A Review of Systemic Hypertension in the Cardiac Transplant Population: Pathophysiology, Management, and Future Directions
Abstract
1. Introduction
2. Risk Factors
3. Pathogenesis
4. Diagnostic Workup of Post-Cardiac Transplant Hypertension
5. Blood Pressure Goals
6. Non-Pharmacological Therapies for Treatment of Hypertension in Heart Transplant Recipients
7. Anti-Hypertensive Medications in Transplant Recipients
7.1. Calcium Channel Blockers (CCBs)
7.2. RAAS Blockade
7.3. Beta Blockers
7.4. Diuretics
7.5. Vasodilators
8. Management of Immunosuppression for Treatment of Hypertension in Heart Transplant Recipients
9. Novel Therapies and Existing Knowledge Gaps
10. Clinical Practice Application
11. Prognosis
12. Conclusions
13. Limitations
14. Key Points
- A 70–90% incidence of HTN in heart transplant patients attributable to CNI therapy, which cause renal vasoconstriction, stimulating the RAAS, causing sodium and fluid retention.
- Lack of normal “nocturnal decline” of blood pressure due to cardiac denervation is also an important cause.
- Confirm hypertension diagnosis in cardiac transplant patients with 24 h ambulatory BP monitoring
- Lifestyle modification as well as management of comorbidities such as OSA and obesity is essential
- Multiple anti-hypertensive agents are available; choose the right agent for the individual patient using personalized medicine based on other comorbidities.
- Non-DHP CCB are first-line to alleviate CNI-induced vasoconstriction.
- RAAS blockade should be considered in patients with co-existing CKD or proteinuria.
- Beta blockers can be safely used in heart transplant patients who are not bradycardic.
- Immunosuppression management—Wean steroids as early as safely possible, Wean CNI to the lowest effective dose individualized to each patient.
- There exist knowledge gaps—there exists no data for the latest therapies such as renal nerve denervation, ARNi, SGLT2i, Finerenone in cardiac transplant recipients.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lund, L.H.; Edwards, L.B.; Kucheryavaya, A.Y.; Benden, C.; Christie, J.D.; Dipchand, A.I.; Dobbels, F.; Goldfarb, S.B.; Levvey, B.J.; Meiser, B.; et al. The registry of the international society for heart and lung transplantation: Thirty-first official adult heart transplant report—2014; Focus theme: Retransplantation. J. Heart Lung Transplant. 2014, 33, 996–1008. [Google Scholar] [CrossRef]
- Campbell, P.T.; Krim, S.R. Hypertension in cardiac transplant recipients: Tackling a new face of an old foe. Curr. Opin. Cardiol. 2020, 35, 368–375. [Google Scholar] [CrossRef]
- Olivari, M.T.; Antolick, A.; Ring, W.S. Arterial-hypertension in heart-transplant recipients treated with triple-drug immunosuppressive therapy. J. Heart Transplant. 1989, 8, 34–39. [Google Scholar] [PubMed]
- Roche, S.L.; Kaufmann, J.; Dipchand, A.I.; Kantor, P.F. Hypertension After Pediatric Heart Transplantation is Primarily Associated With Immunosuppressive Regimen. J. Heart Lung Transplant. 2008, 27, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Hošková, L.; Málek, I.; Kopkan, L.; Kautzner, J. Pathophysiological mechanisms of calcineurin inhibitor-induced nephrotoxicity and arterial hypertension. Physiol. Res. 2017, 66, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D.O.; Barr, M.L.; Radovancevic, B.; Renlund, D.G.; Mentzer, R.M., Jr.; Smart, F.W.; Tolman, D.E.; Frazier, O.; Young, J.B.; VanVeldhuisen, P. A randomized, multicenter comparison of tacrolimus and cyclosporine immunosuppressive regimens in cardiac transplantation: Decreased hyperlipidemia and hypertension with tacrolimus. J. Heart Lung Transplant. 1999, 18, 336–345. [Google Scholar] [CrossRef]
- Kobashigawa, J.A.; Patel, J.; Furukawa, H.; Moriguchi, J.; Yeatman, L.; Takemoto, S.; Marquez, A.; Shaw, J.; Oeser, B.; Subherwal, S.; et al. Five-year results of a randomized, single-center study of tacrolimus vs microemulsion cyclosporine in heart transplant patients. J. Heart Lung Transplant. 2006, 25, 434–439. [Google Scholar] [CrossRef]
- Eisen, H.J. Hypertension in heart transplant recipients: More than just cyclosporine. J. Am. Coll. Cardiol. 2003, 41, 433–434. [Google Scholar] [CrossRef]
- Braith, R.W.; Mills, R.M.; Wilcox, C.S.; Convertino, V.; Davis, G.L.; Limacher, M.C.; Wood, C. Fluid homeostasis after heart transplantation: The role of cardiac denervation. J. Heart Lung Transplant. 1996, 15, 872–880. [Google Scholar]
- de Souza-Neto, J.D.; de Oliveira, Í.M.; Lima-Rocha, H.A.; Oliveira-Lima, J.W.; Bacal, F. Hypertension and arterial stiffness in heart transplantation patients. Clinics 2016, 71, 494–499. [Google Scholar] [CrossRef]
- Gus, M.; Schiavo, N.; Da Costa, A.R. Systemic hypertension in heart transplant recipients. Arq. Bras. Cardiol. 1999, 72, 634–640. [Google Scholar] [CrossRef] [PubMed]
- Farge, D.; Julien, J.; Amrein, C.; Guillemain, R.; Vulser, C.; Mihaileanu, S.; Dreyfus, G.; Carpentier, A. Effect of systemic hypertension on renal function and left ventricular hypertrophy in heart transplant recipients. J. Am. Coll. Cardiol. 1990, 15, 1095–1101. [Google Scholar] [CrossRef] [PubMed]
- Nygaard, S.; Christensen, A.H.; Sletner, L.; Rolid, K.; Nytrøen, K.; Gullestad, L.; Fiane, A.; Thaulow, E.; Døhlen, G.; Saul, J.P.; et al. Predictors of Hypertension Development 1 Year After Heart Transplantation. Transplantation 2022, 106, 1656–1665. [Google Scholar] [CrossRef] [PubMed]
- Radermacher, J.; Meiners, M.; Bramlage, C.; Kliem, V.; Behrend, M.; Schlitt, H.J.; Pichlmayr, R.; Koch, K.M.; Brunkhorst, R. Pronounced renal vasoconstriction and systemic hypertension in renal transplant patients treated with cyclosporin A versus FK 506. Transpl. Int. 1998, 11, 3–10. [Google Scholar] [CrossRef]
- Ye, F.; Ying-Bin, X.; Yu-Guo, W.; Hetzer, R. Tacrolimus Versus Cyclosporine Microemulsion for Heart Transplant Recipients: A Meta-analysis. J. Heart Lung Transplant. 2009, 28, 58–66. [Google Scholar] [CrossRef]
- Weidle, P.J.; Vlasses, P.H. Systemic hypertension associated with cyclosporine: A review. Drug Intell. Clin. Pharm. 1988, 22, 443–451. [Google Scholar] [CrossRef]
- Ozdogan, E.; Banner, N.; Fitzgerald, M.; Musumeci, F.; Khaghani, A.; Yacoub, M. Factors influencing the development of hypertension after heart transplantation. J. Heart Transplant. 1990, 9, 548–553. [Google Scholar]
- Prókai, Á.; Csohány, R.; Sziksz, E.; Pap, D.; Balicza-Himer, L.; Boros, S.; Magda, B.; Vannay, Á.; Kis-Petik, K.; Fekete, A.; et al. Calcineurin-inhibition Results in Upregulation of Local Renin and Subsequent Vascular Endothelial Growth Factor Production in Renal Collecting Ducts. Transplantation 2016, 100, 325–333. [Google Scholar] [CrossRef]
- Nishiyama, A.; Kobori, H.; Fukui, T.; Zhang, G.-X.; Yao, L.; Rahman, M.; Hitomi, H.; Kiyomoto, H.; Shokoji, T.; Kimura, S.; et al. Role of Angiotensin II and Reactive Oxygen Species in Cyclosporine A–Dependent Hypertension. Hypertension 2003, 42, 754–760. [Google Scholar] [CrossRef]
- Sudhir, K.; MacGregor, J.S.; DeMarco, T.; De Groot, C.J.; Taylor, R.N.; Chou, T.M.; Yock, P.G.; Chatterjee, K. Cyclosporine impairs release of endothelium-derived relaxing factors in epicardial and resistance coronary arteries. Circulation 1994, 90, 3018–3023. [Google Scholar] [CrossRef]
- Cornu, C.; Dufays, C.; Gaillard, S.; Gueyffier, F.; Redonnet, M.; Sebbag, L.; Roussoulières, A.; Gleissner, C.A.; Groetzner, J.; Lehmkuhl, H.B.; et al. Impact of the reduction of calcineurin inhibitors on renal function in heart transplant patients: A systematic review and meta-analysis. Br. J. Clin. Pharmacol. 2014, 78, 24–32. [Google Scholar] [CrossRef]
- Aparicio, L.S.; Alfie, J.; Barochiner, J.; Cuffaro, P.E.; Rada, M.; Morales, M.; Galarza, C.; Waisman, G.D. Hypertension: The Neglected Complication of Transplantation. ISRN Hypertens. 2013, 2013, 165937. [Google Scholar] [CrossRef]
- Issa, N.; Kukla, A.; Ibrahim, H.N. Calcineurin inhibitor nephrotoxicity: A review and perspective of the evidence. Am. J. Nephrol. 2013, 37, 602–612. [Google Scholar] [CrossRef] [PubMed]
- Veenstra, D.L.; Best, J.H.; Hornberger, J.; Sullivan, S.D.; Hricik, D.E. Incidence and long-term cost of steroid-related side effects after renal transplantation. Am. J. Kidney Dis. 1999, 33, 829–839. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, G.; Coutance, G.; Van Keer, J.; Raynaud, M.; Aubert, O.; Bories, M.; Bruneval, P.; Varnous, S.; Leprince, P.; Empana, J.; et al. Determinants of trajectories of cardiac allograft vasculopathy after heart transplantation: A population based study. Eur. Heart J. 2020, 41, ehaa946-1288. [Google Scholar] [CrossRef]
- Nassar, M.; Nso, N.; Lakhdar, S.; Kondaveeti, R.; Buttar, C.; Bhangoo, H.; Awad, M.; Sheikh, N.S.; Soliman, K.M.; Munira, M.S.; et al. New onset hypertension after transplantation. World J. Transplant. 2022, 12, 42–54. [Google Scholar] [CrossRef]
- Heegaard, B.; Nelson, L.M.; Gustafsson, F. Steroid withdrawal after heart transplantation in adults. Transpl. Int. 2021, 34, 2469–2482. [Google Scholar] [CrossRef]
- Ciarka, A.; Najem, B.; Cuylits, N.; Leeman, M.; Xhaet, O.; Narkiewicz, K.; Antoine, M.; Degaute, J.-P.; van de Borne, P. Effects of peripheral chemoreceptors deactivation on sympathetic activity in heart transplant recipients. Hypertension 2005, 45, 894–900. [Google Scholar] [CrossRef]
- Scherrer, U.; Vissing, S.F.; Morgan, B.J.; Rollins, J.A.; Tindall, R.S.; Ring, S.; Hanson, P.; Mohanty, P.K.; Victor, R.G. Cyclosporine-Induced Sympathetic Activation and Hypertension after Heart Transplantation. N. Engl. J. Med. 1990, 323, 693–699. [Google Scholar] [CrossRef]
- Rundqvist, B.; Casale, R.; Bergmann-Sverrisdottir, Y.; Friberg, P.; Mortara, A.; Elam, M. Rapid fall in sympathetic nerve hyperactivity in patients with heart failure after cardiac transplantation. J. Card. Fail. 1997, 3, 21–26. [Google Scholar] [CrossRef]
- Braith, R.W.; Plunkett, M.B.; Mills, R.M. Cardiac output responses during exercise in volume-expanded heart transplant recipients. Am. J. Cardiol. 1998, 81, 1152–1156. [Google Scholar] [CrossRef]
- Braith, R.W.; Mills, R.M.; Wilcox, C.S.; Davis, G.L.; Wood, C.E. Breakdown of blood pressure and body fluid homeostasis in heart transplant recipients. J. Am. Coll. Cardiol. 1996, 27, 375–383. [Google Scholar] [CrossRef]
- Braith, R.W.; Wood, C.; Limacher, M.C.; Pollock, M.L.; Lowenthal, D.T.; Phillips, M.; Staples, E.D. Abnormal neuroendocrine responses during exercise in heart transplant recipients. Circulation 1992, 86, 1453–1463. [Google Scholar] [CrossRef] [PubMed]
- Braith, R.W.; Mills, R.M.; Wilcox, C.S.; Davis, G.L.; Hill, J.; Wood, C. High-dose angiotensin-converting enzyme inhibition restores body fluid homeostasis in heart-transplant recipients. J. Am. Coll. Cardiol. 2003, 41, 426–432. [Google Scholar] [CrossRef] [PubMed]
- Idema, R.N.; Van Den Meiracker, A.H.; Balk, A.H.M.M.; Bos, E.; Schalekamp, M.A.D.H.; Man In ’TVeld, A.J. Abnormal diurnal variation of blood pressure, cardiac output, and vascular resistance in cardiac transplant recipients. Circulation 1994, 90, 2797–2803. [Google Scholar] [CrossRef] [PubMed]
- Imai, Y.; Abe, K.; Sasaki, S.; Minami, N.; Nihei, M.; Munakata, M.; Murakami, O.; Matsue, K.; Sekino, H.; Miura, Y. Altered circadian blood pressure rhythm in patients with Cushing’s syndrome. Hypertension 1988, 12, 11–19. [Google Scholar] [CrossRef]
- Walker, A.H.; Locke, T.J.; Braidley, P.C.; Al-Mohammed, A. The importance of 24 hour ambulatory blood pressure monitoring after thoracic organ transplantation. J. Heart Lung Transplant. 2005, 24, 1770–1773. [Google Scholar] [CrossRef]
- Bansal, N.; Raedi, W.A.; Medar, S.S.; Abraham, L.; Beddows, K.; Hsu, D.T.; Lamour, J.M.; Mahgerefteh, J. Masked Hypertension in Pediatric Heart Transplant Recipients. Pediatr. Cardiol. 2023, 44, 1003–1008. [Google Scholar] [CrossRef] [PubMed]
- Lipkin, G.W.; Tucker, B.; Giles, M.; Raine, A.E.G. Ambulatory blood pressure and left ventricular mass in cyclosporin- and non-cyclosporin-treated renal transplant recipients. J. Hypertens. 1993, 11, 439–442. [Google Scholar] [CrossRef]
- Velleca, A.; Shullo, M.A.; Dhital, K.; Azeka, E.; Colvin, M.; DePasquale, E.; Farrero, M.; García-Guereta, L.; Jamero, G.; Khush, K.; et al. The international society of heart and lung transplantation guidelines for the care of heart transplant recipients TASK FORCE 3: Long-term Care of Heart Transplant Recipients. J. Heart Lung Transplant. 2010, 29, 914–956. [Google Scholar]
- Haydar, A.A.; Covic, A.; Jayawardene, S.; Agharazii, M.; Smith, E.; Gordon, I.; O’sullivan, H.; Goldsmith, D.J.A. Insights from ambulatory blood pressure monitoring: Diagnosis of hypertension and diurnal blood pressure in renal transplant recipients. Transplantation 2004, 77, 849–853. [Google Scholar] [CrossRef] [PubMed]
- Rimoldi, S.F.; Scherrer, U.; Messerli, F.H. Secondary arterial hypertension: When, who, and how to screen? Eur. Heart J. 2013, 35, 1245–1254. [Google Scholar] [CrossRef] [PubMed]
- Davies, C.W.H.; Crosby, J.H.; Mullins, R.L.; Barbour, C.; Davies, R.J.O.; Stradling, J.R. Case-control study of 24 hour ambulatory blood pressure in patients with obstructive sleep apnoea and normal matched control subjects. Thorax 2000, 55, 736–740. [Google Scholar] [CrossRef]
- Whaley-Connell, A.T.; Sowers, J.R.; Stevens, L.A.; McFarlane, S.I.; Shlipak, M.G.; Norris, K.C.; Chen, S.-C.; Qiu, Y.; Wang, C.; Li, S.; et al. CKD in the United States: Kidney Early Evaluation Program (KEEP) and National Health and Nutrition Examination Survey (NHANES) 1999-2004. Am. J. Kidney Dis. 2008, 51, S13–S20. [Google Scholar] [CrossRef] [PubMed]
- Garovic, V.D.; Textor, S.C. Renovascular hypertension and ischemic nephropathy. Circulation 2005, 112, 1362–1374. [Google Scholar] [CrossRef]
- Antunes, M.L.; Spotnitz, H.M.; Clark, M.B.; Steinhardt, M.J.; Marboe, C.C.; Smith, C.R.; Rose, E.A.; Reemtsma, K. Long-term function of human cardiac allografts assessed by two-dimensional echocardiography. J. Thorac. Cardiovasc. Surg. 1989, 98, 275–284. [Google Scholar] [CrossRef]
- Ananthasubramaniam, K.; Garikapati, K.; Williams, C.T. Progressive left ventricular hypertrophy after heart transplantation: Insights and mechanisms suggested by multimodal images. Tex. Heart Inst. J. 2016, 43, 65–68. [Google Scholar] [CrossRef]
- Stetson, S.J.; Perez-Verdia, A.; Mazur, W.; Farmer, J.A.; Koerner, M.M.; Weilbaecher, D.G.; Entman, M.L.; Quinones, M.A.; Noon, G.P.; Torre-Amione, G. Cardiac hypertrophy after transplantation is associated with persistent expression of tumor necrosis factor-α. Circulation 2001, 104, 676–681. [Google Scholar] [CrossRef]
- Angermann, C.E.; Spes, C.H.; Willems, S.; Dominiak, P.; Kemkes, B.M.; Theisen, K. Regression of left ventricular hypertrophy in hypertensive heart transplant recipients treated with enalapril, furosemide, and verapamil. Circulation 1991, 84, 583–593. [Google Scholar] [CrossRef]
- Velleca, A.; Shullo, M.A.; Dhital, K.; Azeka, E.; Colvin, M.; DePasquale, E.; Farrero, M.; García-Guereta, L.; Jamero, G.; Khush, K.; et al. The International Society for Heart and Lung Transplantation (ISHLT) Guidelines for the Care of Heart Transplant Recipients. J. Heart Lung Transplant. 2022, 42, e1–e141. [Google Scholar] [CrossRef]
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.E., Jr.; Collins, K.J.; Dennison Himmelfarb, C.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W.; et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: A report of the American College of Cardiology/American Heart Association Task Force on Clinical practice guidelines. Hypertension 2018, 71, e13–e115. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.T.; Whelton, P.K.; Reboussin, D.M. A Randomized Trial of Intensive versus Standard Blood-Pressure Control. N. Engl. J. Med. 2016, 374, 2290–2295. [Google Scholar] [CrossRef]
- Whelton, P.K.; Appel, L.J.; Espeland, M.A.; Applegate, W.B.; Ettinger, W.H., Jr.; Kostis, J.B.; Kumanyika, S.; Lacy, C.R.; Johnson, K.C.; Folmar, S.; et al. Sodium reduction and weight loss in the treatment of hypertension in older persons: A randomized controlled trial of nonpharmacologic interventions in the elderly (TONE). JAMA 1998, 279, 839. [Google Scholar] [CrossRef]
- Singer, D.R.; Markandu, N.D.; Buckley, M.G.; Miller, M.; Sagnella, G.; Lachno, D.R.; Cappuccio, F.P.; Murday, A.; Yacoub, M.H.; MacGregor, G. Blood pressure and endocrine responses to changes in dietary sodium intake in cardiac transplant recipients. Implications for the control of sodium balance. Circulation 1994, 89, 1153–1159. [Google Scholar] [CrossRef] [PubMed]
- Filippou, C.D.; Tsioufis, C.P.; Thomopoulos, C.G.; Mihas, C.C.; Dimitriadis, K.S.; Sotiropoulou, L.; Chrysochoou, C.; Nihoyannopoulos, P.; Tousoulis, D.M. Dietary Approaches to Stop Hypertension (DASH) Diet and Blood Pressure Reduction in Adults with and without Hypertension: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2020, 11, 1150–1160. [Google Scholar] [CrossRef]
- Hoorn, E.J.; Walsh, S.B.; McCormick, J.; Fürstenberg, A.; Yang, C.-L.; Roeschel, T.; Paliege, A.; Howie, A.J.; Conley, J.; Bachmann, S.; et al. The calcineurin inhibitor tacrolimus activates the renal sodium chloride cotransporter to cause hypertension. Nat. Med. 2011, 17, 1304–1309. [Google Scholar] [CrossRef]
- Ciresi, D.L.; Lloyd, M.A.; Sandberg, S.M.; Heublein, D.M.; Edwards, B.S. The sodium retaining effects of cyclosporine. Kidney Int. 1992, 41, 1599–1605. [Google Scholar] [CrossRef]
- Cornelissen, V.A.; Smart, N.A. Exercise training for blood pressure: A systematic review and meta-analysis. J. Am. Heart Assoc. 2013, 2, e004473. [Google Scholar] [CrossRef]
- Carlson, D.J.; Dieberg, G.; Hess, N.C.; Millar, P.J.; Smart, N.A. Isometric exercise training for blood pressure management: A systematic review and meta-analysis. Mayo Clin. Proc. 2014, 89, 327–334. [Google Scholar] [CrossRef]
- Kapa, S.; Kuniyoshi, F.H.S.; Somers, V.K. Sleep apnea and hypertension: Interactions and implications for management. Hypertension 2008, 51, 605–608. [Google Scholar] [CrossRef]
- Jamero, G.; De Leon, F.; Ackerman, M.; Welton, M.; Kissling, N.; Velleca, A.; White, M.; Czer, L.; Nikolova, A.; Kransdorf, E.; et al. NP Telehealth Blood Pressure Management in Heart Transplant Patients—A Single Center Experience. J. Heart Lung Transplant. 2022, 41, S403. [Google Scholar] [CrossRef]
- Wenting, G.J.; Meiracker, A.H.V.; Simoons, M.L.; Bos, E.; Eck, H.J.R.V.; Veld, A.J.M.I.; Weimar, W.; Schalekamp, M. Circadian variation of heart rate but not of blood pressure after heart transplantation. Transplant. Proc. 1987, 19, 2554–2555. [Google Scholar] [PubMed]
- Starling, R.C.; Cody, R.J. Cardiac transplant hypertension. Am. J. Cardiol. 1990, 65, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Mangray, M.; Vella, J.P. Hypertension after kidney transplant. Am. J. Kidney Dis. 2011, 57, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Griño, J.M.; Sabate, I.; Castelao, A.M.; Alsina, J. Influence of Diltiazem on Cyclosporin Clearance. Lancet 1986, 327, 1387. [Google Scholar] [CrossRef]
- Lindenfeld, J.A.; Miller, G.G.; Shakar, S.F.; Zolty, R.; Lowes, B.D.; Wolfel, E.E.; Mestroni, L.; Page, R.L.; Kobashigawa, J. Drug therapy in the heart transplant recipient—Part II: Immunosuppressive drugs. Circulation 2004, 110, 3858–3865. [Google Scholar] [CrossRef]
- Mehrens, T.; Thiele, S.; Suwelack, B.; Kempkes, M.; Hohage, H. The beneficial effects of calcium channel blockers on long-term kidney transplant survival are independent of blood-pressure reduction. Clin. Transplant. 2000, 14, 257–261. [Google Scholar] [CrossRef]
- Cross, N.B.; Webster, A.C.; Masson, P.; O’Connell, P.J.; Craig, J.C. Antihypertensive treatment for kidney transplant recipients. Cochrane Database Syst. Rev. 2009, 2009, CD003598. [Google Scholar] [CrossRef]
- Brozena, S.C.; Johnson, M.R.; Ventura, H.; Hobbs, R.; Miller, L.; Olivari, M.T.; Clemson, B.; Bourge, R.; Quigg, R.; Mills, R.M.; et al. Effectiveness and safety of diltiazem or lisinopril in treatment of hypertension after heart transplantation Results of a prospective, randomized multicenter trial. J. Am. Coll. Cardiol. 1996, 27, 1707–1712. [Google Scholar] [CrossRef]
- Tylicki, L.; Habicht, A.; Watschinger, B.; Hörl, W.H. Treatment of hypertension in renal transplant recipients. Curr. Opin. Urol. 2003, 13, 91–98. [Google Scholar] [CrossRef]
- Hiremath, S.; Fergusson, D.; Doucette, S.; Mulay, A.V.; Knoll, G.A. Renin angiotensin system blockade in kidney transplantation: A systematic review of the evidence. Am. J. Transplant. 2007, 7, 2350–2360. [Google Scholar] [CrossRef]
- Hausberg, M.; Barenbrock, M.; Hohage, H.; Müller, S.; Heidenreich, S.; Rahn, K.-H. ACE inhibitor versus β-blocker for the treatment of hypertension in renal allograft recipients. Hypertension 1999, 33, 862–868. [Google Scholar] [CrossRef]
- Aftab, W.; Varadarajan, P.; Rasool, S.; Kore, A.; Pai, R.G. Beta and angiotensin blockades are associated with improved 10-year survival in renal transplant recipients. J. Am. Heart Assoc. 2013, 2, e000091. [Google Scholar] [CrossRef] [PubMed]
- Tutakhel, O.A.Z.; Moes, A.D.; Valdez-Flores, M.A.; Kortenoeven, M.L.; Vrie, M.V.D.; Jeleń, S.; Fenton, R.; Zietse, R.; Hoenderop, J.G.J.; Hoorn, E.J.; et al. NaCl cotransporter abundance in urinary vesicles is increased by calcineurin inhibitors and predicts thiazide sensitivity. PLoS ONE 2017, 12, e0176220. [Google Scholar] [CrossRef]
- Weir, M.R.; Burgess, E.D.; Cooper, J.E.; Fenves, A.Z.; Goldsmith, D.; McKay, D.; Mehrotra, A.; Mitsnefes, M.M.; Sica, D.A.; Taler, S.J. Assessment and management of hypertension in transplant patients. J. Am. Soc. Nephrol. 2015, 26, 1248–1260. [Google Scholar] [CrossRef] [PubMed]
- Castelao, A.M.; Ibernón, M.; Sarrias, X.; Sanz, V.; Moreso, F.; Rama, I.; Grinyó, J. Doxazosin GITS trough to peak ratio and 24-hour blood pressure monitoring in the management of hypertension in renal transplant patients. Transplant. Proc. 2003, 35, 1736–1738. [Google Scholar] [CrossRef] [PubMed]
- Pritzker, M.R.; Lake, K.D.; Reutzel, T.J.; Hoffman, F.M.; Jorgensen, C.R.; Pederson, W.; Emery, R.W. Steroid-free maintenance immunotherapy: Minneapolis Heart Institute experience. J. Heart Lung Transplant. 1992, 11 Pt 2, 415–420. [Google Scholar]
- Baraldo, M.; Gregoraci, G.; Livi, U. Steroid-free and steroid withdrawal protocols in heart transplantation: The review of literature. Transpl. Int. 2014, 27, 515–529. [Google Scholar] [CrossRef]
- Yamani, M.H.; Taylor, D.O.; Czerr, J.; Haire, C.; Kring, R.; Zhou, L.; Hobbs, R.; Smedira, N.; Starling, R.C. Thymoglobulin induction and steroid avoidance in cardiac transplantation: Results of a prospective, randomized, controlled study. Clin. Transplant. 2008, 22, 76–81. [Google Scholar] [CrossRef]
- Crespo Leiro, M.G.; Bonet, L.A.; Paniagua Martín, M.; Bueno, M.G.; Escribano, P.; Vilchez, F.G.; Lambert, J.R.; Loidi, V.B.; Gallé, E.L.; Jiménez, J.D. Steroid Withdrawal during 5 years following heart transplantation, and the relationship between steroid dosage at 1-year follow-up and complications during the next 2 years: Results from the restco study. Transplant. Proc. 2012, 44, 2631–2634. [Google Scholar] [CrossRef]
- Baran, D.A.; Rosenfeld, C.; Zucker, M.J. Corticosteroid Weaning in Stable Heart Transplant Patients: Guidance by Serum Cortisol Level. J. Transplant. 2018, 2018, 3740395. [Google Scholar] [CrossRef]
- Rosenbaum, D.H.; Adams, B.C.; Mitchell, J.D.; Jessen, M.E.; Paul, M.C.; Kaiser, P.A.; Pappas, P.A.; Meyer, D.M.; Wait, M.A.; Drazner, M.H.; et al. Effects of Early Steroid Withdrawal After Heart Transplantation. Ann. Thorac. Surg. 2006, 82, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Pascual, M.; Curtis, J.; Delmonico, F.L.; Farrell, M.L.; Williams, W.W.; Kalil, R.; Jones, P.; Cosimi, A.B.; Tolkoff-Rubin, N. A prospective, randomized clinical trial of cyclosporine reduction in stable patients greater than 12 months after renal transplantation. Transplantation 2003, 75, 1501–1505. [Google Scholar] [CrossRef]
- Rostaing, L.; Massari, P.; Garcia, V.D.; Mancilla-Urrea, E.; Nainan, G.; Rial, M.d.C.; Steinberg, S.; Vincenti, F.; Shi, R.; Di Russo, G.; et al. Switching from calcineurin inhibitor-based regimens to a belatacept-based regimen in renal transplant recipients: A randomized phase II study. Clin. J. Am. Soc. Nephrol. 2011, 6, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Ekberg, H.; Grinyó, J.; Nashan, B.; Vanrenterghem, Y.; Vincenti, F.; Voulgari, A.; Truman, M.; Nasmyth-Miller, C.; Rashford, M. Cyclosporine sparing with mycophenolate mofetil, daclizumab and corticosteroids in renal allograft recipients: The CAESAR study. Am. J. Transplant. 2007, 7, 560–570. [Google Scholar] [CrossRef] [PubMed]
- Eisen, H.J.; Tuzcu, E.M.; Dorent, R.; Kobashigawa, J.; Mancini, D.; Kaeppler, H.A.V.-V.; Starling, R.C.; Sørensen, K.; Hummel, M.; Lind, J.M.; et al. Everolimus for the Prevention of Allograft Rejection and Vasculopathy in Cardiac-Transplant Recipients. N. Engl. J. Med. 2003, 349, 847–858. [Google Scholar] [CrossRef]
- Groetzner, J.; Kaczmarek, I.; Schulz, U.; Stegemann, E.; Kaiser, K.; Wittwer, T.; Schirmer, J.; Voss, M.; Strauch, J.; Wahlers, T.; et al. Mycophenolate and Sirolimus as Calcineurin Inhibitor-Free Immunosuppression Improves Renal Function Better Than Calcineurin Inhibitor-Reduction in Late Cardiac Transplant Recipients With Chronic Renal Failure. Transplantation 2009, 87, 726–733. [Google Scholar] [CrossRef]
- Asleh, R.; Briasoulis, A.; Kremers, W.K.; Adigun, R.; Boilson, B.A.; Pereira, N.L.; Edwards, B.S.; Clavell, A.L.; Schirger, J.A.; Rodeheffer, R.J.; et al. Long-Term Sirolimus for Primary Immunosuppression in Heart Transplant Recipients. J. Am. Coll. Cardiol. 2018, 71, 636–650. [Google Scholar] [CrossRef]
- Kario, K.; Okada, K.; Kato, M.; Nishizawa, M.; Yoshida, T.; Asano, T.; Uchiyama, K.; Niijima, Y.; Katsuya, T.; Urata, H.; et al. 24-h blood pressure-lowering effect of an SGLT-2 inhibitor in patients with diabetes and uncontrolled nocturnal hypertension: Results from the randomized, placebo-controlled SACRA study. Circulation 2019, 139, 2089–2097. [Google Scholar] [CrossRef]
- Tikkanen, I.; Narko, K.; Zeller, C.; Green, A.; Salsali, A.; Broedl, U.C.; Woerle, H.J. Empagliflozin reduces blood pressure in patients with type 2 diabetes and hypertension. Diabetes Care 2015, 38, 420–428. [Google Scholar] [CrossRef]
- Cehic, M.G.; Muir, C.A.; Greenfield, J.R.; Hayward, C.; Jabbour, A.; Keogh, A.; Kotlyar, E.; Muthiah, K.; Macdonald, P.S. Efficacy and safety of empagliflozin in the management of diabetes mellitus in heart transplant recipients. Transplant. Direct 2019, 5, e450. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.gov. DAPAgliflozin for Renal Protection in Heart Transplant Recipients (DAPARHT). Available online: https://classic.clinicaltrials.gov/ct2/show/NCT05321706 (accessed on 13 March 2024).
- De Vecchis, R.; Soreca, S.; Ariano, C. Anti-Hypertensive Effect of Sacubitril/Valsartan: A Meta-Analysis of Randomized Controlled Trials. Cardiol. Res. 2019, 10, 24–33. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Agarwal, R.; Ruilope, L.M.; Ruiz-Hurtado, G.; Haller, H.; Schmieder, R.E.; Anker, S.D.; Filippatos, G.; Pitt, B.; Rossing, P.; Lambelet, M.; et al. Effect of finerenone on ambulatory blood pressure in chronic kidney disease in type 2 diabetes. J. Hypertens. 2023, 41, 295–302. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tsujimoto, T.; Kajio, H. Spironolactone Use and Improved Outcomes in Patients With Heart Failure With Preserved Ejection Fraction With Resistant Hypertension. J. Am. Heart Assoc. 2020, 9, e018827. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Baba, D.-F.; Danilesco, A.; Suciu, H.; Avram, C.; Harpa, M.M.; Stoian, M.; Moldovan, D.-A.; Huma, L.; Rusu, G.; Pal, T.; et al. The Effect of Early Spironolactone Administration on 2-Year Acute Graft Rejection in Cardiac Transplant Patients. Biomedicines 2025, 13, 1164. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cluett, J.L.; Blazek, O.; Brown, A.L.; East, C.; Ferdinand, K.C.; Fisher, N.D.; Ford, C.D.; Griffin, K.A.; Mena-Hurtado, C.I.; Sarathy, H.; et al. Renal Denervation for the Treatment of Hypertension: A Scientific Statement From the American Heart Association. Hypertension 2024, 81, e135–e148. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M.R.; Stepanek, J.; Cevette, M.; Covalciuc, M.; Hurst, R.T.; Tajik, A.J. Noninvasive measurement of central vascular pressures with arterial tonometry: Clinical revival of the pulse pressure waveform? Mayo Clin. Proc. 2010, 85, 460–472. [Google Scholar] [CrossRef]
- Radovancevic, B.; Poindexter, S.; Birovljev, S.; Velebit, V.; Mcallister, H.; Duncan, J.; Vega, D.; Lonquist, J.; Burnett, C. Risk factors for development of accelerated coronary artery disease in cardiac transplant recipients. Eur. J. Cardio-Thoracic Surg. 1990, 4, 309–313. [Google Scholar] [CrossRef]
- Hartmann, R.; Der Maur, C.A.; Toggweiler, S.; Brunner, C.; Jamshidi, P.; Mueller, X.; Tavakoli, R. Diastolic Filling Reserve Preservation Using a Semispherical Dacron Patch for Repair of Anteroapical Left Ventricular Aneurysm. Ann. Thorac. Surg. 2016, 102, e73–e75. [Google Scholar] [CrossRef]
- Rahmani, M.; Cruz, R.P.; Granville, D.J.; McManus, B.M. Allograft vasculopathy versus atherosclerosis. Circ. Res. 2006, 99, 801–815. [Google Scholar] [CrossRef]
- Vassalli, G.; Gallino, A.; Weis, M.; Von Scheidt, W.; Kappenberger, L.; Von Segesser, L.K.; Goy, J.-J.; Working Group Microcirculation of the Eurpean Society of Cardiology. Alloimmunity and nonimmunologic risk factors in cardiac allograft vasculopathy. Eur. Heart J. 2003, 24, 1180–1188. [Google Scholar] [CrossRef]
- Mehra, M.R.; Ventura, H.O.; Chambers, R.; Collins, T.J.; Ramee, S.R.; Kates, M.A.; Smart, F.W.; Stapleton, D.D. Predictive model to assess risk for cardiac allograft vasculopathy: An intravascular ultrasound study. J. Am. Coll. Cardiol. 1995, 26, 1537–1544. [Google Scholar] [CrossRef]
- Schroeder, J.S.; Gao, S.-Z.; Alderman, E.L.; Hunt, S.A.; Johnstone, I.; Boothroyd, D.B.; Wiederhold, V.; Stinson, E.B. A preliminary study of diltiazem in the prevention of coronary artery disease in heart-transplant recipients. Drugs Today 1993, 328, 164–170. [Google Scholar] [CrossRef]
- Erinc, K.; Yamani, M.H.; Starling, R.C.; Crowe, T.; Hobbs, R.; Bott-Silverman, C.; Rincon, G.; Young, J.B.; Feng, J.; Cook, D.J.; et al. The Effect of combined angiotensin-converting enzyme inhibition and calcium antagonism on allograft coronary vasculopathy validated by intravascular ultrasound. J. Heart Lung Transplant. 2005, 24, 1033–1038. [Google Scholar] [CrossRef]
- Kittleson, M.M.; Kobashigawa, J.A. Cardiac Transplantation: Current Outcomes and Contemporary Controversies. JACC Heart Fail. 2017, 5, 857–868. [Google Scholar] [CrossRef]


| Drug Class | Recommendation | Benefits | Risks/Side Effects |
|---|---|---|---|
| Calcium Channel Blockers (CCBs) | Dihydropyridine CCB—first-line therapy for post-cardiac transplant hypertension | Minimal drug interactions (DHP CCB), low side effect profile, potent renal vasodilators, improve renal function | Diltiazem/verapamil: negative inotropic effect, AV nodal block—avoid in early postoperative period, boost CNI levels (CYP 450 inhibitor), need CNI dose reduction (20–50%) |
| RAAS blockade | Preferred agents with concomitant diabetes mellitus, proteinuria, reduced LVEF, CKD | Decrease proteinuria and BP, renal protection (quinapril) | Monitor for nephrotoxicity with use of CNIs, decline in GFR (short term), caution with hyperkalemia |
| Beta blockers | Second- or third-line agents preferred with concomitant arrhythmias, tremors (propranolol) | Nebivolol: nitric oxide-mediated vasodilation, treats CNI-induced hypertension | Risk of bradycardia, negative inotropic effects—avoid in the early postoperative period |
| Diuretics | Used for volume optimization, thiazides are better for CNI-induced HTN | Promote sodium excretion, Loop diuretics—modest BP effect, thiazides are more effective for BP | Risk of dehydration and volume loss |
| Vasodilators (hydralazine, alpha blockers) | Third-line agents are used when other agents are not tolerated. | Cause systemic vasodilation | Headaches, compensatory tachycardia, orthostatic hypotension. |
| SGLT2i | Modest BP-lowering effect—consider with concomitant diabetes mellitus and CKD. | No studies in use for BP control in heart transplant patients | Risk of UTI—need careful monitoring |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rashed, E.R.; Sundaravel, S.; Ortega-Legaspi, J.M. A Review of Systemic Hypertension in the Cardiac Transplant Population: Pathophysiology, Management, and Future Directions. Hearts 2025, 6, 32. https://doi.org/10.3390/hearts6040032
Rashed ER, Sundaravel S, Ortega-Legaspi JM. A Review of Systemic Hypertension in the Cardiac Transplant Population: Pathophysiology, Management, and Future Directions. Hearts. 2025; 6(4):32. https://doi.org/10.3390/hearts6040032
Chicago/Turabian StyleRashed, Eman R., Swethika Sundaravel, and Juan M. Ortega-Legaspi. 2025. "A Review of Systemic Hypertension in the Cardiac Transplant Population: Pathophysiology, Management, and Future Directions" Hearts 6, no. 4: 32. https://doi.org/10.3390/hearts6040032
APA StyleRashed, E. R., Sundaravel, S., & Ortega-Legaspi, J. M. (2025). A Review of Systemic Hypertension in the Cardiac Transplant Population: Pathophysiology, Management, and Future Directions. Hearts, 6(4), 32. https://doi.org/10.3390/hearts6040032

