineage.

Both pathophysiological and parent–offspring conflict-derived perspectives suggest
that similar factors underlie premature birth. If maternal health is compromised and this
has led to her having to allocate more of her energy to keep herself alive with less to
allocate to her foetus, then a foetal decision to be born prematurely might be in the infant’s
own survival interests. However, very preterm birth means low survival chances for an
infant, and it is difficult to understand how this could ever be evolutionarily adaptive.
For this reason, it is expected that pathophysiology may better explain very premature
birth than other factors in the maternal environment, such as being in a low socioeconomic
status group.

The majority of past research has aimed to understand preterm birth by hypothesizing
that it is associated with a particular predictor of interest, statistically adjusting for other
potentially important variables. The aims of the present research were to take a machine
learning classification approach rather than using null hypothesis significance testing.
It aimed to create an algorithm with high sensitivity and specificity predicting preterm
birth, and to determine which factors are the most important out of a large number of
predictors, including measures of maternal health, health problems during pregnancy,
social, demographic, economic and behavioural variables. Machine learning classification
algorithms are well-suited for use in screening with a large number of predictors rather
than to determine whether a specific risk factor is associated with premature birth [20,21].

As it remains an unusual choice in public health research, it is worth outlining in
more detail why a machine learning algorithm for classification purposes was selected over
regression modelling. Machine learning, which was carried out in this research with an
ensemble decision-tree algorithm (random forest), has some advantages and disadvantages
compared with regression. A key advantage over regression-based statistical approaches is
that using a very large number of predictors (named features in machine learning) is not
problematic. Features which are highly correlated with each other can be included without
risking multicollinearity, and linear relationships between predictors and outcomes are not
necessary. This avoids the need to transform variables to achieve linearity, and categorical
data such as ethnic background do not need to be recoded as separate dummy variables
in a random forest algorithm. The main disadvantage is that the resulting predictive
algorithm is less easily interpretable. Neither multiple regression nor random forests have
very satisfactory means of model reduction to include only the most important predictors:
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forwards and backwards selection in variable reduction are not advisable in regression
modelling as they tend to result in different reduced models depending on the order in
which variables were entered or eliminated [22]. There is an analogous problem in random
forests where the number of features selected at each decision point in a classification tree
can affect which features are most important in the algorithm. Steps were undertaken to
minimise this problem.

In summary, the aim of this study was to apply machine learning to predict and
accurately classify cases of preterm and very preterm birth using a wide range of variables
that are likely risk factors. The risk factors were drawn from two perspectives: 1. That
preterm birth results from maternal or foetal pathophysiological processes or disease states,
instigated in some cases by environmental and socioeconomic factors. 2. That the timing
of birth reflects evolutionary processes such that mildly preterm birth is more likely to
result from stressful conditions in the maternal environment rather than from disease. Very
preterm birth on the other hand is unlikely to have any advantage associated with it for the
mother or infant and hence should have pathophysiological causes: low socioeconomic
status and social stressors should predict mildly preterm birth and pathophysiological
causes should predict very preterm birth.

2. Materials and Methods
2.1. Population and Sample

The UK Millennium cohort (henceforth MCS) is an ongoing longitudinal cohort of
18,818 live-born infants in the United Kingdom from September 2000 to August 2001.
Mothers were identified using Universal Child Benefit records and NHS Health Visitors [23].
Here, data were analysed using the first survey of the cohort, which took place 9 months
after the birth. Analyses linking the MCS data to hospital records for the births have found
the MCS birth data to be highly reliable, and not subject to significant recall bias [24,25]. A
cohort profile is available providing detail about the sample and sampling methods [26].
Data can be accessed without charge via the UK Data Service.

2.2. Dependent Variable

The dependent variable, premature birth, was measured in the MCS in days since
last menstrual period. The analysis was carried out twice, first for gestation length of less
than 37 full weeks, and for gestation length of less than 32 weeks. This was completed
to assess whether very preterm birth has different underlying aetiology, as outlined in
the introduction.

2.3. Independent Variables (Features)

The first MCS survey dataset was visually scanned for variables relevant to preterm
birth given prior literature on potential and known causes which are not genetic. It should
be noted that the MCS study data does not include information allowing direct analysis of
potential genetic causes of premature delivery. Most of the relevant MCS survey questions
fell into the following categories: maternal health, health problems during pregnancy,
paternal health, social, demographic, economic and behavioural variables such as parents’
alcohol and tobacco use. Seventy-two features were identified and included. Table 1 in the
results section displays these variables. Supplementary Materials S1 display the original
MCS variable names. One change that was made was to extract the ICD-10 codes for
maternal longstanding illness and for problems in the pregnancy. Categorical features
were created representing, for example, whether the mother had diabetes mellitus. Some
maternal illnesses were rare, and a decision was made to create categorical variables only
for illnesses which had at least 40 cases (0.2% of the sample) regardless of whether the
illness would be likely to directly affect the pregnancy. Variables indicating whether there
was any longstanding illness or maternal illness during pregnancy were retained so that
rare conditions were included in the aggregated feature identifying whether any maternal
illness was present.
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2.4. Data Analysis

The MCS data were analysed using random forests (RF), a supervised machine learning
decision tree algorithm. For a brief non-technical introduction see [27], and for more
detail see [28,29]. Other machine learning classification algorithms are available, such
as XGBOOST. RF was chosen over XGBOOST due to its availability in commonly used
statistical software, including Stata, SPSS Statistics (using Python plug-ins) and open-
source software such as R and the R graphical interface BlueSky Statistics. In addition,
algorithm optimisation (hyper-tuning) is easily implemented in RF. The RF algorithm uses
two-thirds of the data for creating the algorithm (the training set), and with bootstrapping
creates sets of decision trees with the bootstrapped subsets of the data which comprise
a decision rule at each branch node. Overfitting is avoided in RF using bootstrapping
and averaging (bagging). The remaining third of the data (the test set) is used for cross-
validation: out-of-bag error is the estimate of the proportion of observations in the test
set that were misclassified by the algorithm. Missing data occurred due to unanswered
interview items on a small number of variables. The RF algorithm contained a proximity
algorithm to handle missing observations for features. Observations with a missing value
for the outcome variable were dropped from the analysis.

All analyses were carried out in Stata 16. For the RF model, the Python plug-in Rforest
was used [30]. Algorithm performance was enhanced by hyper-tuning: finding optimal
settings for how many variables should be randomly selected for inclusion in creating each
decision tree, and the number of iterations or number of decision trees created. This was
carried out using Stata code developed by Schonlau and Zou [30]. Stata code, hyper-tuning
cross-validation and out-of-bag error scores are shown in the Supplementary Materials
file. Because the number of variables available for selection at each split in the decision
trees affects feature importance scores, the best ten hyper-tuning results for determining
the number of variables at each split were averaged to create a list of features with the
highest overall importance scores. Feature reduction was carried out to attempt to create an
efficient algorithm both in terms of avoiding creating an algorithm requiring data for a large
number of variables, and minimising computer processor time if the algorithm was applied.
Feature reduction was carried out using forward selection to produce the algorithm with
the fewest features while maintaining a low out-of-bag error statistic. Hyper-tuning was
repeated to optimise algorithm performance on the reduced-feature algorithms.

3. Results

Tables 1 and 2 show descriptive statistics for all 72 features and the outcome variables.
Table 3 contains a summary of the full 72 feature algorithm results for delivery before 32
and 37 weeks of gestation, as well as reduced algorithms. Sensitivity and specificity values
reported in Table 3 were produced by applying the algorithm back to the entire dataset, not
the third of the data which was the test set (and from which the out-of-bag error estimate
was calculated). The best-performing algorithm predicted very premature delivery (before
32 weeks) with 93% sensitivity using only six features, which were the top six listed in
Figure 1. Delivery before 37 weeks proved more difficult to predict: while the 72-feature
model had 70% sensitivity, it was not possible to maintain low out-of-bag error and high
sensitivity in the feature reduction process. The nine-feature algorithm displayed in Table 3
was selected as providing feature reduction while maintaining low out-of-bag error and
reasonably high sensitivity.
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Table 1. Descriptive statistics for the outcome and binary predictors.

Variable Obs Yes No

Premature birth, before 37 weeks 18,201 1361 16,840

Very premature birth, before 32 weeks 18,201 194 18,007

Pregnancy illness Yes No

Dorsopathies 18,201 382 17,819

Sciatica 18,201 225 17,796

Non-trivial infections 18,201 303 17,898

Anaemia 18,201 362 17,839

UTI 18,201 509 17,692

Eclampsia 18,201 994 17,207

Hyperemesis 18,201 797 17,404

Bleeding 18,201 1115 17,086

Any illness reported in pregnancy 18,196 6871 11,325

Reported longstanding illnesses occurring in more than 0.2% of the sample Yes No

Endometriosis 18,201 59 18,142

Arthritis 18,201 72 18,129

Psoriasis 18,201 41 18,160

Dermatitis 18,201 71 18,130

Irritable bowel syndrome 18,201 64 18,137

Asthma 18,201 805 17,396

Hypertension 18,201 82 18,119

Hearing loss 18,201 51 18,150

Migraine 18,201 56 18,145

Epilepsy 18,201 91 18,110

Clinical depression 18,201 282 17,919

Karotype 47 (xxx) 18,201 43 18,158

Diabetes mellitus 18,201 93 18,108

Thyroid problems 18,201 171 18,030

Anaemia 18,201 44 18,157

Mother in paid work while pregnant 18,183 11,364 6819

Partner in paid work at start of pregnancy 12,963 11,847 1116

Pregnancy result of fertility treatment 18,194 476 17,718

Mother reports getting depressed 18,196 4468 13,728

Mother reports partner get in violent rage 12,584 405 12,179

Mother ever was a smoker 11,298 1767 9531

Partner has depression 13,022 1208 11,814

Partner has diabetes 13,020 160 12,860

Partner has longstanding illness 13,030 2647 10,383

Home is damp 18,163 2484 15,679

Grandparents live in household 18,201 1414 16,787

Father not in household 18,175 3102 15,073

Infant sex 18,201 9337M 8864F
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Table 2. Descriptive statistics (non-binary variables).

Variable Name Obs Mean SD Min Max

OECD equivalised income 18,024 289.7 196.3 13.2 1282.8

Father’s age 18,165 31.9 5.7 15 68

Number of children in household 18,201 0.93 1.08 0 9

Age mother left full-time education (yrs) 18,121 17.6 2.8 7 36

Mother’s ethnic group (8 categories) white, mixed, Indian,
Pakistani, Bangladeshi, Caribbean, African, others. 18,172 1.6 1.6 1 8

Birth interval from last child (months) 8870 42.8 27.9 9 318

Mother’s age 18,199 20.1 5.9 13 51

Age father left full-time education 13,001 17.6 2.9 0 35

Father’s qualification MCS code (1 = highest) 13,012 24.8 38.5 1 96

Father’s life satisfaction (10 = highest) 12,578 7.8 1.7 1 10

Father feels he can run own life (1 = agree) 12,579 1.3 0.6 1 3

Father feels has control over life (1 = agree) 12,579 1.3 0.7 1 3

Father reports mother has used force (1 = Yes, 2 = no, 3 = refusal) 12,290 1.9 0.3 1 3

Partner happy with relationship (1 = lowest) 12,278 5.7 1.4 1 7

Partner suspects on brink of separation (1 = Yes) 12,289 4.6 0.7 1 6

Partner cigarettes per day before pregnancy (descriptive
for smokers) 5330 13 9.4 0 70

Partner’s self-rated general health (1 = healthy) 13,032 1.9 0.7 1 4

Neighbourhood vandalism (1 = least) 18,137 3.1 0.9 1 4

Neighbourhood pollution, grime (1 = least) 17,997 3.1 0.9 1 4

Mother’s satisfaction with area (1 = satisfied) 18,165 1.9 1.1 1 5

Housing (house = 1, to sharing = 4. Not codable = 5) 18,179 1.4 4.1 1 5

Mother suspects on brink of separation (1 = Yes) 14,241 4.7 0.7 1 6

Mother happy with relationship (1 = lowest) 14,234 5.7 1.4 1 7

Mother reports father has used force (1 = Yes, 2 = no, 3 = refusal) 14,240 2.0 0.2 1 3

Mother’s unit alcohol per day before pregnant (descriptive
shown for drinkers only) 3675 1.7 1.4 0 22

Mother’s cigarettes per day before pregnancy (descriptive shown
for smokers only) 6877 11.8 8.1 0 80

Singleton birth = 1, twins = 2, triplets = 3 18,201 1.0 0.1 1 3

Mother’s maths ability: change in shops (1 = able) 18,172 1.1 0.3 1 3

Mother’s literacy: filling in forms (1 = able) 18,172 1.1 0.4 1 3

Mother’s SES by occupation (SOC2000) 18,201 4856.8 2884.6 0 9259

Mother’s life satisfaction (10 = highest) 17,596 7.7 1.8 1 10

Mother feels she can run own life (1 = agree) 17,607 1.2 0.6 1 3

Mother feels has control over life (1 = agree) 17,607 1.4 0.7 1 3

Mother feels she gets what she wants (1 = agree) 17,609 2.0 0.5 1 3
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Table 3. Summary of the RF results for algorithms with 72 features, and after feature reduction.
Lower out-of-bag error indicates less error.

Algorithm Out-of-Bag
Error

Hyper-Tuning: n.
Iterations/n. Variables

at Each Split

Sensitivity (n. Correctly
Classified Premature/n.

Premature)

Specificity (Number
Correctly Classified Not

Premature/n. Not Premature)

Delivery before 32
weeks, 72 features 0.0107 20/7 68% (131/194) 100% (18,007/18,007)

Delivery before 32
weeks, algorithm

reduced to 6 features
0.0109 25/6 93% (180/194) 100% (18,007/18,007)

Delivery before 37
weeks, 72 features 0.0752 25/12 70% (957/1361) 100% (16,840/16,840)

Delivery before 37
weeks, algorithm

reduced to 9 features
0.0745 30/3 60% (821/1361) 100% (16,840/16,840)
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Figure 1. Importance scores for features with average importance scores above 0.6 in 72-feature RF
algorithms predicting very premature birth before 32 weeks.

Figure 1 shows all features with average importance scores above 0.6 for predicting
very premature birth. Feature importance measures the contribution of each variable to
the overall algorithm prediction process. The scores are normalised: the highest value is
always one, and a score of zero would reflect a variable which made no positive predictive
contribution. In this analysis, they were averaged over the ten best-scoring 72 feature algo-
rithms in hyper-tuning validation for the number of variables selected at each split. Figure 2
displays the same information for predicting birth before 37 weeks of completed gestation.
Both figures show that income, occupation and parental age were the best predictors of
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premature birth. Relationship and life satisfaction additionally had high importance scores.
Maternal health and pregnancy problems were not necessary for successfully predicting
prematurity. RF results do not include a parameter estimate which indicates the direction
of an effect, as they are not linear models. Figures 3 and 4 display two-way scatter plots
with lowess fit lines so that the shapes of the relationships between predictor and preterm
birth for the most important features can be viewed. The Supplementary Materials includes
importance scores for all 72 features. Importance scores can be near zero for features with
little or no predictive utility in the algorithm, and this was the case for alcohol use and some
common maternal illnesses unlikely to be associated with premature birth (e.g., psoriasis,
sciatica, dermatitis and endometriosis). The number of features with low predictive utility
may in part explain why the 72-feature algorithm in the algorithm predicting delivery
before 32 weeks had higher out-of-bag error than algorithms with fewer features included.

Reprod. Med. 2022, 3, FOR PEER REVIEW 8 
 

 

 
Figure 1. Importance scores for features with average importance scores above 0.6 in 72-feature RF 
algorithms predicting very premature birth before 32 weeks. 

 
Figure 2. Importance scores for features with average importance scores above 0.6 in 72-feature RF 
algorithms predicting premature birth before 37 weeks. 
Figure 2. Importance scores for features with average importance scores above 0.6 in 72-feature RF
algorithms predicting premature birth before 37 weeks.



Reprod. Med. 2022, 3 328Reprod. Med. 2022, 3, FOR PEER REVIEW 9 
 

 

 
Figure 3. Scatter plots with lowess-smoothed trend lines showing relationships between the pro-
portion of infants born before 32 weeks (y-axis), and the six predictors in the RF algorithms with the 
highest feature importance scores. SES by job (SOC2000) is coded from high to low, and relationship 
and life satisfaction are coded from low to high satisfaction. Data points are hidden to avoid visual 
confusion and show the trends clearly. 

Figure 3. Scatter plots with lowess-smoothed trend lines showing relationships between the propor-
tion of infants born before 32 weeks (y-axis), and the six predictors in the RF algorithms with the
highest feature importance scores. SES by job (SOC2000) is coded from high to low, and relationship
and life satisfaction are coded from low to high satisfaction. Data points are hidden to avoid visual
confusion and show the trends clearly.



Reprod. Med. 2022, 3 329Reprod. Med. 2022, 3, FOR PEER REVIEW 10 
 

 

 
Figure 4. Scatter plots with lowess-smoothed trend lines showing relationships between the pro-
portion of infants prematurely born before 37 weeks (y-axis), and the nine predictors in the RF al-
gorithms with the highest feature importance scores. SES by job (SOC2000) and academic qualifica-
tions are coded from high to low, and relationship and life satisfaction are coded from low to high 
satisfaction. Data points are hidden to avoid visual confusion and show the trends clearly. 

4. Discussion 
4.1. Summary of Main Findings 

This research had two aims. The first was to explore whether a useful screening tool 
could be produced using an RF approach with medical records and interview data which 
could be obtained relatively easily from pregnant women. The second was to determine 
what is most important for predicting premature birth, excluding measures of genetic risk, 
which were not available for the dataset used in this research. To address the first goal, 
93% sensitivity was achieved in predicting very preterm birth (before 32 completed 

Figure 4. Scatter plots with lowess-smoothed trend lines showing relationships between the propor-
tion of infants prematurely born before 37 weeks (y-axis), and the nine predictors in the RF algorithms
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4. Discussion
4.1. Summary of Main Findings

This research had two aims. The first was to explore whether a useful screening tool
could be produced using an RF approach with medical records and interview data which
could be obtained relatively easily from pregnant women. The second was to determine
what is most important for predicting premature birth, excluding measures of genetic risk,
which were not available for the dataset used in this research. To address the first goal,
93% sensitivity was achieved in predicting very preterm birth (before 32 completed weeks)
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with only six features. This algorithm would require little data collection time and little
computing time to produce a screening result.

The features with the highest importance scores, indicating that they had the most
utility for classifying preterm birth, were almost identical for preterm and very preterm
birth. These were parental age, socioeconomic and life satisfaction measures. For the
purposes of developing a screening tool for premature delivery, the results suggest that
socioeconomic factors have more utility for predicting delay than maternal health variables
representing individual illnesses. This is not surprising given the statistical methodology,
as features measuring illnesses which only apply to a small proportion of individuals will
not be as important in an algorithm as features which predict premature birth and apply to
a larger proportion of the population.

4.2. Algorithm Performance

Predicting delivery before 37 weeks using RF was less successful than for very preterm
birth. The 72-feature algorithm had similar sensitivity to the 72-feature algorithm for
delivery before 32 weeks, but reducing the feature number to create a more efficient
algorithm proved difficult. The out-of-bag error was generally above 7% for algorithms
predicting delivery before 37 weeks and was around 1% for algorithms predicting delivery
before 32 weeks (see Table 3). This occurred despite the fact that RF should be poorer
at predicting minority class membership in a more unbalanced dataset (one with only
a small proportion of cases with preterm birth). This suggests that preterm birth from
32 to 36 weeks includes births which have not resulted from the risk factors captured in
this study using the MCS data. As most of the MCS variables reflect disadvantage or
pathophysiology, this is suggestive of mildly preterm birth not resulting from these factors.

4.3. Support for the Study Hypotheses

Researchers using evolutionary perspectives have suggested that preterm and very
preterm delivery may have different underlying biological causes, with birth closer to
37 weeks less likely to represent pathophysiology and more likely to be early birth due
to foetal adaptation to poor conditions or nutrition in the uterus [17–19]. The expectation
given this was that pathophysiological processes would be more important in predicting
very preterm birth. This was not supported by the results. While the same features had
high importance scores for both outcomes, there were differences in the shapes of the
associations which suggest differences in causal factors between preterm and very preterm
birth (see Figures 3 and 4). Of note, mothers over 35 years old had an increased risk of
premature birth but not of very premature birth. Given that all of the predictors included
in the algorithms represent illness or disadvantage in some way, the poorer performance
of algorithms predicting preterm birth to 37 weeks supports the observation made in the
previous paragraph, which is that illness and socioeconomic disadvantage are not the
primary drivers of preterm birth from 32-36 weeks.

4.4. Similarity and Differences to Past Research

A large number of past studies have taken a biomedical approach to the causes
of preterm birth, focussing on intrauterine infection, decidual haemorrhage and other
pathophysiological causes [31]. Past research has also highlighted the importance of
socioeconomic factors in preterm birth, and biopsychosocial approaches have identified
roles of and pathways connecting maternal stress, anxiety and living conditions to preterm
birth [12,32–35]. The most similar past study in terms of the statistical approach taken found
a different group of variables predicted preterm birth, including maternal anxiety, and low
physical exercise but not age, socioeconomic or paternal factors [12]. The difference between
studies may in part be due to differences in variable selection procedures: maternal and
paternal ages showed a u-shaped association with preterm birth that would be favoured
in the RF approach applied here more than in the variable reduction procedures by Della
Rosa et al. [12].
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One group of features was more important in the RF algorithms than expected given
past research. Partner-related or paternal variables were included because they may
signal stress and disadvantage in the maternal environment. However, variables drawn
from the MCS interview with partners often had higher importance scores than similar
variables reported by mothers, such as for reported life satisfaction and happiness with
their relationship. In addition, the risk of premature birth was lowest at moderate levels
of reported satisfaction and higher for those who were either very unhappy or extremely
happy with life and their marriage/relationship. While fathers will no doubt affect the
quality of life and stress experienced by their female partner and this in turn will affect
the foetal experience of stress, the importance of paternal data, including paternal age in
predicting premature birth warrants further investigation.

4.5. Study limitations

While past research on potential biases in the MCS birth data suggests that the birth
data are unbiased [24,25], a retrospective cohort study of preterm birth is not ideal: for
example, there may be a failure to capture data on infants who were live-born but who
died as neonates. On the other hand, the MCS allows the use of a wide range of potentially
important variables which could inform future prospectively designed studies of preterm
birth. A further advantage of the MCS is that the data were not sourced from medical
records, which typically offer little socioeconomic or social information and will therefore
tend to restrict the discussion of preterm birth to medically related variables only.

From a statistical perspective, it is highly likely that further improvements to the algo-
rithms could be made using approaches to better handle unbalanced data: very preterm
birth will necessarily be unbalanced in that only around one percent of births are likely
to occur before 32 weeks of gestation. Second, RF could be compared with similar algo-
rithms such as XGBOOST to ascertain which machine learning tool results in the least
classification error.

5. Conclusions

While maternal and pregnancy-related illnesses have been demonstrated to predict
preterm birth [5–11], from a screening perspective, socioeconomic variables, quality of life
and the relationship between parents appear to have more predictive utility than maternal
health problems. These findings support the view presented in the introduction that not
all preterm birth represents pathophysiology in a straightforward way. However, the
results did not support this view in an expected way: instead of environment and stress-
related causes predominating in algorithms of preterm birth up to 37 weeks but not for
very preterm birth, all of the algorithms predicting preterm birth to 37 weeks of gestation
showed poorer performance (higher error) than those predicting very preterm birth. Given
the large number and wide range of variables included to measure pathophysiology, stress
and poverty, these results suggest that some preterm birth may not result from pathology
related to poor maternal health or social or economic disadvantage, but instead represents
normal life history variation.
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with original MCS variable names.
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